Potential of Waste Water Use for Jatropha Cultivation in Arid Environments
Abstract
:1. Introduction
2. Results and Discussion
2.1. Water Requirements
Month | Tmin | Tmax | RHair | Wind | Sun | Rad | ETo | Rain |
---|---|---|---|---|---|---|---|---|
(°C) | (°C) | (%) | (m s−1) | (h day−1) | (MJ m−2 day−1) | (mm day−1) | (mm day−1) | |
January | 9.6 | 21.1 | 70 | 3.0 | 6.2 | 12.1 | 2.6 | 0.4 |
February | 10.5 | 21.8 | 56 | 3.0 | 6.8 | 14.8 | 3.5 | 0.6 |
March | 13.0 | 23.7 | 56 | 3.0 | 6.8 | 17.3 | 4.2 | 0.2 |
April | 13.7 | 23.8 | 60 | 2.9 | 7.1 | 19.7 | 4.5 | 0.1 |
May | 15.6 | 24.4 | 59 | 2.7 | 6.9 | 20.3 | 4.7 | 0.0 |
June | 16.6 | 25.7 | 59 | 2.6 | 5.6 | 18.5 | 4.6 | 0.0 |
July | 17.6 | 27.0 | 59 | 2.4 | 5.2 | 17.7 | 4.6 | 0.0 |
August | 18.0 | 29.1 | 67 | 2.4 | 5.9 | 18.1 | 4.5 | 0.0 |
September | 17.4 | 28.3 | 66 | 2.3 | 6.2 | 17.0 | 4.2 | 0.1 |
October | 15.5 | 27.3 | 62 | 2.3 | 6.8 | 15.4 | 3.8 | 0.4 |
November | 13.3 | 25.6 | 66 | 2.6 | 6 | 12.3 | 3.1 | 0.8 |
December | 9.8 | 21.5 | 71 | 2.9 | 5.9 | 11.2 | 2.5 | 1.2 |
Average | 14.2 | 24.9 | 63 | 2.7 | 6.3 | 16.2 | 3.9 | 0.31 |
Input parameters | Development stage | ||||||||
---|---|---|---|---|---|---|---|---|---|
Initial | Development | Mid-season | Late season | Total | |||||
Duration (day) | 43 | 60 | 30 | 75 | 208 | ||||
Crop coefficient value (Kc) | 0.6 | n.i. | 1.2 | 0.4 | n.i. | ||||
Rooting depth (m) | 0.3 | n.i. | 1.2 | n.i. | n.i. | ||||
Crop height (m) | n.i. | n.i. | 3 | n.i. | n.i. | ||||
Critical depletion fraction | 0.4 | n.i. | 0.4 | 0.4 | n.i. | ||||
Yield response factor | 0.5 | 0.5 | 1 | 1 | 3 |
LF | 0 | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 |
---|---|---|---|---|---|---|---|---|---|---|---|
ETc | 779 | 820 | 866 | 917 | 974 | 1039 | 1113 | 1199 | 1299 | 1417 | 1559 |
IRg | 1787 | 1838 | 1895 | 1959 | 2030 | 2111 | 2204 | 2311 | 2436 | 2584 | 2716 |
N | 76 | 80 | 84 | 89 | 94 | 101 | 108 | 116 | 126 | 137 | 151 |
P | 7 | 7 | 8 | 8 | 9 | 9 | 10 | 11 | 12 | 13 | 14 |
K | 152 | 160 | 169 | 179 | 190 | 203 | 217 | 234 | 253 | 276 | 304 |
Na+ | 803 | 845 | 892 | 944 | 1003 | 1070 | 1147 | 1235 | 1338 | 1459 | 1605 |
K+ | 152 | 160 | 169 | 179 | 190 | 203 | 217 | 234 | 253 | 276 | 304 |
2.2. Soil Salinity
2.3. Nutrient Requirement
Total biomass | Partitioning | N | P | K | N | P | K | |
---|---|---|---|---|---|---|---|---|
(%DM) | % | kg ha−1 | ||||||
Wood | 58 | 3.34 | 0.09 | 2.87 | 112 | 3 | 96 | |
Leaves | 15 | 4.70 | 0.15 | 3.77 | 41 | 1 | 33 | |
Fruit | ||||||||
Coat | 7 | 0.19 | 00.4 | 2.35 | 1 | 0 | 9 | |
Seed | 20 | 2.15 | 0.50 | 0.73 | 25 | 6 | 8 | |
Total | 178 | 10 | 147 |
3. Materials and Methods
3.1. Location of the Case Study Area
3.2. Model Parameterization
3.3. Calculations
3.3.1. Irrigation Requirements (IR)
3.3.2. Leaching Fractions (LF)
3.3.3. Gross Irrigation Requirement (IRg)
- IRg is the gross irrigation requirement (mm),
- ETc is the average crop evapotranspiration (mm),
- Pe is the effective rainfall (mm),
- Kr is the reduction factor for crop cover (= 0.85 [13]),
- IR is the basic irrigation requirement (mm),
- and Ea is the irrigation efficiency (=0.8 corresponding to micro-irrigation system [54].
