Sorghum Biomass Production for Energy Purpose Using Treated Urban Wastewater and Different Fertilization in a Mediterranean Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Constructed Wetland and Water Cleaning Processes
2.3. Experimental Design and Treatments
2.4. Crop Establishment and Management
2.5. Wastewater Analysis
2.6. Soil Analysis
2.7. Analysis of Root Mycorrhization
2.8. Biomass Dry Weight
2.9. Statistical Analysis
3. Results and Discussion
3.1. Meteorological Variables
3.2. Soil Analysis
3.3. Wastewater Analysis, Irrigation, and Nutrients Applied
3.4. Analysis of Mycorrhization
3.5. Plant Aboveground Dry Biomass and Its Components
3.6. Shoots Number per Unit Area and Biomass Yield per Hectare (ha)
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Scanlon, B.R.; Jolly, I.; Sophocleous, M.; Zhang, L. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality. Water Resour. Res. 2007, 43, W03437. [Google Scholar] [CrossRef]
- Iglesias, A.; Garrote, L.; Flores, F.; Moneo, M. Challenges to manage the risk of water scarcity and climate change in the Mediterranean. Water Resour. Manag. 2007, 21, 775–788. [Google Scholar] [CrossRef]
- Jury, W.A.; Vaux, H. The role of science in solving the world’s emerging water problems. Proc. Natl. Acad. Sci. USA 2005, 102, 15715–15720. [Google Scholar] [CrossRef] [PubMed]
- Barbagallo, S.; Barbera, A.C.; Cirelli, G.L.; Milani, M.; Toscano, A. Reuse of constructed wetland effluents for irrigation of energy crops. Water Sci. Technol. 2014, 70, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
- Valipour, M. Hydro-module determination for Vanaei Village in Eslam Abad Gharb, Iran. ARPN J. Agric. Biol. Sci. 2012, 7, 968–976. [Google Scholar]
- Pereira, L.S.; Oweis, T.; Zairi, A. Irrigation management under water scarcity. Agric. Water Manag. 2002, 57, 175–206. [Google Scholar] [CrossRef]
- Valipour, M.; Eslamian, S. Analysis of potential evapotranspiration using 11 modified temperature-based models. Int. J. Hydrol. Sci. Technol. 2014, 4, 192–207. [Google Scholar] [CrossRef]
- Valipour, M.; Singh, V.P. Global Experiences on Wastewater Irrigation: Challenges and Prospects. In Balanced Urban Development: Options and Strategies for Liveable Cities; Maheshwari, B., Singh, V.P., Thoradeniya, B., Eds.; Springer: Bern, Switzerland, 2016; pp. 289–327. [Google Scholar]
- Hamilton, A.J.; Stagnitti, F.; Xiong, X.; Kreidl, S.L.; Benke, K.K.; Maher, P. Wastewater irrigation: The state of play. Vadose Zone J. 2007, 6, 823–840. [Google Scholar] [CrossRef]
- Keraita, B.; Jiménez, B.; Drechsel, P. Extent and implications of agricultural reuse of untreated, partly treated and diluted wastewater in developing countries. CAB Rev. 2008, 3, 1–15. [Google Scholar] [CrossRef]
- Alcamo, J.; Flörke, M.; Märker, M. Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrolog. Sci. J. 2007, 52, 247–275. [Google Scholar] [CrossRef]
- Valipour, M. Necessity of irrigated and rainfed agriculture in the world. Irrig. Drain. Syst. Eng. 2013. [Google Scholar] [CrossRef]
- Cirelli, G.L.; Consoli, S.; Licciardello, F.; Aiello, R.; Giuffrida, F.; Leonardi, C. Treated municipal wastewater reuse in vegetable production. Agric. Water Manag. 2012, 104, 163–170. [Google Scholar] [CrossRef]
- Angelakis, A.N.; Marecos Do Monte, M.H.F.; Bontoux, L.; Asano, T. The status of wastewater reuse practice in the Mediterranean basin: Need for guidelines. Water Res. 1999, 33, 2201–2217. [Google Scholar] [CrossRef]
- Lopez, A.; Pollice, A.; Lonigro, A.; Masi, S.; Palese, A.M.; Cirelli, G.L.; Toscano, A.; Passino, R. Agricultural wastewater reuse in southern Italy. Desalination 2006, 187, 323–334. [Google Scholar] [CrossRef]
