Challenges for Plant Breeders from the View of Animal Nutrition
Abstract
:1. Introduction
2. Global Food Situation and Challenges
2.1. Food of Animal Origin
Food | Minimum | Average | Maximum | Germany |
---|---|---|---|---|
Milk (kg per year) | 1.3 (Congo) | 82.1 | 367.7 (Sweden) | 248.7 |
Meat 1 (kg per year) | 3.1 (Bangladesh) | 41.2 | 142.5 (Luxembourg) | 83.3 |
Eggs (kg per year) | 0.1 (Congo) | 9.0 | 20.2 (China) | 11.8 |
Edible protein of animal origin (g per capita and day) | 1.7 (Burundi) | 23.9 | 69.0 (USA) | 52.8 |
Portion of animal protein in % of total protein intake per capita | 4.0 (Burundi) | 27.9 | 59.5 (USA) | 53.7 |
2.2. Limited Resources and Low Emissions
2.3. Social Aspects
2.4. Challenges for Plant Breeders
3. Feeds and Animal Requirements
3.1. Feeds
Feed Group | Characterization |
---|---|
Water for drinking | Essential in adequate amounts (2–5 L per kg feed dry matter (DM); average: about 3 L/kg DM) for animal health, efficient feed conversion and quality of food of animal origin |
Roughage | Vegetative plant parts (leaves, stalks) of grasses and legumes fed in fresh (forages), conserved (silages) or dried form (hay, straw). Roughages contain ß-glycosidic bound carbohydrates mainly as cellulose and hemicelluloses associated with lignin. Cell wall fractions are dominating in roughages. |
Concentrate | Generative plant parts (seeds) of cereals, legumes and oilseeds, roots, tubers and other feeds rich in α-glycosidic bound carbohydrates (starch, etc.). Concentrates are also rich in cell content-containing proteins and fats. |
By-/Co-products | Co-products are residues of agriculture (e.g., straw), food (e.g., bran, beat pulp, bagasse) and biofuel industry (such as distillers grain solubles, oil cake or extracted oil meal, glycerine, etc.) |
Feed additives | Essential (such as amino acids, minerals, vitamins) and non-essential substances (e.g., enzymes, microorganisms) which are added to feed in small amounts |
3.2. Animal Requirements
4. Challenges for Plant Breeding
4.1. General Challenges
Plant Nutrients in the Atmosphere (N2, CO2) | ↑ ↔ |
---|---|
Solar energy | ↔ |
Agricultural area | ↓ |
Water | ↓ |
Fossil Energy | ↓ |
Mineral plant nutrients | ↓ |
Variation of genetic pool | ↑ |
(↑ Increase, ↓ Decrease, ↔ no important influence) |
- Improve the nutrient content of seeds and edible plant parts
- Asexual reproduction
- Optical warning signal or installation of warning lights
- Higher water efficiency
- Longer shelf life (enhanced control of ripening and senescence)
- Improve nitrogen efficiency
- Better pest resistance
- Plants for mitigating adverse climatic changes and adverse environmental conditions
- -
- resilient to such adverse environmental conditions,
- -
- able to introduce such changes fast and sustainably, and
- -
- available for all farmers (including smallholders [6]).
4.2. Special Challenges from the View of Animal Nutrition
4.2.1. Specific Challenges for Feed Plants
- -
- High and stable yields of highly digestible biomass with low external inputs (low input varieties) of non-renewable external resources such as water, minerals, fossil fuel, plant protection agents, etc. (see Table 3).
- -
- Maximal/efficient use of naturally unlimited resources such as solar energy, nitrogen and carbon dioxide in the air (see Table 3).
- -
- Higher resistance against abiotic and biotic stressors.
- -
- Stable plant health and adaptation to potential climate change.
- -
- Low concentrations of anti-nutritive (toxic) substances such as secondary plant ingredients, mycotoxins from toxin-producing fungi, toxins from anthropogenic activities or geogenic origin such as heavy metals.
- -
- Low concentrations of substances that influence the use or bioavailability of nutrients such as lignin, phytate, enzyme inhibitors, tannins, etc.
- -
- Higher concentrations of some secondary plant products with “positive” properties for some purposes, such as carotinoids, essential oils, some polyphenols (e.g., flavonoids and anthocyanids) and even alkaloids, if the synthesis in plants is more effective than the industrial production.
4.2.2. Increase of Valuable/Desirable Substances
Groups of Nutrients | Examples of Essential Nutrients |
---|---|
Amino acids | Histidine, Isoleucine, Leucine, Lysine 1, Methionine, Phenylalanine, Threonine, Tryptophan, Valine (semi-essential: Arginine, Cystine) |
Fatty acids | Linoleic acid, Linolenic acid |
Major elements | Calcium, Magnesium, Phosphorus, Sodium, Potassium, Sulfur, Chloride |
Trace elements Ultra trace elements 2 | Iron, Zinc, Copper, Manganese, Iodine, Selenium, Cobalt (cobalamin; vitamin B12) Fluorine, Boron, Molybdenum, Nickel, Chromium, Vanadium, Silicon, Arsenic, Cadmium, Lead, Lithium, Tin |
Vitamins (fat soluble) (water soluble) | A (retinol, precursor ß-carotene), D (D2 Ergocalciferol, D3 Cholecalciferol, E (Tocopherol), K (K1 Phylloquinone, K2 Menaquinone, K3 Menadione) B1 (thiamin), B2 (riboflavin), B6 (pyridoxin), B12 (cobalamin), Pantothenic acid, Niacin, Folate, Biotin, C (ascorbic acid) |
4.2.3. Biofortification of Feed by Plant Breeding or Feed Additives?
Pro | Contra |
---|---|
More advantages for human nutrition (meet requirements, e.g., fatty acids, minerals, vitamins,
etc.) than for animal nutrition (except smallholders or farmers far from transport ways) Lower content of undesirable substances Improvement of properties of food/feed | Plant breeding needs a long time (longer than the development of food/feed additives) Many feed additives are available for animal nutrition |
4.2.4. Reduction of Content of Undesired (Anti-Nutritive) Compounds
- -
- lower concentrations of substances that influence the use or the bioavailability of nutrients, such as phytate, tannin, enzyme inhibitors, lignin, and silicon;
- -
- lower concentrations of toxic substances (secondary plant substances), such as alkaloids, glucosinolates, phenolic compounds, phytoestrogens, and cyanic compounds;
- -
- higher resistance against fungi, such as Fusarium, Aspergillus, Penicilium, ergot, etc.; and
- -
- minimal residues resulting from human/agricultural practices or soil composition, such as plant protection substances, soil composition, etc.