- IR Applied water (mm),
- ETc Crop evapotranspiration (mm),
- LF Leaching fraction.
3.4. Nutrient Requirements and Water Quality
Constituent | Unit | Range in TSE | TSE |
---|---|---|---|
pH | 7.8–8.1 | 8.4 | |
Electrical Conductivity | (dS m−1) | 1.0–3.1 | 1.4 |
Total Suspended Solids | (mg L−1) | – | 28 |
Biochemical Oxygen Demand | (mg L−1) | 10–80 | 16 |
Chemical Oxygen Demand | (mg L−1) | 30–160 | 53 |
Mineral Nitrogen | (mg L−1) | 10–50 | 9.7 |
PO4-P | (mg L−1) | 4.2–9.7 | 2.8 |
K+ | (mg L−1) | 10–40 | 19.5 |
Cl− | (mg L−1) | – | 224 |
Ca2+ | (mg L−1) | 20–120 | 7.5 (meq L−1) |
Mg2+ | (mg L−1) | 10–50 | 5.2 (meq L−1) |
Na+ | (mg L−1) | 50–250 | 103 |
Sodium adsorption ratio | 2.1 |
3.5. Soil Salinity
4. Conclusions
References and Note
- Sala, O.E.; Stuart Chapin, F., III; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.F.; Jackson, R.B.; Kinzig, A.; et al. Global biodiversity scenarios for the year 2100. Science 2000, 287, 1770–1774. [Google Scholar]
- Abdelfadel, A.B.; Driouech, F. Climate change and its impacts on water resources in the Maghreb region. Available online: http://www.arabwatercouncil.org/administrator/Modules/Events/IWRA%20Morocco%20Paper (accessed on 21 November 2012).
- Coqk, S. Link Global Markets: Trade Information Packet—Kingdom of Morocco; World Trade Center: San Diego, Country, 2011; p. 77. [Google Scholar]
- The World Bank, Project Performance Assessment Report: Morocco—Water Resources Management Project; Independent Evaluation Group (World Bank): Washington, DC, USA, 2009; p. 67.
- Berkat, O.; Tazi, M. Country pasture/forage resources profiles Morocco. Available online: http://www.fao.org/ag/AGP/AGPC/doc/Counprof/Morocco/morocco.htm (accessed on 21 November 2012).
- Frenken, K. L'irrigation en Afrique en chiffres: Enquête AQUASTAT—2005; Organisation des Nations Unies pour l’Alimentation et l’Agriculture: Rome, Italy, 2005; p. 652. [Google Scholar]
- United Nations Economic Commission for Africa, Water Resources Development in North Africa: Summary of Subregional Report; UNECA: Tanger, Morocco, 2005.
- Da Fonseca, A.F.; Herpin, U.; De Paula, A.M.; Victória, R.L.; Melfi, A.J. Agricultural use of treated sewage effluents: Agronomic and environmental implications and perspectives for Brazil. Sci. Agric. 2007, 64, 194–209. [Google Scholar] [CrossRef]
- Shon, H.K.; Vigneswaran, S.; Snyder, S.A. Effluent Organic Matter (EfOM) in Wastewater: Constituents, Effects, and Treatment. Crit. Rev. Env. Sci. Tec. 2006, 36, 327–374. [Google Scholar] [CrossRef]
- Ministère de l'énergie des Mines de l'Eau et de l'environnement Secteur de l'énergie, chiffre clés. Available online: http://www.mem.gov.ma/ChiffresCles/Energie/ChiffreEnergie.htm (accessed on 21 November 2012).