- Salgot, M.; Huertas, E.; Weber, S.; Dott, W.; Hollender, J. Wastewater reuse and risk: Definition of key objectives. Desalination 2006, 187, 29–40. [Google Scholar] [CrossRef]
- Peterson, S.; Ashbolt, N. Viral risks associated with wastewater reuse: Modeling virus persistence on wastewater irrigated salad crops. Water Sci. Technol. 2001, 43, 23–26. [Google Scholar]
- Vymazal, J. Removal of enteric bacteria in constructed treatment wetlands with emergent macrophytes: A review. J. Environ. Sci. Heal. 2005, 40, 1355–1367. [Google Scholar] [CrossRef]
- Mietto, A.; Borin, M. Performance of two small subsurface flow constructed wetlands treating domestic wastewaters in Italy. Environ. Technol. 2013, 34, 1085–1095. [Google Scholar] [CrossRef] [PubMed]
- Pedrero, F.; Kalavrouziotis, I.; Alarcón, J.J.; Koukoulakis, P.; Asano, T. Use of treated municipal wastewater in irrigated agriculture—Review of some practices in Spain and Greece. Agric. Water Manag. 2010, 97, 1233–1241. [Google Scholar] [CrossRef]
- Castorina, A.; Consoli, S.; Barbagallo, S.; Branca, F.; Farag, A.; Licciardello, F.; Cirelli, G.L. Assessing environmental impacts of constructed wetland effluents for vegetable crop irrigation. Int. J. Phytoremediat. 2016, 18, 626–633. [Google Scholar] [CrossRef] [PubMed]
- Borin, M.; Barbera, A.C.; Milani, M.; Molari, G.; Zimbone, S.M.; Toscano, A. Biomass production and N balance of giant reed (Arundo donax L.) under high water and N input in Mediterranean environments. Eur. J. Agron. 2013, 51, 117–119. [Google Scholar] [CrossRef]
- Aiello, R.; Cirelli, G.L.; Consoli, S. Effects of reclaimed wastewater irrigation on soil and tomato fruits: A case study in Sicily (Italy). Agric. Water Manag. 2007, 93, 65–72. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef] [PubMed]
- Cavazza, L. Output and input analysis in energy balance of agricultural production. Riv. Agron. 1983, 17, 202–211. [Google Scholar]
- Reed, W.; Geng, S.; Hills, F.J. Energy input and output analysis of four field crops in California. J. Agron. Crop Sci. 1986, 157, 99–104. [Google Scholar] [CrossRef]
- Milani, M.; University of Catania, Catania, Italy. Personal communication, 2016.
- Liu, T.; Wang, C.; Chen, H.; Fang, F.; Zhu, X.; Tang, M. Effects of arbuscular mycorrhizal colonization on the biomass and bioenergy production of Populus × canadensis ‘Neva’ in sterilized and unsterilized soil. Acta Physiol. Plant. 2014, 36, 871–880. [Google Scholar] [CrossRef]
- Clark, R.B.; Zeto, S.K. Mineral acquisition by arbuscular mycorrhizal plants. J. Plant Nutr. 2000, 23, 867–902. [Google Scholar] [CrossRef]
- Mensah, J.A.; Koch, A.M.; Antunes, P.M.; Kiers, E.T.; Hart, M.; Bücking, H. High functional diversity within species of arbuscular mycorrhizal fungi is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism. Mycorrhiza 2015, 25, 533–546. [Google Scholar] [CrossRef] [PubMed]
- Garg, N.; Chandel, S. Arbuscular mycorrhizal networks: Process and functions. A review. Agron. Sustain. Dev. 2010, 30, 581–599. [Google Scholar] [CrossRef]
- Taktek, S.; Trépanier, M.; Servin, P.M.; St-Arnaud, M.; Piché, Y.; Fortin, J.A.; Antoun, H. Trapping of phosphate solubilizing bacteria on hyphae of the arbuscular mycorrhizal fungus Rhizophagus irregularis DAOM 197198. Soil Biol. Biochem. 2015, 90, 1–9. [Google Scholar] [CrossRef]
- Augé, R.M. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 2001, 11, 3–42. [Google Scholar] [CrossRef]
- Dodd, I.C.; Ruiz-Lozano, J.M. Microbial enhancement of crop resource use efficiency. Curr. Opin. Biotechnol. 2012, 23, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Gokcol, C.; Dursun, B.; Alboyaci, B.; Sunan, E. Importance of biomass energy as alternative to other sources in Turkey. Energ. Policy 2009, 37, 424–431. [Google Scholar] [CrossRef]