4.2.5. Testing of Results of Plant Breeding in Animal Nutrition
- -
- in vitro studies,
- -
- studies with animal models to determine the bioavailability,
- -
- efficacy trials with target animals, and
- -
- in addition, safety trials should be considered.
- -
- Test of the bioavailability of newly expressed or nutrient(s) expressed in higher amounts.
- -
- Feeding trial(s) to test the efficacy of the biofortified food for improving the nutrition and health of the target population.
- -
- Final trial for evaluating the nutritional, health, agricultural, societal, environmental and economic aspects of biofortified food in the community.
Groups | Control | Low-Phytate Maize | ||
---|---|---|---|---|
Parameters | (0.3 g of available P per kg) | (1.7 g of available P per kg) | ||
Inorganic P supplement | not added | added | not added | added |
P content (g/kg) | ||||
29–73 kg live weight | 3.4 | 5.4 1 | 3.4 | 5.4 1 |
73–112 kg live weight | 3.2 | 4.7 2 | 3.2 | 4.7 2 |
Feed intake (kg/day) | 2.23 a | 2.50 b | 2.53 b | 2.51 b |
Live weight gain (g/day) | 730 | 870 b | 900 b | 880 b |
Feed per gain (kg/kg) | 3.05 a | 2.87 b | 2.81 b | 2.85 b |
P excreted (g/kg weight gain) | 4.6 a | 8.9 c | 3.8 b | 8.8 c |
Strength (4th metacarpal bone, kg) | 79.3 a | 138.5 b,c | 132.2 b | 153.9 c |
Ash content (% in 4th metacarpal bone) | 53.5 a | 60.1 b,c | 59.3 b | 61.2 c |
5. Conclusions
- -
- considering of forages and grassland by plant breeders;
- -
- biofortification of plants is not so important for animal nutritionists because of many feed additives available in a large number of countries;
- -
- feed value of co-products should be considered after processing of “new” plants for food and biofuel;
- -
- animal feeding studies with target animal species are recommended to evaluate the nutritional value and safety of the changes induced in the plants; and
- -
- cooperation between plant breeders and animal nutritionists should be an early element of breeding programs.
Author Contributions
Conflicts of Interest
References
- Makkar, H.P.S.; Ankers, P. Towards sustainable animal diets: A survey-based study. Anim. Feed Sci. Technol. 2014, 198, 309–322. [Google Scholar] [CrossRef]
- National Research Council. Critical Role of Animal Science Research in Food Security and Sustainability; National Academic Press: Washington, DC, USA, 2015; p. 360. [Google Scholar]
- Flachowsky, G. Animal Nutrition with Transgenic Plants; Flachowsky, G., Ed.; CABI: Wallingford, UK, 2013. [Google Scholar]
- Flachowsky, G.; Meyer, U.; Grün, M. Plant and animal breeding as starting points for sustainable agriculture. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer Netherlands: Berlin, Germany, 2013; pp. 201–224. [Google Scholar]
- Harvie, A. Food Security: Challenges, Role of Biotechnologies and Implications for Developing Countries; Nova Science Publisher: Hauppauge, New York, NY, USA, 2015; p. 250.
- Ruane, J.; Dargie, J.D.; Mba, C.; Boettcher, P.; Makkar, H.P.S.; Bartley, D.M.; Sonnino, A. Biotechnologies at Work for Smallholders: Case Studies from Developing Countries in Crops, Livestock and Fish; FAO: Rome, Italy, 2013. [Google Scholar]
- The Royal Society. Reaping the Benefits: Science and the Sustainable Intensification of Global Agriculture; The Royal Society: London, UK, 2009.
- Flachowsky, G.; Wenk, C. The role of animal feeding trials for the nutritional and safety assessment of feeds from genetically modified plants—Present stage and future challenges. J. Anim. Feed Sci. 2010, 19, 149–170. [Google Scholar]
- Guillou, M.; Matheron, G. The World’s Challenge—Feeding 9 Billion People; Springer Netherlands: Berlin, Germany, 2014; p. 226. [Google Scholar]
- Fischer, T.; Byerlee, D.; Edmeades, G. Crop Yields and Global Food Security: Will Yield Increase Continue to Feed the World; ACIAR: Canberra, Australia, 2014.
- Reynolds, M.P. Climate Change and Crop Production; CAB International: Wallingford, UK; Cambridge, MA, USA, 2010. [Google Scholar]
- Tester, M.; Langridge, P. Breeding technologies to increase crop production in a changing world. Science 2010, 327, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. The State of Food and Agriculture 2009: Livestock in the Balance; FAO: Rome, Italy, 2009; p. 166. [Google Scholar]
- Food and Agriculture Organization of the United Nations. How to Feed the World in 2050; FAO: Rome, Italy, 2009; p. 35. [Google Scholar]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050; FAO: Rome, Italy, 2012. [Google Scholar]
- HLPE. Biofuels and Food Security (vo Draft); FAO: Rome, Italy, 2013.
- Ash, C.; Jasny, B.R.; Malakoff, D.A.; Sugden, A.M. Feeding the future. Science 2010, 327, 797–797. [Google Scholar] [CrossRef] [PubMed]
- Delgado, C.L. Rising consumption of meat and milk in developing countries has created a new food revolution. J. Nutr. 2003, 133, 3907S–3910S. [Google Scholar] [PubMed]
- Food and Agriculture Organization of the United Nations. Livestock’s Long Shadow: Environmental Issues and Options; FAO: Rome, Italy, 2006; p. 406. [Google Scholar]
- Godfray, H.C.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- IPCC. (Intergovernmental Panel on Climate Change). Guidelines for National Greenhouse Gas Inventories; Agriculture, Forestry and Other Land Use. Available online: http://www.ipce-nggip.iges.or.jp/public/2006/gl/vol4.html (accessed on 12 May 2015).
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; Haan, C.D.; de Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; FAO: Rome, Italy, 2006. [Google Scholar]
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S.I. Climate change and food systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef]
- Flachowsky, G. More for more with less? Mühle Mischfutter 2014, 151, 34–38. (In German) [Google Scholar]
- HLPE. Note on Critical and Emerging Issues for Food Security and Nutrition; FAO: Rome, Italy, 2014.
