Current Limitations in the Control and Spread of Ticks that Affect Livestock: A Review
Abstract
:1. Introduction
2. Background: Ticks, Climate, Landscape and Human Forces
3. Current Status of the Most Prominent Ticks Affecting Animal Health
3.1. Eradication of the Cattle Ticks Rhipicephalus (Boophilus) spp. in United States
3.2. Rhipicephalus microplus and Other Regions of the World
3.3. Amblyomma variegatum in the Caribbean
4. Conclusions
References
- De Castro, J.J.; James, A.D.; Minjauw, B.; DiGiulio, G.; Permin, A.; Pegram, R.G.; Chizyuka, H.G.B.; Sinyangwe, P. Long-term studies on the economic impact of ticks on Sanga cattle in Zambia. Exp. Appl. Acarol. 1997, 21, 3–19. [Google Scholar]
- Young, A.S.; Groocock, C.M.; Kariuki, D.P. Integrated control of ticks and tick-borne diseases of cattle in Africa. Parasitology 1988, 96, 403–432. [Google Scholar] [CrossRef]
- Seebeck, R.M.; Springell, P.H.; O’Kelly, J.C. Alterations in host metabolism by the specific and anorectic effects of the cattle tick (Boophilus microplus) I: Food intake and body weight growth. Australian J. of Biol. Sci. 1971, 24, 373–380. [Google Scholar]
- Sutherst, R.W.; Maywald, G.F.; Kerr, J.D.; Stegeman, D.A. The effect of cattle tick (Boophilus microplus) on the growth of Bos indicus × B. taurus steers. Crop Pasture Sci. 1983, 34, 317–327. [Google Scholar] [CrossRef]
- Jonsson, N.N. The productivity effects of cattle tick (Boophilus microplus) infestation on cattle, with particular reference to Bos indicus cattle and their crosses. Vet. Parasitol. 2006, 137, 1–10. [Google Scholar] [CrossRef]
- Norval, R.A.I.; Sutherst, R.W.; Kurki, J.; Gibson, J.D.; Kerr, J.D. The effect of the brown ear-tick Rhipicephalus appendiculatus on the growth of Sanga and European breed cattle. Vet. Parasitol. 1988, 30, 149–164. [Google Scholar] [CrossRef]
- Pegram, R.G.; Wilson, D.D.; Hansen, J.W. Past and present national tick control programs: why they succeed or fail. Ann. New York Acad. Sci. 2000, 916, 546–554. [Google Scholar] [CrossRef]
- Spath, E.J.A.; Guglielmone, A.A.; Signorini, A.R.; Mangold, A.J. Estimación de las pérdidas económicas directas producidas por la garrapata Boophilus microplus y las enfermedades asociadas en la Argentina. Therios: revista de Medicina veterinaria y Producción Animal 1984, 23, 341–360. [Google Scholar]
- Willadsen, P. Ticks control: Thoughts on a research agenda. Vet. Parasitol. 2006, 138, 161–168. [Google Scholar] [CrossRef]
- Estrada-Peña, A.; Venzal, J.M. Climate niches of tick species in the Mediterranean region: Modeling of occurrence data, distributional constraints, and impact of climate change. Med. Vet. Entomol. 2007, 44, 1130–1138. [Google Scholar] [CrossRef]
- Olwoch, J.M.; Van Jaarsveld, A.S.; Scholtz, C.H.; Horak, I. Climate change and the genus Rhipicephalus (Acari: Ixodidae) in Africa. Onderstepoort J. Vet. Res. 2010, 74, 45–72. [Google Scholar]
- De Clercq, E.; Vanwambeke, S.O.; Sungirai, M.; Adehan, S.; Lokossou, R.; Madder, M. Geographic distribution of the invasive cattle tick Rhipicephalus microplus, a country-wide survey in Benin. Exp. Appl. Acarol. 2012, 58, 441–452. [Google Scholar] [CrossRef]
- Madder, M.; Adehan, S.; De Deken, R.; Lokossou, R. New foci of Rhipicephalus microplus in West Africa. Exp. Appl. Acarol. 2012, 56, 385–390. [Google Scholar] [CrossRef]