- Campi, P.; Navarro, A.; Palumbo, A.D.; Mastrangelo, M.; Lonigro, A.; Mastrorilli, M. Bioenergy productivity of sugar beet irrigated with reclaimed wastewaters. Ital. J. Agron. 2015, 10, 155–159. [Google Scholar] [CrossRef]
- Zema, D.A.; Bombino, G.; Andiloro, S.; Zimbone, S.M. Irrigation of energy crops with urban wastewater: Effects on biomass yields, soils and heating values. Agric. Water Manag. 2012, 115, 55–65. [Google Scholar] [CrossRef]
- Monteiro, J.S.T.; Havrland, B.; Ivanova, T. Sweet sorghum (Sorghum bicolor (L.) Moench) bioenergy value–importance for Portugal. Agric. Trop. Subtrop. 2012, 45, 12–19. [Google Scholar] [CrossRef]
- Kołodziej, B.; Antonkiewicz, J.; Stachyra, M.; Bielińska, E.J.; Wiśniewski, J.; Luchowska, K.; Kwiatkowski, C. Use of sewage sludge in bioenergy production—A case study on the effects on sorghum biomass production. Eur. J. Agron. 2015, 69, 63–74. [Google Scholar] [CrossRef]
- Loomis, R.S.; Williams, W.A. Maximum crop productivity: An estimate. Crop Sci. 1963, 3, 67–72. [Google Scholar] [CrossRef]
- Barbanti, L.; Grandi, S.; Vecchi, A.; Venturi, G. Sweet and fibre sorghum (Sorghum bicolor (L.) Moench), energy crops in the frame of environmental protection from excessive nitrogen loads. Eur. J. Agron. 2006, 25, 30–39. [Google Scholar] [CrossRef]
- Garofalo, P.; Vonella, A.V.; Ruggieri, S.; Rinaldi, M. Water and radiation use efficiencies of irrigated biomass sorghum in a Mediterranean environment. Ital. J. Agron. 2011, 6, 133–139. [Google Scholar] [CrossRef]
- Campi, P.; Navarro, A.; Palumbo, A.D.; Solimando, M.; Lonigro, A.; Mastrorilli, M. Productivity of energy sorghum irrigated with reclaimed wastewaters. Ital. J. Agron. 2014, 9, 115–119. [Google Scholar] [CrossRef]
- Habyarimana, E.; Bonardi, P.; Laureti, D.; Di Bari, V.; Cosentino, S.; Lorenzoni, C. Multilocational evaluation of biomass sorghum hybrids under two stand densities and variable water supply in Italy. Ind. Crop Prod. 2004, 20, 3–9. [Google Scholar] [CrossRef]
- Habyarimana, E.; Laureti, D.; Di Fonzo, N.; Lorenzoni, C. Biomass production and drought resistance at the seedling stage and in field conditions in sorghum. Maydica 2002, 47, 303–309. [Google Scholar]
- Cosentino, S.L.; Mantineo, M.; Testa, G. Water and nitrogen balance of sweet sorghum (Sorghum bicolor moench (L.)) cv. Keller under semi-arid conditions. Ind. Crop Prod. 2012, 36, 329–342. [Google Scholar] [CrossRef]
- Lewandowski, I.; Clifton-Brown, J.C.; Andersson, B.; Basch, G.; Christian, D.G.; Jørgensen, U.; Jonesb, M.B.; Richee, A.B.; Schwarzf, K.U.; Tayebid, K.; et al. Environment and harvest time affects the combustion qualities of genotypes. Agron. J. 2003, 95, 1274–1280. [Google Scholar] [CrossRef]
- Adler, P.R.; Sanderson, M.A.; Boateng, A.A.; Weimer, P.J.; Jung, H.J.G. Biomass yield and biofuel quality of switchgrass harvested in fall or spring. Agron. J. 2006, 98, 1518–1525. [Google Scholar] [CrossRef]
- Barbagallo, S.; Cirelli, G.L.; Marzo, A.; Milani, M.; Toscano, A. Hydraulics behaviour and removal efficiencies in two H-SSF constructed wetlands for wastewater reuse with different operational life. Water Sci. Technol. 2011, 64, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
- Valipour, M. Increasing irrigation efficiency by management strategies: Cutback and surge irrigation. ARPN J. Agric. Biol. Sci. 2013, 8, 35–43. [Google Scholar]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 20th ed.; APHA: Washington, DC, USA, 1998. [Google Scholar]
- USDA Soil Survey Staff. Keys to Soil Taxonomy, 10th ed.U.S. Department of Agriculture, Soil Survey Staff, Natural Resources Conservation Service: Washington, DC, USA, 2006.