- Thompson, B.; Amoroso, L. Improving Diets and Nutrition: Food-Based Approaches; FAO: Rome, Italy; CAB International: Wallingford, UK; Boston, MA, USA, 2014. [Google Scholar]
- Food and Agriculture Organization of the United Nations. The State of Food Insecurity in the World 2014. Strengthering the Enabling Environments for Food Security and Nutrition; FAO: Rome, Italy, 2014; p. 55. [Google Scholar]
- Neumann, C.G.; Bwibo, N.O.; Gewa, C.A.; Drorbaugh, N. Animal source foods as a food-based approach to improve diet and nutrition outcomes. In Improving Diets and Nutrition: Food-Based Approaches; Thompson, B., Amoroso, L., Eds.; CABI: Wallingford, UK, 2014; pp. 157–172. [Google Scholar]
- Cassidy, E.S.; West, P.C.; Gerber, J.S.; Foley, J.A. Redefining agricultural yields: From tonnes to people nourished per hectare. Environ. Res. Lett. 2013, 8. [Google Scholar] [CrossRef]
- Smil, V. Feeding the World: A Challenge for the Twenty-First Century; The MIT Press: Cambridge, MA, USA, 2000.
- D’Mello, J.P.F. Amino Acids in Human Nutrition and Health; Wallingford, UK; Cambridge, MA, USA, 2011; p. 544. [Google Scholar]
- Pillai, R.R.; Kurpad, A.V. Amino acid requirements: Quantitative estimates. In Amino Acids in Human Nutrition and Health; D’Mello, J.P.F., Ed.; CABI: Wallingford, UK, 2011; pp. 267–290. [Google Scholar]
- Smith, J.; Sones, K.; Grace, D.; MacMillan, S.; Tarawali, S.; Herrero, M. Beyond milk, meat, and eggs: Role of livestock in food and nutrition security. Anim. Front. 2013, 3, 6–13. [Google Scholar] [CrossRef]
- World Health Organization; Food and Agriculture Organization of the United Nations; United Nations University. Protein and Amino acid Requirements in Human Nutrition; World Health Organization: Geneva, Switzerland, 2007; Volume 935, pp. 1–265. [Google Scholar]
- Young, V.R.; Bier, D.M.; Pellett, P.L. A theoretical basis for increasing current estimates of the amino acid requirements in adult man, with experimental support. Am. J. Clin. Nutr. 1989, 50, 80–92. [Google Scholar] [PubMed]
- Wennemer, H.; Flachowsky, G.; Hoffmann, V. Protein, Population, Politics—How Protein Can Be Supplied Sustainable in the 21st Century; Plexus Verlag: Mittenberg, Switzerland; Frankfurt, Germany, 2006; p. 160. [Google Scholar]
- Jackson, A.A. Protein. In Essentials of Human Nutrition, 3rd ed.; Mann, J., Truswell, S., Eds.; Oxford University Press: Oxford, UK, 2007; pp. 53–72. [Google Scholar]
- Waterlow, J.C. The mysteries of nitrogen balance. Nutr. Res. Rev. 1999, 12, 25–54. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the prot-age study group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef] [PubMed]
- Fukagawa, N.K. Protein requirements: Methodologic controversy amid a call for change. Am. J. Clin. Nutr. 2014, 99, 761–762. [Google Scholar] [CrossRef] [PubMed]
- Marini, J.C. Protein requirements: Are we ready for new recommendations? J. Nutr. 2015, 145, 5–6. [Google Scholar] [CrossRef] [PubMed]
- Rand, W.M.; Pellett, P.L.; Young, V.R. Meta-analysis of nitrogen balance studies for estimating protein requirements in healthy adults. Am. J. Clin. Nutr. 2003, 77, 109–127. [Google Scholar] [PubMed]
- Avadi, A.; Freon, P. Life cycle assessment of fisheries: A review for fisheries scientists and managers. Fish. Res. 2013, 143, 21–38. [Google Scholar] [CrossRef]
- Van Huis, A.; Dicke, M.; van Loon, J.J.A. Insects to feed the world. J. Insects Food Feed 2015, 1, 3–5. [Google Scholar] [CrossRef]
- Kastner, T.; Rivas, M.J.; Koch, W.; Nonhebel, S. Global changes in diets and the consequences for land requirements for food. Proc. Natl. Acad. Sci. USA 2012, 109, 6868–6872. [Google Scholar] [CrossRef] [PubMed]
- Keyzer, M.A.; Merbis, M.D.; Pavel, I.F.P.W.; van Wesenbeeck, C.F.A. Diet shifts towards meat and the effects on cereal use: Can we feed the animals in 2030? Ecol. Econ. 2005, 55, 187–202. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed]
- Guyomard, H.; Manceron, S.; Peyraud, J.L. Trade in feed grains, animals, and animal products: Current trends, future prospects, and main issues. Anim. Front. 2013, 3, 14–18. [Google Scholar] [CrossRef]
- Flachowsky, G. Carbon footprints for food of animal origin. In Livestock Production and Climate Change; Malik, P.K., Bhatta, R., Takahashi, J., Kohn, R., Prasad, C.S., Eds.; CABI: Wallingford, UK, 2015; pp. 125–145. [Google Scholar]
- Gerbens-Leenes, P.W.; Nonhebel, S. Consumption patterns and their effects on land required for food. Ecol. Econ. 2002, 42, 185–199. [Google Scholar] [CrossRef]
- Wirsenius, S.; Azar, C.; Berndes, G. How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030? Agric. Syst. 2010, 103, 621–638. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Dairy Asia: Towards sustainability. In Proceedings of an International Consultation, Bangkok, Thailand, 21–23 May 2014; FAO Regional Office for Asia and the Pacific: Bangkok, Thailand, 2014; p. 65. [Google Scholar]
- Kebreab, E. Sustainable Animal Agriculture; CABI: Wallingford, UK, 2013. [Google Scholar]
- SAFA. Sustainable Assessment of Food and Agriculture Systems Indicators; FAO: Rome, Italy, 2013.