- Keirans, J.E.; Durdeen, L.E. Invasion: Exotic Ticks (Acari: Argasidae, Ixodidae) Imported into the United States. A Review and New Records. J. Med. Entomol. 2001, 38, 850–861. [Google Scholar] [CrossRef]
- Burridge, M.J. Non-Native and Invasive Ticks: Threats to Human and Animal Health in the United States; University Press of Florida: Gainesville, FL, USA, 2011. [Google Scholar]
- Burridge, M.J.; Simmons, L.A.; Allan, S.A. Introduction of potential heartwater vectors and other exotic ticks into Florida on imported reptiles. J. Parasitol. 2000, 86, 700–704. [Google Scholar]
- Dobson, A. Climate variability, global change, immunity and the dynamics of infectious diseases. Ecology 2009, 90, 920–927. [Google Scholar] [CrossRef]
- Fish, D. Why we do not understand the ecological connections between the environment and human health: The case for vector-borne disease. In Vector-Borne Diseases: Understanding the Environmental, Human Health and Ecological Connections; The National Academies Press, Institute of Medicine: Washington, DC, USA, 2008; pp. 65–69. [Google Scholar]
- Gould, E.A.; Higgs, S. Impact of climate change and other factors on emerging arbovirus diseases. R. Soc. Trop. Med. Hyg. 2009, 103, 109–121. [Google Scholar] [CrossRef]
- Gould, E.A.; Higgs, S.; Buckley, A.; Gritsun, T.S. Potential arbovirus emergence and implications for the United Kingdom. Emerg. Infect. Dis. 2006, 12, 549–555. [Google Scholar] [CrossRef]
- Gubler, D.J. The global emergence/resurgence of arboviral diseases as public health problems. Arch. Med. Res. 2002, 33, 330–342. [Google Scholar] [CrossRef]
- Gubler, D.J. The global threat of emergent/reemergent diseases. In Vector-Borne Diseases: Understanding the Environmental, Human Health and Ecological Connections; The National Academies Press: Institute of Medicine: Washington, DC, USA, 2008; pp. 43–64. [Google Scholar]
- Gubler, D.J.; Reiter, P.; Kristie, L.E.; Yap, W.; Nasci, R.; Patz, J.A. Climate variability and change in the United States: Potential impacts on vector- and rodent-borne diseases. Environ. Health Persp. 2001, 109, 223–233. [Google Scholar] [CrossRef]
- Lafferty, K.D. The ecology of climate change and infectious diseases. Ecology 2009, 90, 888–900. [Google Scholar] [CrossRef]
- Randolph, S.E. Perspectives on climate change impacts on infectious diseases. Ecology 2009, 90, 927–931. [Google Scholar] [CrossRef]
- Reiter, P. Climate change and mosquito-borne disease. Environ. Health Persp. 2001, 109, 141–161. [Google Scholar]
- Reiter, P.; Thomas, C.J.; Atkinson, P.M.; Hay, S.I.; Randolph, S.E.; Rogers, D.J.; Shanks, D.G.; Snow, R.W.; Spielman, A. Global warming and malaria: a call for accuracy. Lancet 2004, 4, 323–324. [Google Scholar]
- Russell, R.C. Mosquito-borne arboviruses in Australia: the current scene and implications of climate change for human health. Int. J. Parasitol. 1998, 28, 955–969. [Google Scholar] [CrossRef]
- Sutherst, R.W. Global change and human vulnerability to vector-borne diseases. Clin. Microbiol. Rev. 2004, 17, 136–173. [Google Scholar] [CrossRef]
- Sonenshine, D.E.; Kocan, K.M.; de la Fuente, J. Tick control: Further thoughts on a research agenda. Trends Parasitol. 2006, 22, 550–551. [Google Scholar] [CrossRef]
- Pérez de León, A.A.; Teel, P.D.; Auclair, A.N.; Messenger, M.T.; Guerrero, F.D.; Schuster, G.; Miller, R.J. Integrated strategy for sustainable cattle fever tick eradication in USA is required to mitigate the impact of global change. Front Physiol. 2012, 3, 195. [Google Scholar]