- Silva, E.N.; Ribeiro, R.V.; Ferreira-Silva, S.L.; Viégas, R.A.; Silveira, J.A.G. Comparative effects of salinity and water stress on photosynthesis, water relations and growth of Jatropha curcas plants. J. Arid Environ. 2010, 74, 1130–1137. [Google Scholar] [CrossRef]
- GEXSI, Global Market Study on Jatropha; Jatropha alliance: London, UK, 2008; p. 187.
- Abou Kheira, A.A.; Atta, N.M.M. Response of Jatropha curcas L. to water deficit: Yield, water use efficiency and oilseed characteristics. Biomass Bioenergy 2009, 33, 1343–1350. [Google Scholar] [CrossRef]
- Swennenhuis, J. CROPWAT 8.0; Food and Agriculture Oganization of the United Nations: Rome, Italy, 2009. [Google Scholar]
- KFW—Entwiklungsbank, Morocco: Drinking Water Supply Guelmim/Tan Tan and Youssoufia/Chemaia; KFW—Entwiklungsbank: Frankfurt am Main, Germany, 2006.
- Grieser, J. CLIMWAT 2.0; Food and Agriculture Oganization of the United Nations: Rome, Italy, 2006. [Google Scholar]
- Ghosh, A.; Patolia, J.S.; Chaudharry, D.R.; Chikara, J.; Rao, S.N.; Kumar, D.; Boricha, G.N.; Zala, A. In Response of Jatropha curcasunder Different Spacing to Jatropha De-Oiled Cake; FACT Foundation: Wageningen, The Netherlands, 2007. [Google Scholar]
- Kaushik, N.; Kumar, K.; Kumar, S.; Kaushik, N.; Roy, S. Genetic variability and divergence studies in seed traits and oil content of Jatropha (Jatropha curcas L.) accessions. Biomass Bioenergy 2007, 31, 497–502. [Google Scholar] [CrossRef]
- Daey Ouwens, K.; Francis, G.; Franken, Y.J.; Rijssenbeek, W.; Riedacker, A.; Foidl, N.; Jongschaap, R.E.E.; Bindraban, P.S. Position Paper on Jatropha curcas State of the Art, Small and Large Scale Project Development; Foundation FACT: Wageningen, The Netherlands, 2007. [Google Scholar]
- Maes, W.H.; Trabucco, A.; Achten, W.M.J.; Muys, B. Climatic growing conditions of Jatropha curcas L. Biomass Bioenergy 2009, 33, 1481–1485. [Google Scholar]
- Holl, M.A.; Gush, M.B.; Hallowes, J.; Versfeld, D.B. Jatropha curcasin South Africa: An Assessment of Its Water Use and Bio-Physical Potential; WRC: Pretoria, South Africa, 2007. [Google Scholar]
- Jongschaap, R.E.E.; Blesgraaf, R.A.R.; Bogaard, T.A.; van Loo, E.N.; Savenije, H.H.G. The water footprint of bioenergy from Jatropha. curcas L. Proc. Natl. Acad. Sci. USA 2009, 106, E92–E92. [Google Scholar]
- Gush, M.B.; Moodley, M. Water Use Assessment of Jatropha curcas; Report No. 1497/1/07 (Chapter 4). In An Assessment of Its Water Use and Biophysical Potential; Holl, M.A., Gush, M.B., Hallowes, J., Versfeld, D.B., Eds.; Water Research Commission: Pretoria, South Africa, 2007. [Google Scholar]
- Achten, W.M.J.; Maes, W.H.; Reubens, B.; Mathijs, E.; Singh, V.P.; Verchot, L.; Muys, B. Biomass production and allocation in Jatropha curcas L. seedlings under different levels of drought stress. Biomass Bioenergy 2010, 34, 667–676. [Google Scholar]
- Rajaona, A.M.; Brueck, H.; Asch, F. Leaf gas exchange characteristics of Jatropha as affected by Nitrogen supply, leaf age and atmospheric vapor pressure deficit. J. Agron. Crop Sci. 2012, in press. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements Irrigation and Drainage; Paper No. 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Dos Santos, C.M.; Verissimo, V.; Wanderley Filho, H.C.d.L.; Ferreira, V.M.; Cavalcante, P.G.d.S.; Rolim, E.V.; Endres, L. Seasonal variations of photosynthesis, gas exchange, quantum efficiency of photosystem II and biochemical responses of Jatropha curcas L. grown in semi-humid and semi-arid areas subject to water stress. Ind. Crop Prod. 2013, 41, 203–213. [Google Scholar]