- Guyomard, H.; Darcy-Vrillon, B.; Esnouf, C.; Marin, M.; Russel, M.; Guillou, M. Eating patterns and food systems: Critical knowledge requirements for policy design and implementation. Agric. Food Secur. 2012, 1. [Google Scholar] [CrossRef]
- Baroni, L.; Cenci, L.; Tettamanti, M.; Berati, M. Evaluating the environmental impact of various dietary patterns combined with different food production systems. Eur. J. Clin. Nutr. 2007, 61, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, D.; Pimentel, M. Sustainability of meat-based and plant-based diets and the environment. Am. J. Clin. Nutr. 2003, 78, 660S–663S. [Google Scholar] [PubMed]
- Reijnders, L.; Soret, S. Quantification of the environmental impact of different dietary protein choices. Am. J. Clin. Nutr. 2003, 78, 664S–668S. [Google Scholar] [PubMed]
- Flachowsky, G.; Meyer, U.; Südekum, K.-H. Land use for edible protein of animal origin—A review. Food Secur. 2015, 6. in press. [Google Scholar]
- Peters, C.J.; Wilkins, J.L.; Fick, G.W. Testing a complete-diet model for estimating the land resource requirements of food consumption and agricultural carrying capacity: The New York state example. Renew. Agric. Food Syst. 2007, 22, 145–153. [Google Scholar] [CrossRef]
- Deikman, J.; Petracek, M.; Heard, J.E. Drought tolerance through biotechnology: Improving translation from the laboratory to farmers’ fields. Curr. Opin. Biotechnol. 2012, 23, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, A.Y.; Chapagain, A.K. Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resour. Manag. 2007, 21, 35–48. [Google Scholar] [CrossRef]
- Molden, D.; Oweis, T.; Steduto, P.; Bindraban, P.; Hanjra, M.A.; Kijne, J. Improving agricultural water productivity: Between optimism and caution. Agric. Water Manag. 2010, 97, 528–535. [Google Scholar] [CrossRef]
- Schlink, A.C.; Nguyen, M.L.; Viljoen, G.J. Water requirements for livestock production: A global perspective. Rev. Sci. Technol. 2010, 29, 603–619. [Google Scholar]
- Hall, D.C.; Hall, J.V. Concepts and measures of natural-resource scarcity with a summary of recent trends. J. Environ. Econ. Manag. 1984, 11, 363–379. [Google Scholar] [CrossRef]
- Scholz, R.W.; Wellmer, F.W. Approaching a dynamic view on the availability of mineral resources: What we may learn from the case of phosphorus? Glob. Environ. Chang. 2013, 23, 11–27. [Google Scholar] [CrossRef]
- Aerts, S. Agriculture’s 6 F’s and the need for more intensive agriculture. In Climate Change and Sustainable Development; Potthast, T., Meisch, S., Eds.; Wageningen Academic Publisher: Wageningen, The Netherlands, 2012; pp. 192–195. [Google Scholar]
- Amarsinghe, U. Water footprint of the dairy sector. In Proceedings of an International Consultation, Bangkok, Thailand, 21–23 May 2014; FAO Regional Office for Asia and the Pacific: Bangkok, Thailand, 2014; pp. 14–15. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.V. The Green, Blue and Grey Water Footprint of Farm Animals and Animal Products; UNESCO-IHE: Delft, The Neterlands, 2010.
- De Vries, M.; de Boer, I.J.M. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest. Sci. 2010, 128, 1–11. [Google Scholar] [CrossRef]
- Nguyen, T.L.T.; Hermansen, J.E.; Mogensen, L. Environmental consequences of different beef production systems in the EU. J. Clean. Prod. 2010, 18, 756–766. [Google Scholar] [CrossRef]
- Nijdam, D.; Rood, T.; Westhoek, H. The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy 2012, 37, 760–770. [Google Scholar] [CrossRef]
- Upham, P.; Dendler, L.; Bleda, M. Carbon labelling of grocery products: Public perceptions and potential emissions reductions. J. Clean. Prod. 2011, 19, 348–355. [Google Scholar] [CrossRef]
- Young, W.; Hwang, K.; McDonald, S.; Oates, C.J. Sustainable consumption: Green consumer behaviour when purchasing products. Sustain. Dev. 2010, 1, 20–31. [Google Scholar] [CrossRef]
- De Alvarenga, R.A.F.; Silva Junior, V.P.D.; Soares, S.R.; de Alvarenga, R.A.F.; da Silva Junior, V.P. Comparison of the ecological footprint and a life cycle impact assessment method for a case study on brazilian broiler feed production. J. Clean. Prod. 2012, 28, 25–32. [Google Scholar] [CrossRef]
- Boonen, R.; Aerts, S.; de Tavernier, L. Which sustainability soits you? In Climate Change and Sustainable Development; Potthast, T., Meisch, S., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2012; pp. 43–48. [Google Scholar]
- International Union for Conservation of Nature. The IUNC Programm 2005–2008; IUCN: Gland, Switzerland, 2005. [Google Scholar]
- Casabona, C.M.R.; Epifanio, L.E.S.; Cirion, A.E. Global Food Security: Ethical and Legal Callenges; Wageningen Academic Publishers: Wageningen, The Netherlands, 2010; p. 532. [Google Scholar]
- Fedoroff, N.V.; Battisti, D.S.; Beachy, R.N.; Cooper, P.J.; Fischhoff, D.A.; Hodges, C.N.; Knauf, V.C.; Lobell, D.; Mazur, B.J.; Molden, D.; et al. Radically rethinking agriculture for the 21st century. Science 2010, 327, 833–834. [Google Scholar] [CrossRef] [PubMed]
- Giovannucci, D.; Scherr, S.; Nierenberg, D.; Hebebrand, C.; Shapiro, J.; Milder, J.; Wheeler, K. Food and Agriculture: The Future of Sustainability. A Strategic Input to the Sustainable Development in the 21st Century (SD21) Project; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2012. [Google Scholar]
- Wals, A.E.J.; Corcoran, P.B. Learning for Sustainability in Times of Accelerating Change; Wageningen Academic Publishers: Wageningen, The Netherlands, 2012; p. 550. [Google Scholar]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Girard, C.L. Insects as a source of nutrients: Beyond the western prejudices. Anim. Front. 2015, 5, 4–6. [Google Scholar]
- Morales-Ramos, J.A.; Rojas, M.G.; Shapiro-Ilan, D. Mass Production of Beneficial Organisms—Invertebrates and Entomopathogens; Elsevier and Academic Press: Amsterdam, The Netherlands, 2014; p. 712. [Google Scholar]
- Rumpold, B.A.; Schlüter, O. Insect-based protein sources and their potential for human consumption: Nutritional composition and processing. Anim. Front. 2015, 5, 20–24. [Google Scholar]
- Sanchez-Muros, M.J.; Barroso, F.G.; Manzano-Agugliaro, F. Insect meal as renewable source of food for animal feeding: A review. J. Clean. Prod. 2014, 65, 16–27. [Google Scholar] [CrossRef]
- Van Huis, A.; Itterbeeck, J.V.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P.; van Huis, A.; van Itterbeeck, J. Edible Insects: Future Prospects for Food and Feed Security; FAO: Rome, Italy, 2013. [Google Scholar]
- Anupama, R.P. Value-added food: Single cell protein. Biotechnol. Adv. 2000, 18, 459–479. [Google Scholar] [CrossRef]
- Zepka, L.Q.; Jacob-Lopes, E.; Goldbeck, R.; Souza-Soares, L.A.; Queiroz, M.I. Nutritional evaluation of single-cell protein produced by aphanothece microscopica nageli. Bioresour. Technol. 2010, 101, 7118–7122. [Google Scholar] [CrossRef] [PubMed]
- Flachowsky, G. Greenhouse gases and resource efficiency. Aspects of production of food of animal origin. Ernähr.-Umsch. 2008, 55, 414–419. (In German) [Google Scholar]
- Makkar, H.P.S. Biofuel Co-Products as Livestock Feed—Opportunities and Challenges; FAO: Rome, Italy, 2012.