- Walker, A.R. Eradication and control of livestock ticks: Biological, economic and social perspectives. Parasitology 2011, 138, 945–959. [Google Scholar] [CrossRef]
- Ervin, T.R.; Epplin, F.M.; Byford, R.L.; Hair, J.A. Estimation and economic implications of lone star tick (Acari: Ixodidae) infestation on weight gain of cattle, Bos taurus and Bos taurus × Bos indicus. J. Econ. Entomol. 1987, 80, 443–445. [Google Scholar]
- Perry, B.D.; Randolph, T.F.; McDermott, J.J.; Sones, K.R.; Thornton, P.K. Investing in Animal Health Research to Alleviate Poverty; International Livestock Research Institute: Nairobi, Kenya, 2002. [Google Scholar]
- Jongejan, F.; Uilenberg, G. The global importance of ticks. Parasitology 2004, 129, S3–S14. [Google Scholar] [CrossRef]
- Kivaria, F.M. Estimated direct economic costs associated with ticks-borne diseases on cattle in Tanzania. Trop. Anim. Health Prod. J. 2006, 38, 291–299. [Google Scholar] [CrossRef]
- Lawrence, J.A.; McCosker, P.J. Economics of Theileriosis control: Appraisal and future perspectives. In Advances in the Control of Theileriosis; Irvin, A., Ed.; Martinus Nijhoff Publishers: The Hague, The Netherlands, 1981; Volume 14, pp. 419–422. [Google Scholar]
- Mukhebi, A.W.; Chamboko, T.; O’Callaghan, C.J.; Peter, T.F.; Kruska, R.L.; Medley, G.F.; Mahan, S.M.; Perry, B.D. An assessment of the economic impact of heartwater (Cowdria ruminantium infection) and its control in Zimbabwe. Prev. Vet. Med. 1999, 39, 173–189. [Google Scholar] [CrossRef]
- Kocan, K.M.; de la Fuente, J.; Blouin, E.F.; García-García, J.C. Anaplasma marginale (Rickettsiales: Anaplasmataceae): Recent advances in defining host–pathogen adaptations of a tick-borne rickettsia. Parasitology 2004, 129, S285–S300. [Google Scholar] [CrossRef]
- Estrada-Peña, A.; Farkas, R.; Jaenson, T.G.T.; Koenen, K.; Madder, M.; Pascucci, I.; Salman, M.; Tarrés-Call, J.; Jongejan, F. Association of environmental traits with the geographic ranges of ticks (Acari: Ixodidae) of medical and veterinary importance in the western Palearctic. A digital data set. Exp. Appl. Acarol. 2013, 59, 351–366. [Google Scholar] [CrossRef]
- Estrada-Peña, A.; Estrada-Sánchez, A.; Estrada-Sánchez, D. Occurrence Patterns of Afrotropical ticks (Acari: Ixodidae) in the climate space are not correlated with their taxonomic relationships. PLoS One 2012, 7, e36976. [Google Scholar]
- Tabachnick, W.J. Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world. J. Exp. Biol. 2010, 213, 946–954. [Google Scholar] [CrossRef]
- Kearney, M.; Porter, W.P.; Williams, C.; Ritchie, S.; Hoffmann, A.A. Integrating biophysical models and evolutionary theory to predict climatic impacts on species’ ranges: the dengue mosquito Aedes aegypti in Australia. Funct. Ecol. 2009, 23, 528–538. [Google Scholar] [CrossRef]
- Jongejan, F.; Pegram, R.G.; Zivkovic, D.; Hensen, E.J.; Mwase, E.T.; Thielemans, M.J.C.; Cosse, A.; Niewold, T.A.; Elsaid, A.; Uilenberg, G. Monitoring of naturally acquired and artificially induced immunity to Amblyomma variegatum and Rhipicephalus appendiculatus ticks under field and laboratory conditions. Exp. Appl. Acarol. 1989, 7, 181–199. [Google Scholar] [CrossRef]
- Sserugga, J.N.; Jonsson, N.N.; Bock, R.E.; More, S.J. Serological evidence of exposure to tick fever organisms in young cattle on Queensland dairy farms. Australian Vet. J. 2003, 81, 147–152. [Google Scholar] [CrossRef]
