Efficient Triple Attention and AttentionMix: A Novel Network for Fine-Grained Crop Disease Classification
Abstract
:1. Introduction
- (1)
- We propose an effective triple attention module to efficiently extract channel attention and spatial attention information from crop disease images.
- (2)
- An AttentionMix data augmentation strategy is proposed to avoid the loss of object information due to random cuts in CutMix.
- (3)
- We build a large-scale crop disease dataset containing images of five crops—wheat, rice, rape, corn, and apple—with images taken in real field conditions.
- (4)
- We develop a crop disease identification WeChat mini program to achieve disease identification using images taken with smartphones.
- (5)
- Extensive experiments on the crop disease dataset and the common pest and disease dataset are employed to demonstrate the advanced nature of our proposed method.
2. Related Works
2.1. Attention Mechanism
2.2. Data Augmentation
3. Methods
3.1. Crop Disease Datasets
3.2. Efficient Triplet Attention Module
3.3. AttentionMix
3.4. Crop Disease Identification WeChat Mini Program
4. Experiments and Results
4.1. Experimental Settings
4.2. Comparison Using the Crop Disease Datasets
4.3. Comparison on the IP102 Dataset
4.4. Visualization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, L.; Zhang, S.; Wang, B. Plant disease detection and classification by deep learning—A review. IEEE Access 2021, 9, 56683–56698. [Google Scholar] [CrossRef]
- Guo, P.; Liu, T.; Li, N. Design of automatic recognition of cucumber disease image. Inf. Technol. J. 2014, 13, 2129. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, X.; You, Z.; Zhang, L. Leaf image based cucumber disease recognition using sparse representation classification. Comput. Electron. Agric. 2017, 134, 135–141. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, PMLR 2019, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Tan, M.; Le, Q. Efficientnetv2: Smaller models and faster training. In Proceedings of the International Conference on Machine Learning, PMLR 2021, online, 18–24 July 2021; pp. 10096–10106. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Redmon, J. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Lu, E.; Cole, F.; Dekel, T.; Zisserman, A.; Freeman, W.T.; Rubinstein, M. Omnimatte: Associating objects and their effects in video. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021; pp. 4507–4515. [Google Scholar]
- Li, M.; Zhou, G.; Chen, A.; Li, L.; Hu, Y. Identification of tomato leaf diseases based on LMBRNet. Eng. Appl. Artif. Intell. 2023, 123, 106195. [Google Scholar] [CrossRef]
- Deng, Y.; Xi, H.; Zhou, G.; Chen, A.; Wang, Y.; Li, L.; Hu, Y. An effective image-based tomato leaf disease segmentation method using MC-UNet. Plant Phenomics 2023, 5, 0049. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhong, Y.; Zhou, S.; Song, J.; Xiang, W. Rice leaf disease identification by residual-distilled transformer. Eng. Appl. Artif. Intell. 2023, 121, 106020. [Google Scholar] [CrossRef]
- Hasan, M.; Rahman, T.; Uddin, A.F.M.S.; Galib, S.M.; Akhond, M.R.; Uddin, J.; Hossain, A. Enhancing rice crop management: Disease classification using convolutional neural networks and mobile application integration. Agriculture 2023, 13, 1549. [Google Scholar] [CrossRef]
- Gao, R.; Wang, R.; Feng, L.; Li, Q.; Wu, H. Dual-branch, efficient, channel attention-based crop disease identification. Comput. Electron. Agric. 2021, 190, 106410. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Wu, J.; Zheng, H.; Zhao, B.; Li, Y.; Yan, B.; Liang, R.; Wang, W.; Zhou, S.; Lin, G.; Fu, Y.; et al. Large-scale datasets for going deeper in image understanding. In Proceedings of the 2019 IEEE International Conference on Multimedia and Expo (ICME), IEEE 2019, Shanghai, China, 8–12 July 2019; pp. 1480–1485. [Google Scholar]
- Hughes, D.; Salathé, M. An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv 2015, arXiv:1511.08060. [Google Scholar]
- Chen, Z.; Cao, M.; Ji, P.; Ma, F. Research on Crop Disease Classification Algorithm Based on Mixed Attention Mechanism. J. Phys. Conf. Ser. 2021, 1961, 012048. [Google Scholar] [CrossRef]