- Becker, M.; Nehring, K. Handbook of Feeds; Paul Parey Verlag: Hamburg, Germany, 1967; pp. 1–3. (In German) [Google Scholar]
- Menke, K.H.; Huss, W. Animal Nutrition and Feedstuffs: Tierernährung und Futtermittelkunde; Verlag Eugen Ulmer: Stuttgart, Germany, 1975; p. 319. (In German) [Google Scholar]
- Kling, M.; Woehlbier, W. Trade Feestuffs; Ulmer Verlag: Stuttgart, Germany, 1983; p. 546. (In German) [Google Scholar]
- Jeroch, H.; Flachowsky, G.; Weissbach, F. Futtermittelkunde; Gustav Fischer Verlag Jena: Stuttgart, Germany, 1993; p. 510. [Google Scholar]
- Jeroch, H.; Simon, A.; Zentek, J. Poultry Nutrition; Verlag Eugen Ulmer: Stuttgart, Germany, 2013; p. 528. (In German) [Google Scholar]
- Jeroch, H.; Simon, O.; Drochner, W. Nutrition of Livestock, 2nd ed.; Eugen-Ulmer Verlag: Stuttgart, Germany, 2008; p. 555. (In German) [Google Scholar]
- Theodorou, M.K.; France, J. Feeding Systems and Feed Evaluation Models; CABI: Wallingford, UK, 2000; p. 481. [Google Scholar]
- Ewing, W.N. The FEEDS Directory: Commody Products Guide; Context Products Ltd.: Packington, UK, 1998; p. 234. [Google Scholar]
- Ewing, W.N. The Feeds Directory: Branded Products Guide; Context Products Ltd.: Packington, UK, 2002; p. 216. [Google Scholar]
- Kamphues, J.; Wolf, P.; Coenen, M.; Eder, K.; Iben, C.; Kienzle, E.; Liesegang, A.; Maenner, K.; Zebeli, Q.; Zentek, J. Supplements of Animal Nutrition for Study and Practice; M. & H. Schaper GmbH: Hannover, Germany, 2014; p. 520. (In German) [Google Scholar]
- Positive, L. Positive List for Straight Feeding Stuffs; Standards Commission for Straight Feeding Stuffs at the Central Committee of the German Agriculture: Bonn, Germany, 2014; p. 61. [Google Scholar]
- Pape, H.-C. Feed Additives—Technology and Application; Agrimedia GmbH: Bergen, Norway, 2006; p. 304. (In German) [Google Scholar]
- Salem, A.-F.Z.M. Plant-Phytochemicals in Animal Nutrition; Nova Science Publishers Inc.: Hauppauge, New York, NY, USA, 2011; p. 188. [Google Scholar]
- Salem, A.-F.Z.M. Nutritional Strategies of Animal Feed Additives; Nova Sciene Publishers Inc.: Hauppauge, New York, NY, USA, 2012; p. 221. [Google Scholar]
- Pennisi, E. Sowing the seeds for the ideal crop. Science 2010, 327, 802–803. [Google Scholar] [CrossRef] [PubMed]
- SCAR. New Challenges for Agricultural Research: Climate Change, Rural Development, Agricultural Knowledge Systems; European Communities: Brussels, Belgium, 2008; p. 112.