- De la Fuente, J.; Almazan, C.; Canales, M.; Perez de la Lastra, J.M.; Kocan, K.M.; Willadsen, P. A ten-year review of commercial vaccine performance for control of tick infestations on cattle. Anim. Health Res. Rev. 2007, 8, 23–28. [Google Scholar] [CrossRef]
- Lohmeyer, K.H.; Pound, J.M.; May, M.A.; Kammlah, D.M.; Davey, R.B. Distribution of Rhipicephalus (Boophilus) microplus and Rhipicephalus (Boophilus) annulatus (Acari: Ixodidae) Infestations Detected in the United States Along the Texas/Mexico Border. J. Med. Entomol. 2011, 48, 770–774. [Google Scholar] [CrossRef]
- Graham, O.H.; Price, M.A.; Trevino, J.L. Cross-mating experiments with Boophilus annulatus and B. microplus (Acarina: Ixodidae). J. Med. Entomol. 1972, 9, 531–537. [Google Scholar]
- Estrada-Peña, A.; Acedo, C.S.; Quílez, J.; Del Cacho, E. A retrospective study of climatic suitability for the tick Rhipicephalus (Boophilus) microplus in the Americas. Global Ecol. Biogeog. 2005, 14, 565–573. [Google Scholar] [CrossRef]
- Estrada-Peña, A.; Corson, M.; Venzal, J.M.; Mangold, A.; Guglielmone, A.A. Changes in climate and habitat suitability for the cattle tick Boophilus microplus in its southern Neotropical distribution range. J. Vector Ecol. 2006, 31, 158–167. [Google Scholar] [CrossRef]
- Corson, M.S.; Teel, P.D.; Grant, W.E. Microclimate influence in a physiological model of cattle-fever tick (Boophilus spp.) population dynamics. Ecol. Modelling 2004, 180, 487–514. [Google Scholar] [CrossRef]
- Teel, P.D.; Corson, M.S.; Grant, W.E.; Longnecker, M.T. Simulating biophysical and human factors that affect detection probability of cattle-fever ticks (Boophilus spp.) in semi-arid thornshrublands of South Texas. Ecol. Modelling 2003, 170, 29–43. [Google Scholar] [CrossRef]
- George, J.E. Wildlife as a constraint to the eradication of Boophilus spp. (Acari: Ixodidae). J. Agric. Entomol. 1990, 7, 119–125. [Google Scholar]
- Kistner, T.P.; Hayes, F.A. White-tailed deer as hosts of cattle fever ticks. J. Wildl. Dis. 1970, 6, 437–440. [Google Scholar]
- Graham, O.H.; Hourrigan, J.L. Eradication programs for the arthropod parasites of livestock. J. Med. Entomol. 1977, 13, 629–658. [Google Scholar]
- Gray, J.H.; Payne, R.L.; Schubert, G.O.; Garnett, W.H. Implication of white-tailed deer in the Boophilus annulatus tick eradication program. Proc. Annu. Meet. U.S. Anim. Health. Assoc. 1979, 83, 506–515. [Google Scholar]
- Pound, J.M.; George, J.E.; Kammlah, D.M.; Lohmeyer, K.H.; Davey, R.B. Evidence for Role of White-Tailed Deer (Artiodactyla: Cervidae) in Epizootiology of Cattle Ticks and Southern Cattle Ticks (Acari: Ixodidae) in Reinfestations Along the Texas/Mexico Border in South Texas: A Review and Update. J. Econ. Entomol. 2010, 103, 211–218. [Google Scholar]
- Estrada-Peña, A.; Venzal, J.M.; Nava, S.; Mangold, A.; Guglielmone, A.A.; Labruna, M.B.; de la Fuente, J. Reinstatement of Rhipicephalus (Boophilus) australis (Acari: Ixodidae) with redescription of the adult and larval stages. J. Med. Entomol. 2012, 49, 794–802. [Google Scholar] [CrossRef]
- Lynen, G.; Zeman, P.; Bakuname, C.; Guilio, G.; Mtui, P.; Sanka, P.; Jongejan, F. Shifts in the distributional ranges of Boophilus ticks in Tanzania: evidence that a parapatric boundary between Boophilus microplus and B. decoloratus follows climate gradients. Exp. Appl. Acarol. 2008, 44, 147–164. [Google Scholar] [CrossRef]