- Trouvelot, A.; Kough, J.; Gianinazzi-Pearson, V. Evaluation of VA infection levels in root systems. Research for estimation methods having a functional significance. In Physiological and Genetical Aspects of Mycorrhizae; INRA Press: Paris, France, 1986; pp. 217–221. [Google Scholar]
- Meli, S.; Porto, M.; Belligno, A.; Bufo, S.A.; Mazzatura, A.; Scopa, A. Influence of irrigation with lagooned urban wastewater on chemical and microbiological soil parameters in a citrus orchard under Mediterranean condition. Sci. Total Environ. 2002, 285, 69–77. [Google Scholar] [CrossRef]
- Wardle, D.A.; Parkinson, D. Interactions between microclimatic variables and the soil microbial biomass. Biol. Fertil. Soils 1990, 9, 273–280. [Google Scholar] [CrossRef]
- Van Gestel, M.; Merckx, R.; Vlassak, K. Microbial biomass and activity in soils with fluctuating water contents. Geoderma 1993, 56, 617–626. [Google Scholar] [CrossRef]
- Vymazal, J. The use constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecol. Eng. 2009, 35, 1–17. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed wetlands for wastewater treatment. Water 2010, 2, 530–549. [Google Scholar] [CrossRef]
- Cirelli, G.L.; Consoli, S.; Di Grande, V.; Milani, M.; Toscano, A. Subsurface constructed wetlands for wastewater treatment and reuse in agriculture: Five years of experiences in Sicily, Italy. Water Sci. Technol. 2007, 56, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Amaducci, S.; Monti, A.; Venturi, G. Non-structural carbohydrates and fibre components in sweet and fibre sorghum as affected by low and normal input techniques. Ind. Crop Prod. 2004, 20, 111–118. [Google Scholar] [CrossRef]
- Treseder, K.K.; Allen, M.F. Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol. 2000, 147, 189–200. [Google Scholar] [CrossRef]
- Berruti, A.; Borriello, R.; Orgiazzi, A.; Barbera, A.C.; Lumini, E.; Bianciotto, V. Arbuscular mycorrhizal fungi and their value for ecosystem management. In Biodiversity: The Dynamic Balance of the Planet; Grillo, O., Ed.; InTech: Rijeka, Croatia, 2014; pp. 159–191. [Google Scholar]
- Treseder, K.K.; Allen, M.F. Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: A model and field test. New Phytol. 2002, 155, 507–515. [Google Scholar] [CrossRef]
- Garcia, M.O.; Ovasapyan, T.; Greas, M.; Treseder, K.K. Mycorrhizal dynamics under elevated CO2 and nitrogen fertilization in a warm temperate forest. Plant Soil 2008, 303, 301–310. [Google Scholar] [CrossRef]
- Johnston, A.E.; Trust, L.; Fellow, S. Efficient use of nutrients in agricultural production systems. Commun. Soil Sci. Plan. 2000, 31, 1599–1620. [Google Scholar] [CrossRef]
- Sainju, U.M.; Whitehead, W.F.; Singh, B.P. Carbon accumulation in cotton, sorghum, and underlying soil as influenced by tillage, cover crops, and nitrogen fertilization. Plant Soil 2005, 273, 219–234. [Google Scholar] [CrossRef]