- Flachowsky, G. Global Food Security: Is There Any Solution? NovoArgument 2010, 105, 3–4. (In German) [Google Scholar]
- High Level Panel of Experts. Food Security and Climate Change; FAO: Rome, Italy, 2012; p. 98. [Google Scholar]
- Husaini, A.M.; Tuteja, N. Biotech crops: Imperative for achieving the millenium development goals and sustainability of agriculture in the climate change era. GM Crop. Food 2013, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lobell, D.B.; Burke, M.B.; Tebaldi, C.; Mastrandrea, M.D.; Falcon, W.P.; Naylor, R.L. Prioritizing climate change adaptation needs for food security in 2030. Science 2008, 319, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Newman, J.A.; Anand, M.; Henry, H.A.L.; Hunt, S.; Gedalof, Z. Climate Change Biology; CABI: Wallingford, UK, 2011. [Google Scholar]
- Tillie, P.; Dillen, K.; Rodriguez-Cerezo, E. The pipeline of gm crops for improved animal feed: Challenges for commercial use. In Animal Nutrition with Transgenic Plants; Flachowsky, G., Ed.; CABI: Wallingford, UK, 2013; pp. 166–192. [Google Scholar]
- Bouis, H.E.; Chassy, B.A.; Ochanda, J.O. Genetically modified food crops and their contribution to human nutrition and food quality. Trends Food Sci. Technol. 2003, 14, 191–209. [Google Scholar] [CrossRef]
- Hirschi, K.D. Nutrient biofortification of food crops. Annu. Rev. Nutr. 2009, 29, 401–421. [Google Scholar] [CrossRef] [PubMed]
- Welch, R.M. Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally. J. Nutr. 2002, 132, 495S–499S. [Google Scholar] [PubMed]
- White, P.J.; Broadley, M.R. Biofortifying crops with essential mineral elements. Trends Plant Sci. 2005, 10, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Nestel, P.; Bouis, H.E.; Meenakshi, J.V.; Pfeiffer, W. Biofortification of staple food crops. J. Nutr. 2006, 136, 1064–1067. [Google Scholar] [PubMed]
- McDowell, L.R. Minerals in Animal and Human Nutrition; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Suttle, N. Mineral Nutrition of Livestock; CABI: Wallingford, UK, 2010. [Google Scholar]
- Lucas, D.M.; Taylor, M.L.; Hartnell, G.F.; Nemeth, M.A.; Glenn, K.C.; Davis, S.W. Broiler performance and carcass characteristics when fed diets containing lysine maize (LY038 or LY038 × MON 810), control, or conventional reference maize. Poultr. Sci. 2007, 86, 2152–2161. [Google Scholar] [CrossRef]
- Sevenier, R.; van der Meer, I.M.; Bino, R.; Koops, A.J. Increased production of nutriments by genetically engineered crops. J. Am. Coll. Nutr. 2002, 21, 199S–204S. [Google Scholar] [CrossRef] [PubMed]
- Ufaz, S.; Galili, G. Improving the content of essential amino acids in crop plants: Goals and opportunities. Plant Physiol. 2008, 147, 954–961. [Google Scholar] [CrossRef] [PubMed]
- Cahoon, E.B.; Shockey, J.M.; Dietrich, C.R.; Gidda, S.K.; Mullen, R.T.; Dyer, J.M. Engineering oilseeds for sustainable production of industrial and nutritional feedstocks: Solving bottlenecks in fatty acid flux. Curr. Opin. Plant Biol. 2007, 10, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Napier, J.A. The production of unusual fatty acids in transgenic plants. Annu. Rev. Plant Biol. 2007, 58, 295–319. [Google Scholar] [CrossRef] [PubMed]
- Rymer, C.; Hartnell, G.F.; Givens, D.I. The effect of feeding modified soyabean oil enriched with C18: 4n-3 to broilers on the deposition of n-3 fatty acids in chicken meat. Br. J. Nutr. 2011, 105, 866–878. [Google Scholar] [CrossRef] [PubMed]
- Broadley, M.R.; White, P.J.; Bryson, R.J.; Meacham, M.C.; Bowen, H.C.; Johnson, S.E.; Hawkesford, M.J.; McGrath, S.P.; Zhao, F.J.; Breward, N.; et al. Biofortification of UK food crops with selenium. Proc. Nutr. Soc. 2006, 65, 169–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregorio, G.B. Progress in breeding for trace minerals in staple crops. J. Nutr. 2002, 132, 500S–502S. [Google Scholar] [PubMed]
- Lucca, P.; Hurrell, R.; Potrykus, I. Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor. Appl. Genet. 2001, 102, 392–397. [Google Scholar] [CrossRef]
- Welch, R.M.; Graham, R.D. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 2004, 55, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Welch, R.M.; House, W.A.; Beebe, A.; Senadhira, D.; Gregorio, G.B.; Cheng, Z. Testing iron and zinc bioavailability in genetically enriched beans (Phaseolus vulgaris L.) and rice (Oryza sativa L.) in a rat model. Food Nutr. Bull. 2000, 21, 428–433. [Google Scholar] [CrossRef]
- Garza, R.D.D.L.; Quinlivan, E.P.; Klaus, S.M.J.; Basset, G.J.C.; Gregory, J.F., III; Hanson, A.D.; de la Garza, R.D. Folate biofortification in tomatoes by engineering the pteridine branch of folate synthesis. Proc. Natl. Acad. Sci. USA 2004, 101, 13720–13725. [Google Scholar] [CrossRef] [PubMed]
- Potrykus, I. Golden rice and beyond. Plant Physiol. 2001, 125, 1157–1161. [Google Scholar] [CrossRef] [PubMed]
- Rocheford, T.R.; Wong, J.C.; Egesel, C.O.; Lambert, R.J. Enhancement of vitamin E levels in corn. J. Am. Coll. Nutr. 2002, 21, 191S–198S. [Google Scholar] [CrossRef] [PubMed]
- Van Jaarsveld, P.J.; Faber, M.; Tanumihardjo, S.A.; Nestel, P.; Lombard, C.J.; Benade, A.J. Beta-carotene-rich orange-fleshed sweet potato improves the vitamin a status of primary school children assessed with the modified-relative-dose-response test. Am. J. Clin. Nutr. 2005, 81, 1080–1087. [Google Scholar] [PubMed]
- Ye, X.; Al-Babili, S.; Kloti, A.; Zhang, J.; Lucca, P.; Beyer, P.; Potrykus, I. Engineering the provitamin a (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 2000, 287, 303–305. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Xue, G.; Chen, P.; Yao, B.; Yang, W.; Ma, Q.; Fan, Y.; Zhao, Z.; Tarczynski, M.C.; Shi, J. Transgenic maize plants expressing a fungal phytase gene. Transgen. Res. 2008, 17, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.Q.; Ma, Q.G.; Ji, C.; Luo, X.G.; Tang, H.F.; Wei, Y.M. Evaluation of the compositional and nutritional values of phytase transgenic corn to conventional corn in roosters. Poultr. Sci. 2012, 91, 1142–1148. [Google Scholar] [CrossRef] [PubMed]