- Tønnesen, M.H.; Penzhorn, B.L.; Bryson, N.R.; Stoltsz, W.H.; Masibigiri, T. Displacement of Boophilus decoloratus by Boophilus microplus in the Soutpansberg region, Limpopo Province, South Africa. Exp. Appl. Acarol. 2004, 32, 199–209. [Google Scholar] [CrossRef]
- Theiler, G. The Ixodoidea Parasites of Vertebrates in Africa South of the Sahara; Veterinary Services: Onderstepoort, South Africa, 1962. [Google Scholar]
- Norval, R.A.I.; Sutherst, R.W. Assortative mating between Boophilus decoloratus and Boophilus microplus (Acari: Ixodidae). J. Med. Entomol. 1986, 23, 459–460. [Google Scholar]
- Hilburn, L.R.; Davey, R.B. Test for assortative mating between Boophilus microplus and Boophilus annulatus (Acari: Ixodidae). J. Med. Entomol. 1992, 29, 690–697. [Google Scholar]
- Zeman, P.; Lynen, G. Conditions for stable parapatric coexistence between Boophilus decoloratus and B. microplus ticks: A simulation study using the competitive Lotka-Volterra model. Exp. Appl. Acarol. 2010, 52, 409–426. [Google Scholar]
- Madder, M.; Thys, E.; Geysen, D.; Baudoux, C.; Horak, I. Boophilus microplus ticks found in West Africa. Exp. Appl. Acarol. 2007, 43, 233–234. [Google Scholar] [CrossRef]
- Uilenberg, G.; Barre, N.; Camus, E.; Burridge, M.J.; Garris, G.I. Heartwater in the Caribbean. Prev. Vet. Med. 1984, 2, 255–267. [Google Scholar] [CrossRef]
- Bram, R.A.; George, J.E. Introduction of nonindigenous arthropod pests of animals. J. Med. Entomol. 2000, 37, 1–8. [Google Scholar] [CrossRef]
- Bram, R.A.; George, J.E.; Reichard, R.E.; Tabachnick, W.J. Threat of foreign arthropod-borne pathogens to livestock in the United States. J. Med. Entomol. 2002, 39, 405–416. [Google Scholar] [CrossRef]
- Pegram, R.G.; Indar, L.; Eddi, C.; George, J. The Caribbean Amblyomma Program: some ecologic factors affecting its success. Ann. New York Acad. Sci. 2004, 1026, 302–311. [Google Scholar]
- Pegram, R.G. Thirteen Years of Hell in Paradise: An Account of the Caribbean Amblyomma Programme; Trafford Publishing: Bloomington, IN, USA, 2010. [Google Scholar]
- Estrada-Peña, A.; Pegram, R.; Barré, N.; Venzal, J.M. Using invaded range data to model the climate suitability for Amblyomma variegatum (Acari: Ixodidae) in the New World. Exp. App. Acarol. 2007, 41, 203–214. [Google Scholar] [CrossRef]
- Beati, L.; Patel, J.; Lucas-Williams, H.; Adakal, H.; Kanduma, E.G.; Tembo-Mwase, E.; Krecek, R.; Mertins, J.W.; Alfred, J.T.; Kelly, S.; et al. Phylogeography and demographic history of Amblyomma variegatum (Fabricius) (Acari: Ixodidae), the Tropical Bont Tick. Vector-Borne Zoonotic Dis. 2012, 12, 514–525. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Estrada-Peña, A.; Salman, M. Current Limitations in the Control and Spread of Ticks that Affect Livestock: A Review. Agriculture 2013, 3, 221-235. https://doi.org/10.3390/agriculture3020221
Estrada-Peña A, Salman M. Current Limitations in the Control and Spread of Ticks that Affect Livestock: A Review. Agriculture. 2013; 3(2):221-235. https://doi.org/10.3390/agriculture3020221
Chicago/Turabian StyleEstrada-Peña, Agustín, and Mo Salman. 2013. "Current Limitations in the Control and Spread of Ticks that Affect Livestock: A Review" Agriculture 3, no. 2: 221-235. https://doi.org/10.3390/agriculture3020221
APA StyleEstrada-Peña, A., & Salman, M. (2013). Current Limitations in the Control and Spread of Ticks that Affect Livestock: A Review. Agriculture, 3(2), 221-235. https://doi.org/10.3390/agriculture3020221