- Almodares, A.; Taheri, R.; Chung, M.; Fathi, M. The effect of nitrogen and potassium fertilizers on growth parameters and carbohydrate contents of sweet sorghum cultivars. J. Environ. Biol. 2008, 29, 849–852. [Google Scholar] [PubMed]
- Dalla Marta, A.; Mancini, M.; Orlando, F.; Natali, F.; Capecchi, L.; Orlandini, S. Sweet sorghum for bioethanol production: Crop responses to different water stress levels. Biomass Bioenerg. 2014, 64, 211–219. [Google Scholar] [CrossRef]
Parameters | Units | July 2008 | March 2009 | March 2010 |
---|---|---|---|---|
pH | 8.13 ± 0.03 | 8.27 ± 0.18 | 8.30 ± 0.11 | |
EC | dS·m−1 | 0.25 ± 0.04 | 0.25 ± 0.05 | 0.25 ± 0.06 |
Total CaCO3 | g·kg−1 | 53 ± 11 | 55 ± 17 | 56 ± 14 |
Active CaCO3 | g·kg−1 | 19 ± 2 | 20 ± 1 | 21 ± 1 |
OC | g·kg−1 | 10 ± 1 | 9 ± 1 | 13 ± 1 |
TN | g·kg−1 | 0.74 ± 0.17 | 0.93 ± 0.09 | 0.65 ± 0.12 |
C/N | 13.7 ± 3.2 | 9.3 ± 1.2 | 20.1 ± 2.4 |
Parameters | Units | 2008 | 2009 |
---|---|---|---|
pH | 7.7 ± 0.3 | 7.7 ± 0.1 | |
EC | µS·cm−1 | 1478 ± 95 | 1397 ± 124 |
BOD5 | mg·L−1 | 10.8 ± 4.4 | 14.4 ± 4.0 |
COD | mg·L−1 | 20.1 ± 6.8 | 27.3 ± 7.6 |
TSS | mg·L−1 | 11.0 ± 4.6 | 49.8 ± 29.4 |
TN | mg·L−1 | 4.6 ± 2.2 | 13.8 ± 4.2 |
TP | mg·L−1 | 6.8 ± 2.3 | 6.7 ± 2.6 |
Treatments | Vegetative Season 2008/2009 | Vegetative Season 2009/2010 | ||
---|---|---|---|---|
TN | TP | TN | TP | |
(kg·ha−1) | (kg·ha−1) | (kg·ha−1) | (kg·ha−1) | |
33% ETc | 20.7 (17.3%) | 30.6 (47.1%) | 20.7 (17.3%) | 10.1 (15.5%) |
66% ETc | 27.6 (23.0%) | 40.8 (62.8%) | 41.4 (34.5%) | 20.1 (30.9%) |
100% ETc | 32.2 (26.8%) | 47.6 (73.2%) | 62.1 (51.8%) | 30.2 (46.5%) |
Parameters | Treatments | ||
---|---|---|---|
0 N | AMF | 100 N | |
F % | 26.0 a | 32.5 b | 41.5 c |
A % | 0 a | 14.0 b | 0 a |
2008–2009 | ||||||||
Culm Dry Weight (g) | Leaves Dry Weight (g) | Panicle Dry Weight (g) | Plant Dry Weight (g) | |||||
Fertilization | ||||||||
0 N | 73.1 (76.2%) | b | 16.6 (17.3%) | b | 6.2 (6.5%) | b | 95.9 | b |
AMF | 71.7 (74.5%) | b | 18.4 (19.1%) | a | 6.2 (6.4%) | b | 96.3 | b |
100 N | 90.4 (76.8%) | a | 19.7 (16.7%) | a | 7.7 (6.5%) | a | 117.8 | a |
Irrigation | ||||||||
0% ETc | 49.4 (73.6%) | d | 13.0 (19.4%) | d | 4.7 (7.0%) | c | 67.1 | d |
33% ETc | 65.9 (75.3%) | c | 16.5 (18.9%) | c | 5.1 (5.8%) | c | 87.5 | c |
66% ETc | 91.8 (76.9%) | b | 20.1 (16.8%) | b | 7.5 (6.3%) | b | 119.4 | b |
100% ETc | 106.6 (76.6%) | a | 23.2 (16.6%) | a | 9.4 (6.8%) | a | 139.2 | a |
Harvesting | ||||||||
I harvest | 84.7 (68.2%) | a | 29.2 (23.5%) | a | 10.3 (8.3%) | a | 124.3 | a |
II harvest | 83.6 (82.4%) | a | 13.2 (13.0%) | b | 4.7 (4.6%) | b | 101.4 | b |
III harvest | 66.9 (79.5%) | b | 12.3 (14.6%) | b | 5.0 (6.0%) | b | 84.2 | c |
2009–2010 | ||||||||