- Li, G.T. The photosynthesis and water use efficiency of eight garden tree species. For. Res. 2002, 15, 291–296. [Google Scholar]
- Rajaona, A.; Seckinger, C.; Brueck, H.; Asch, F. Effect of salinity on canopy water vapor conductance of young and 3-years old Jatropha curcas L. J. Arid Environ. 2012, 87, 35–41. [Google Scholar] [CrossRef]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture Irrigation and Drainage; Paper No. 29 Rev. 1; Food and Agriculture Organization of the United Nations: Rome, Italy, 1985. [Google Scholar]
- Lado, M.; Ben-Hur, M. Treated domestic sewage irrigation effects on soil hydraulic properties in arid and semiarid zones: A review. Soil Till. Res. 2009, 106, 152–163. [Google Scholar] [CrossRef]
- Balks, M.R.; Bond, W.J.; Smith, C.J. Effects of sodium accumulation on soil physical properties under an effluent-irrigated plantation. Soil Res. 1998, 36, 821–830. [Google Scholar]
- Tanji, K.K.; Kielen, N.C. Agricultural Drainage Water Management in Arid and Semi-Arid Areas; Irrigation and Drainage Paper No. 61; FAO: Rome, Italy, 2002. [Google Scholar]
- Prescod, M.B. Wastewater Treatment and Use in Agriculture; Irrigation and Drainage Paper No. 47; Food and Agriculture Organization of the United Nations: Rome, Italy, 1992. [Google Scholar]
- Kijne, J.W.; Rathapar, S.A.; Woperis, M.C.S.; Sahrawat, K.L. How to Manage Salinity in Irrigated Lands: A Selective Review with Particular Reference to Irrigation in Developing Countries; International Water Management Institute: Colombo, Sri Lanka, 1998; p. 44. [Google Scholar]
- Asch, F.; Dinkuhn, M.; Dörffling, K.; Miezan, K. Leaf K/Na ratio predicts salinity induced yield loss in irrigated rice. Euphytica 2000, 113, 109–118. [Google Scholar] [CrossRef]
- Da Silva, E.N.; Silveira, J.A.G.; Fernandes, C.R.R.; Dutra, A.T.B.; de Aragão, R.M. Ion uptake and growth of physic nut under different salinity levels. Rev. Cienc. Agron. 2009, 40, 240–246. [Google Scholar]
- Kouraa, A.; Fethi, F.; Fahde, A.; Lahlou, A.; Ouazzani, N. Reuse of urban wastewater treated by a combined stabilisation pond system in Benslimane (Morocco). Urban Water 2002, 4, 373–378. [Google Scholar] [CrossRef]
- Rajaona, A.; Brueck, H.; Asch, F. Effect of pruning history on growth and dry mass partitioning of Jatropha on a plantation site in Madagascar. Biomass Bioenergy 2011, 35, 4892–4900. [Google Scholar] [CrossRef]
- Achten, W.M.J.; Verchot, L.; Franken, Y.J.; Mathijs, E.; Singh, V.P.; Aerts, R.; Muys, B. Jatropha bio-diesel production and use. Biomass Bioenergy 2008, 32, 1063–1084. [Google Scholar] [CrossRef] [Green Version]
- Jongschaap, R.E.E.; Corré, W.J.; Bindraban, P.S.; Brandenburg, W.A. Global Jatropha curcas Evaluation, Breeding and Propagation Programme; Wageningen UR: Wageningen, The Netherlands, 2007; p. 66. [Google Scholar]
- Saturnino, H.M.; Pacheco, D.D.; Kakida, J.; Tominaga, N.; Gonc, A.N.P. Cultura do pinhao-manso (Jatropha. curcas L.). In EPAMIG-Informe Agropecuário; EPAMIG: Belo Horizonte, Brazil, 2005; Volume 26, pp. 44–78. [Google Scholar]
- Pacheco, D.D.; Saturino, H.M.; Santos, D.A.; da Souza, R.P.D.; de Almeida Junior, A.B.; Robeiro, D.P.; Antunes, P.D. Avaliçao nutritional de pinhão-manso em função de cálcio e magnésio usado como corretivos de acidez de solo. Powerpoint presentation for EPAMIG-Informe Agropecuário. 2007. [Google Scholar]
- Janssen, B.H.; Boesveld, H.; Rodriguez, M.J. Some theoretical considerations on evaluating wastewater as a source of N, P and K for crops. Irrig. Drain. 2005, 54, S35–S47. [Google Scholar]