- Huang, L.; Luo, Y.; Yang, X.; Yang, G.; Wang, D. Crop Disease Recognition Based on Attention Mechanism and Multi-scale Residual Network. Trans. Chin. Soc. Agric. Mach. 2021, 52, 264–271. [Google Scholar]
- Wang, X.; Dong, Q.; Yang, G. YOLOv5 Improved by Optimized CBAM for Crop Pest Identification. Comput. Syst. Appl. 2023, 32, 261–268. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient channel attention for deep convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 11534–11542. [Google Scholar]
- Misra, D.; Nalamada, T.; Arasanipalai, A.U.; Hou, Q. Rotate to attend: Convolutional triplet attention module. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Virtual, 5–9 January 2021; pp. 3139–3148. [Google Scholar]
- Yun, S.; Han, D.; Oh, S.J.; Chun, S.; Choe, J.; Yoo, Y. Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of South Korea, 27 October–2 November 2019; pp. 6023–6032. [Google Scholar]
- Sethy, P.K.; Barpanda, N.K.; Rath, A.K.; Behera, S.K. Deep feature based rice leaf disease identification using support vector machine. Comput. Electron. Agric. 2020, 175, 105527. [Google Scholar] [CrossRef]
- Everingham, M.; Van Gool, L.; Williams, I.C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef]
- Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400. [Google Scholar]
- Ioffe, S. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Wu, X.; Zhan, C.; Lai, Y.K.; Cheng, M.; Yang, J. Ip102: A large-scale benchmark dataset for insect pest recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 8787–8796. [Google Scholar]
- Paszke, A.; Gross, S.; Chintala, S.; Chnan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic Differentiation in Pytorch. 2017. Available online: https://openreview.net/forum?id=BJJsrmfCZ (accessed on 5 January 2025).
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
Method | Attention | Datasets | |||||
---|---|---|---|---|---|---|---|
Channel | Spatial | Wheat | Rice | Rape | Corn | Apple | |
ResNet | 94.2 | 92.9 | 90.4 | 92.8 | 93.6 | ||
ECANet | ✔ * | 98.5 | 98.2 | 94.7 | 94.7 | 93.9 | |
Triplet Attention | ✔ | 98.3 | 98.2 | 95.2 | 95.8 | 93.6 | |
ETANet | ✔ | ✔ | 98.9 | 98.4 | 96.9 | 96.1 | 94.4 |
Methods | Datasets | ||||
---|---|---|---|---|---|
Wheat | Rice | Rape | Corn | Apple | |
CutMix + ResNet-50 | 99.3 | 98.4 | 98.3 | 95.8 | 94.8 |
AttentionMix + ResNet-50 | 99.4 | 98.8 | 98.6 | 96.1 | 95.7 |
CutMix + ETANet | 99.6 | 98.9 | 98.6 | 96.8 | 95.6 |
AttentionMix + ETANet | 99.7 | 99.1 | 98.6 | 96.9 | 96.9 |
Methods | Accuracy (%) | Recall (%) |
---|---|---|
ResNet-50 | 68.4 | 52.7 |
ECANet | 68.8 | 55.4 |
Triplet Attention | 69.2 | 55.8 |
ETANet | 69.7 | 63.1 |
CutMix + ResNet-50 | 72.6 | 63.5 |
CutMix + ECANet | 73.2 | 64.9 |
CutMix + Triplet Attention | 72.8 | 64.6 |
CutMix + ETANet | 73.7 | 66.3 |
AttentionMix + ResNet-50 | 76.6 | 67.3 |
AttentionMix + ECANet | 78.4 | 68.6 |
AttentionMix + Triplet Attention | 77.8 | 67.8 |
AttentionMix + ETANet | 78.7 | 70.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, N.; Zhu, J.; Sun, T.; Chai, X.; Dong, W. Efficient Triple Attention and AttentionMix: A Novel Network for Fine-Grained Crop Disease Classification. Agriculture 2025, 15, 313. https://doi.org/10.3390/agriculture15030313
Zhang Y, Zhang N, Zhu J, Sun T, Chai X, Dong W. Efficient Triple Attention and AttentionMix: A Novel Network for Fine-Grained Crop Disease Classification. Agriculture. 2025; 15(3):313. https://doi.org/10.3390/agriculture15030313
Chicago/Turabian StyleZhang, Yanqi, Ning Zhang, Jingbo Zhu, Tan Sun, Xiujuan Chai, and Wei Dong. 2025. "Efficient Triple Attention and AttentionMix: A Novel Network for Fine-Grained Crop Disease Classification" Agriculture 15, no. 3: 313. https://doi.org/10.3390/agriculture15030313
APA StyleZhang, Y., Zhang, N., Zhu, J., Sun, T., Chai, X., & Dong, W. (2025). Efficient Triple Attention and AttentionMix: A Novel Network for Fine-Grained Crop Disease Classification. Agriculture, 15(3), 313. https://doi.org/10.3390/agriculture15030313