- Nyannor, E.K.; Williams, P.; Bedford, M.R.; Adeola, O. Corn expressing an Escherichia coli-derived phytase gene: A proof-of-concept nutritional study in pigs. J. Anim. Sci. 2007, 85, 1946–1952. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.B.; Kornegay, E.T.; Radcliffe, J.S.; Denbow, D.M.; Veit, H.P.; Larsen, C.T. Comparison of genetically engineered microbial and plant phytase for young broilers. Poultr. Sci. 2000, 79, 709–717. [Google Scholar] [CrossRef]
- Vageeshbabu, H.S.; Chopra, V.L. Genetic and biotechnological approaches for reducing glucosinolates from rapeseed-mustard meal. J. Plant Biochem. Biotechnol. 1997, 6, 53–62. [Google Scholar] [CrossRef]
- Vasil, I.K.; Anderson, O.D. Genetic engineering of wheat gluten. Trends Plant Sci. 1997, 2, 292–297. [Google Scholar] [CrossRef]
- Duvick, J. Prospects for reducing fumonisin contamination of maize through genetic modification. Environ. Health Perspect. 2001, 109, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Munkvold, G.P.; Hellmich, R.L.; Rice, L.G. Comparison of fumonisin concentrations in kernels of transgenic Bt maize hybrids and nontransgenic hybrids. Plant Dis. 1999, 83, 130–138. [Google Scholar] [CrossRef]
- International Life Sciences Institute. Nutritional and safety of foods and feeds nutritionally improved through biotechnology: Case studies. Compr. Rev. Food Sci. Food Saf. 2008, 7, 50–99. [Google Scholar]
- Newell-McGloughlin, M. Nutritionally improved agricultural crops. Plant Physiol. 2008, 147, 939–953. [Google Scholar] [CrossRef] [PubMed]
- Dawe, D.; Robertson, R.; Unnevehr, L. Golden rice: What role could it play in alleviation of vitamin a deficiency? Food Policy 2002, 27, 541–560. [Google Scholar] [CrossRef]
- DellaPenna, D. Nutritional genomics: Manipulating plant micronutrients to improve human health. Science 1999, 285, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Gilligan, D.O. Biofortification, agricultural technology adoption, and nutrition policy: Some lessons and emerging challenges. CESifo Econo. Stud. 2012, 58, 405–421. [Google Scholar] [CrossRef]
- Johns, T. Plant biodiversity and malnutrition: Simple solutions to complex problems. Afr. J. Food Agric. Nutr. Dev. 2003, 3, 45–52. [Google Scholar] [CrossRef]
- King, J.C. Evaluating the impact of plant biofortification on human nutrition. J. Nutr. 2002, 132, 511S–513S. [Google Scholar] [PubMed]
- Mayer, J.E.; Pfeiffer, W.H.; Beyer, P. Biofortified crops to alleviate micronutrient malnutrition. Curr. Opin. Plant Biol. 2008, 11, 166–170. [Google Scholar] [CrossRef] [PubMed]
- McKeon, T.A. Genetically modified crops for industrial products and processes and their effects on human health. Trends Food Sci. Technol. 2003, 14, 229–241. [Google Scholar] [CrossRef]
- Sautter, C.; Poletti, S.; Zhang, P.; Gruissem, W. Biofortification of essential nutritional compounds and trace elements in rice and cassava. Proc. Nutr. Soc. 2006, 65, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, R.; Stein, A.; Qaim, M. Agricultural technology to fight micronutrient malnutrition? A health economics approach agrartechnologie zur bekampfung von mikronahrstoffmangel? Ein gesundheitsokonomischer bewertungsansatz. Agrarwirtschaft 2004, 53, 67–76. [Google Scholar]
- McNaughton, J.; Roberts, M.; Smith, B.; Rice, D.; Hinds, M.; Sanders, C.; Layton, R.; Lamb, I.; Delaney, B. Comparison of broiler performance when fed diets containing event DP-3O5423-1, nontransgenic near-isoline control, or commercial reference soybean meal, hulls, and oil. Poultr. Sci. 2008, 87, 2549–2561. [Google Scholar] [CrossRef] [PubMed]
- Mejia, L.; Meyer, E.T.; Utterback, P.L.; Utterback, C.W.; Parsons, C.M.; Koelkebeck, K.W. Evaluation of limit feeding corn and distillers dried grains with solubles in non-feed-withdrawal molt programs for laying hens. Poultr. Sci. 2010, 89, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Stein, A.J.; Rodriguez-Cerezo, E. The Global Pipeline of New GM-Crops: Implications of Asynchronous Approval for International Trade; European Communities: Brussels, Belgium, 2009; p. 102.
- Flachowsky, G. Possibilities of decontamination of “undesired substances” after appendix 5 of the feed regulation. Landbauforsch. Völk. 2006, 294, 292. (In German) [Google Scholar]
- Gorniak, T.; Meyer, U.; Danicke, S. Effects of corn silage of a brown-midrib hybrid on dry matter intake, milk yield and milk composition in german holstein dairy cows compared to a common hybrid. Proc. Soc. Nutr. Physiol. Band 2012, 21, 159. [Google Scholar]
- Ivan, S.K.; Grant, R.J.; Weakley, D.; Beck, J. Comparison of a corn silage hybrid with high cell-wall content and digestibility with a hybrid of lower cell-wall content on performance of holstein cows. J. Dairy Sci. 2005, 88, 244–254. [Google Scholar] [CrossRef]
- Köhler, R.; Leuoth, A.; Jeroch, H.; Flachowsky, G.; Gebhardt, G.; Hielscher, H.; Kappel, W. Studies of the content and the digestibility of cell-wall substances in remaining plants of various maize hybrids. Arch. Anim. Nutr. 1989, 39, 187–192. [Google Scholar]
- Rook, J.A.; Muller, L.D.; Shank, D.B. Intake and digestibility of brown-midrib corn-silage by lactating dairy-cows. J. Dairy Sci. 1977, 60, 1894–1904. [Google Scholar] [CrossRef]
- Barriere, Y.; Dias Goncalves, G.; Emile, J.C.; Lefevre, B. Higher intake of DK265 corn silage by dairy cattle. J. Dairy Sci. 2004, 87, 1439–1445. [Google Scholar] [CrossRef]
- Oba, M.; Allen, M.S. Effects of brown midrib 3 mutation in corn silage on dry matter intake and productivity of high yielding dairy cows. J. Dairy Sci. 1999, 82, 135–142. [Google Scholar] [CrossRef]