- Johns, G.G.; McConchie, D.M. Irrigation of bananas with secondary treated sewage effluent. I. Field evaluation of effect on plant nutrients and additional elements in leaf, pulp and soil. Aust. J. Agric. Res. 1994, 45, 1601–1617. [Google Scholar] [CrossRef]
- Speir, T.W.; Van Schaik, A.P.; Kettles, H.A.; Vincent, K.W.; Campbell, D.J. Soil and stream-water impacts of sewage effluent irrigation onto steeply sloping land. J. Environ. Qual. 1999, 28, 1105–1114. [Google Scholar]
- Barton, L.; Schipper, L.A.; Barkle, G.F.; McLeod, M.; Speir, T.W.; Taylor, M.D.; McGill, A.C.; Van Schaik, A.P.; Fitzgerald, N.B.; Pandey, S.P. Land application of domestic effluent onto four soil types: Plant uptake and nutrient leaching. J. Environ. Qual. 2005, 34, 635–643. [Google Scholar] [CrossRef]
- Leal, R.M.P.; Firme, L.P.; Herpin, U.; da Fonseca, A.F.; Montes, C.l.R.; dos Santos Dias, C.T.; Melfi, A.J. Carbon and nitrogen cycling in a tropical Brazilian soil cropped with sugarcane and irrigated with wastewater. Agric. Water Manag. 2010, 97, 271–276. [Google Scholar] [CrossRef]
- Stewart, H.T.L.; Hopmans, P.; Flinn, D.W.; Hillman, T.J. Nutrient accumulation in trees and soil following irrigation with municipal effluent in Australia. Environ. Pollut. 1990, 63, 155–177. [Google Scholar] [CrossRef]
- USDA NRCS Global soil region map. Available online: http://soils.usda.gov/use/worldsoils/mapindex/order.html (accessed on 21 November 2012).
- IUSS Working group WRB, World Reference Base for Soil Resources 2006, First Update 2007; World Soil Resources Report No. 103; Food and Agriculture Organization of the United Nations: Rome, Italy, 2007.
- Krishnamurthy, L.; Zaman-Allah, M.; Marimuthu, S.; Wani, S.P.; Kesava Rao, A.V.R. Root growth in Jatropha and its implications for drought adaptation. Biomass Bioenergy 2012, 39, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Sadras, V.O.; Milroy, S.P. Soil-water thresholds for the responses of leaf expansion and gas exchange: A review. Field Crop Res. 1996, 47, 253–266. [Google Scholar] [CrossRef]
- Phocaides, A. Technical Handbook on Pressurized Irrigation Techniques; Food and Agriculture Organization of the United Nations: Rome, Italy, 2000. [Google Scholar]
- Bouwer, H.; Chaney, R.L. Land treatment of wastewater. Adv. Agron. 1974, 26, 133–176. [Google Scholar] [CrossRef]
- Asano, T.; Pettygrove, G. Using reclaimed municipal wastewater for irrigation. Calif. Agric. 1987, 41, 15–18. [Google Scholar]
- Feigin, A.; Bielorai, H.; Dag, Y.; Kipnis, T.; Giskin, M. The Nitrogen factor in the management of effluent-irrigated soils. Soil Sci. 1978, 125, 248–254. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Rajaona, A.M.; Sutterer, N.; Asch, F. Potential of Waste Water Use for Jatropha Cultivation in Arid Environments. Agriculture 2012, 2, 376-392. https://doi.org/10.3390/agriculture2040376
Rajaona AM, Sutterer N, Asch F. Potential of Waste Water Use for Jatropha Cultivation in Arid Environments. Agriculture. 2012; 2(4):376-392. https://doi.org/10.3390/agriculture2040376
Chicago/Turabian StyleRajaona, Arisoa M., Nele Sutterer, and Folkard Asch. 2012. "Potential of Waste Water Use for Jatropha Cultivation in Arid Environments" Agriculture 2, no. 4: 376-392. https://doi.org/10.3390/agriculture2040376
APA StyleRajaona, A. M., Sutterer, N., & Asch, F. (2012). Potential of Waste Water Use for Jatropha Cultivation in Arid Environments. Agriculture, 2(4), 376-392. https://doi.org/10.3390/agriculture2040376