Culm Dry Weight (g) | Leaves Dry Weight (g) | Panicle Dry Weight (g) | Plant Dry Weight (g) | |||||
Fertilization | ||||||||
0 N | 139.9 (74.3%) | b | 25.3 (13.4%) | a | 23.0 (12.2%) | b | 188.2 | b |
AMF | 146.8 (73.9%) | b | 25.5 (12.8%) | a | 26.4 (13.3%) | ab | 198.7 | ab |
100 N | 166.7 (75.8%) | a | 25.0 (11.4%) | a | 28.2 (12.8%) | a | 219.9 | a |
Irrigation | ||||||||
0% ETc | 79.9 (67.6%) | d | 19.1 (16.1%) | c | 19.2 (16.3%) | b | 118.2 | d |
33% ETc | 124.3 (73.8%) | c | 24.0 (14.3%) | b | 20.0 (11.9%) | b | 168.4 | c |
66% ETc | 167.8 (74.5%) | b | 27.4 (12.2%) | ab | 29.9 (13.3%) | a | 225.1 | b |
100% ETc | 232.4 (78.2%) | a | 30.7 (10.3%) | a | 34.3 (11.5%) | a | 297.4 | a |
Harvesting | ||||||||
I harvest | 221.0 (68.8%) | a | 50.7 (15.8%) | a | 49.6 (15.4%) | a | 321.3 | a |
II harvest | 145.0 (78.3%) | b | 20.8 (11.2%) | b | 19.4 (10.5%) | b | 185.3 | b |
III harvest | 87.3 (87.2%) | c | 4.3 (4.3%) | c | 8.5 (8.5%) | c | 100.2 | c |
Treatments | Number of shoots·m−2 | |||||||
---|---|---|---|---|---|---|---|---|
Growing Season 2008/2009 | Growing Season 2009/2010 | |||||||
0 N | AMF | 100 N | Average | 0 N | AMF | 100 N | Average | |
0% ETc | 10.0 g | 10.5 g | 11.5 f | 10.7 d | 5.0 | 5.5 | 5.5 | 5.3 d |
33% ETc | 13.5 e | 14.5 de | 15.5 d | 14.5 c | 6.5 | 7.5 | 7.5 | 7.2 c |
66% ETc | 15.0 d | 15.2 d | 18.0 b | 16.1 b | 7.5 | 8.0 | 9.0 | 8.2 b |
100% ETc | 16.5 c | 15.0 d | 24.5 a | 18.7 a | 9.0 | 10.0 | 10.5 | 9.8 a |
Average | 13.7 b | 13.8 b | 17.4 a | 15.1 | 7.0 a | 7.8 b | 8.1 b | 7.6 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maucieri, C.; Cavallaro, V.; Caruso, C.; Borin, M.; Milani, M.; Barbera, A.C. Sorghum Biomass Production for Energy Purpose Using Treated Urban Wastewater and Different Fertilization in a Mediterranean Environment. Agriculture 2016, 6, 67. https://doi.org/10.3390/agriculture6040067
Maucieri C, Cavallaro V, Caruso C, Borin M, Milani M, Barbera AC. Sorghum Biomass Production for Energy Purpose Using Treated Urban Wastewater and Different Fertilization in a Mediterranean Environment. Agriculture. 2016; 6(4):67. https://doi.org/10.3390/agriculture6040067
Chicago/Turabian StyleMaucieri, Carmelo, Valeria Cavallaro, Caterina Caruso, Maurizio Borin, Mirco Milani, and Antonio C. Barbera. 2016. "Sorghum Biomass Production for Energy Purpose Using Treated Urban Wastewater and Different Fertilization in a Mediterranean Environment" Agriculture 6, no. 4: 67. https://doi.org/10.3390/agriculture6040067
APA StyleMaucieri, C., Cavallaro, V., Caruso, C., Borin, M., Milani, M., & Barbera, A. C. (2016). Sorghum Biomass Production for Energy Purpose Using Treated Urban Wastewater and Different Fertilization in a Mediterranean Environment. Agriculture, 6(4), 67. https://doi.org/10.3390/agriculture6040067