- Oba, M.; Allen, M.S. Effects of brown midrib 3 mutation in corn silage on productivity of dairy cows fed two concentrations of dietary neutral detergent fiber: 1. Feeding behavior and nutrient utilization. J. Dairy Sci. 2000, 83, 1333–1341. [Google Scholar] [CrossRef]
- Oba, M.; Allen, M.S. Effects of brown midrib 3 mutation in corn silage on productivity of dairy cows fed two concentrations of dietary neutral detergent fiber: 3. Digestibility and microbial efficiency. J. Dairy Sci. 2000, 83, 1350–1358. [Google Scholar] [CrossRef]
- Cherney, J.H.; Cherney, D.J.R.; Akin, D.E.; Axtell, J.D. Potential of brown-midrib, low-lignin mutants for improving forage quality. Adv. Agron. 1991, 46, 157–198. [Google Scholar]
- Grant, R.J.; Haddad, S.G.; Moore, K.J.; Pedersen, J.F. Brown midrib sorghum silage for midlactation dairy cows. J. Dairy Sci. 1995, 78, 1970–1980. [Google Scholar] [CrossRef]
- Taylor, C.C.; Allen, M.S. Corn grain endosperm type and brown midrib 3 corn silage: Ruminal fermentation and n partitioning in lactating cows. J. Dairy Sci. 2005, 88, 1434–1442. [Google Scholar] [CrossRef]
- Taylor, C.C.; Allen, M.S. Corn grain endosperm type and brown midrib 3 corn silage: Feeding behavior and milk yield of lactating cows. J. Dairy Sci. 2005, 88, 1425–1433. [Google Scholar] [CrossRef]
- Hristov, A.N.; Oh, J.; Firkins, J.L.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Makkar, H.P.S.; Adesogan, A.T.; Yang, W.; Lee, C.; et al. Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef] [PubMed]
- Schwarm, A.; Schweigel-Röntgen, M.; Kreuzer, M.; Ortmann, S.; Gill, F.; Kuhla, B.; Meyer, U.; Lohölter, M.; Derno, M. Feeding silage from brown midrib maize to heifers does not increase methane emissions despite a higher fibre digestibilitgy as compared to conventional maize silage. Arch. Anim. Nutr. 2015, 69, 159–176. [Google Scholar] [CrossRef] [PubMed]
- Flachowsky, G. Stroh als Futtermittel: Ergebnisse und Erfahrungen bei der Strohaufbereitung und Beim Einsatz von Unterschiedlich Behandeltem Stroh als Futtermittel; VEB Deutscher Landwirtschaftsverlag: Berlin, Germany, 1987. (In German)
- Sundstol, F.; Owen, E. Straw and Other Fibrous by Products as Feed; Elsevier: Amsterdam, The Netherlands, 1984; p. 610. [Google Scholar]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994; p. 376. [Google Scholar]
- Van Soest, P.J. Rice straw, the role of silica and treatments to improve quality. Anim. Feed Sci. Technol. 2006, 130, 137–171. [Google Scholar] [CrossRef]
- Protocols for Food and Feed Safety Assessment of Ge Crops. Available online: http://igmoris.nic.in/files%5CCoverpage1.pdf (accessed on 12 May 2015).
- EFSA GMO Panel Working Group on Animal Feeding Trials. Safety and nutritional assessment of GM plant derived food and feed. The role of animal feeding trials. Food Chem. Toxicol. 2008, 46, 2–70. [Google Scholar]
- The Role of Animal Feeding Studies in the Safety Assessment of Genetically Modified Foods. Available online: https://www.foodstandards.gov.au/consumer/gmfood/documents/Workshop%20Report%20FINAL.pdf (accessed on 12 May 2015).
- International Life Sciences Institute. Best Practices for the Conduct of Animal Studies to Evaluate Crops Genetically Modified for Input Traits; International Life Sciences Institute: Washington, DC, USA, 2003; p. 62. [Google Scholar]
- International Life Sciences Institute. Best Practices for the Conduct of Animal Studies to Evaluate Crops Genetically Modified for Output Traits; International Life Sciences Institute: Washington, DC, USA, 2007; p. 194. [Google Scholar]
- Organization for Economic Co-operation and Development. Safety Evaluation of Foods Derived by Modern Biotechnology: Concepts and Principles; OECD: Paris, France, 1993; p. 77. [Google Scholar]
- Van Eenennaam, A.L.; Young, A.E. Prevalence and impacts of genetically engineered feedstuffs on livestock populations. J. Anim. Sci. 2014, 92, 4255–4278. [Google Scholar] [CrossRef] [PubMed]
- Flachowsky, G.; Böhme, H. Proposals for nutritional assessments of feeds from genetically modified plants. J. Anim. Feed Sci. 2005, 14, 49–70. [Google Scholar]
- Flachowsky, G.; Schafft, H.; Meyer, U. Animal feeding studies for nutritional and safety assessments of feeds from genetically modified plants: A review. J. Verbrauch. Lebensm. 2012, 7, 179–194. [Google Scholar] [CrossRef]
- Llorente, B.; Alonso, G.D.; Bravo-Almonacid, F.; Rodriguez, V.; Lopez, M.G.; Carrari, F.; Torres, H.N.; Flawia, M.M. Safety assessment of nonbrowning potatoes: Opening the discussion about the relevance of substantial equivalence on next generation biotech crops. Plant Biotechnol. J. 2011, 9, 136–150. [Google Scholar] [CrossRef] [PubMed]
- Spencer, J.D.; Allee, G.L.; Sauber, T.E. Phosphorus bioavailability and digestibility of normal and genetically modified low-phytate corn for pigs. J. Anim. Sci. 2000, 78, 675–681. [Google Scholar] [PubMed]
- Spencer, J.D.; Allee, G.L.; Sauber, T.E. Growing-finishing performance and carcass characteristics of pigs fed normal and genetically modified low-phytate corn. J. Anim. Sci. 2000, 78, 1529–1536. [Google Scholar] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flachowsky, G.; Meyer, U. Challenges for Plant Breeders from the View of Animal Nutrition. Agriculture 2015, 5, 1252-1276. https://doi.org/10.3390/agriculture5041252
Flachowsky G, Meyer U. Challenges for Plant Breeders from the View of Animal Nutrition. Agriculture. 2015; 5(4):1252-1276. https://doi.org/10.3390/agriculture5041252
Chicago/Turabian StyleFlachowsky, Gerhard, and Ulrich Meyer. 2015. "Challenges for Plant Breeders from the View of Animal Nutrition" Agriculture 5, no. 4: 1252-1276. https://doi.org/10.3390/agriculture5041252
APA StyleFlachowsky, G., & Meyer, U. (2015). Challenges for Plant Breeders from the View of Animal Nutrition. Agriculture, 5(4), 1252-1276. https://doi.org/10.3390/agriculture5041252