Nitrous Oxide Emission from Organic Fertilizer and Controlled Release Fertilizer in Tea Fields
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Gas Sample Collection and Analysis
2.4. Soil Sample Collection and Analysis
2.5. Statistical Data Analysis
3. Results
3.1. Environmental Factors
3.2. Nitrous Oxide Emission
4. Discussion
4.1. The Effects of Fertilizer on N2O Emission
4.2. The Effects of Row and Canopy on N2O Emissions
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- MAFF (Ministry of Agriculture, Forestry and Fisheries). Tea and Fruit Cultivation Area in 2016. Available online: http://www.e-stat.go.jp/SG1/estat/List.do?lid=000001172509 (accessed on 18 October 2016).
- Mishima, S.; Kimura, S.D.; Eguchi, S.; Shirato, Y. Estimation of the amounts of livestock manure, rice straw, and rice straw compost applied to crops in Japan: A bottom-up analysis based on national survey data and comparison with the results from a top-down approach. Soil Sci. Plant Nutr. 2012, 58, 83–90. [Google Scholar] [CrossRef]
- Tokuda, S.; Hayatsu, M. Nitrous oxide production from strongly acid tea field soils. Soil Sci. Plant Nutr. 2001, 46, 835–844. [Google Scholar] [CrossRef]
- Xue, D.; Yao, H.Y.; Huang, C.Y. Microbial biomass, N mineralization and nitrification, enzyme activities, and microbial community diversity in tea orchard soils. Plant Soil. 2006, 288, 319–331. [Google Scholar] [CrossRef]
- Li, Y.; Fu, X.Q.; Liu, X.L.; Shen, J.L.; Luo, Q.; Xiao, R.L.; Li, Y.Y.; Tong, C.L.; Wu, J.S. Spatial variability and distribution of N2O emissions from a tea field during the dry season in subtropical central China. Geoderma 2013, 193, 1–12. [Google Scholar] [CrossRef]
- Oh, K.; Kato, T.; Li, Z.P.; Li, F.Y. Environmental problems from tea cultivation in Japan and a control measure using calcium cyanamide. Pedosphere 2006, 16, 770–777. [Google Scholar] [CrossRef]
- Nakasone, H.; Yamamoto, T. The impacts of the water quality of the inflow water from tea fields on irrigation reservoir ecosystems. Paddy Water Environ. 2004, 2, 45–50. [Google Scholar] [CrossRef]
- Akiyama, H.; Yan, X.Y.; Yagi, K. Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in Japan: Summary of available data. Soil Sci. Plant Nutr. 2006, 52, 774–787. [Google Scholar] [CrossRef]
- NIES (National Institute for Environmental Studies). National Greenhouse Gas Inventory Report of Japan; Ministry of the Environment: Tsukuba, Japan, 2012.
- Shaviv, A.; Mikkelsen, R.L. Controlled release fertilizers to increase efficiency of nutrient use and minimize environmental degradation: A review. Fertil. Res. 1993, 35, 1–12. [Google Scholar] [CrossRef]
- Akiyama, H.; Yan, X.; Yagi, K. Evaluation of effectiveness of enhanced-efficiencyfertilizers as mitigation options for N2O and NO emissions from agricultural soils: Meta analysis. Glob. Chang. Biol. 2010, 16, 1837–1846. [Google Scholar] [CrossRef]
- Lopez-Fernandez, S.; Diez, J.A.; Hernaiz, P.; Arce, A.; Garcia-Torres, L.; Vallejo, A. Effects of fertiliser type and the presence or absence of plants on nitrous oxide emissions from irrigated soils. Nutr. Cycl. Agroecosyst. 2007, 78, 279–289. [Google Scholar] [CrossRef]
- Cheng, W.; Nakajima, Y.; Sudo, S.; Akiyama, H.; Tsuruta, H. N2O and NO emissions from a field of Chinese cabbage as influenced by band application of urea or controlled-release urea fertilizers. Nutr. Cycl. Agroecosys. 2002, 63, 231–238. [Google Scholar] [CrossRef]
- Ji, Y.; Liu, G.; Ma, J.; Xu, H.; Yagi, K. Effect of controlled-release fertilizer on nitrous oxide emission from a winter wheat field. Nutr. Cycl. Agroecosys. 2012, 94, 111–122. [Google Scholar] [CrossRef]
- Ji, Y.; Liu, G.; Ma, J.; Zhang, G.B.; Xu, H.; Yagi, K. Effect of controlled-release fertilizer on mitigation of N2O emission from paddy field in South China: A multi-year field observation. Plant Soil 2013, 371, 473–486. [Google Scholar] [CrossRef]
- Ball, B.C.; McTaggart, I.P.; Scott, A. Mitigation of greenhouse gas emissions from soil under silage production by use of organic manures or slow-release fertilizer. Soil Use Manag. 2004, 20, 287–295. [Google Scholar] [CrossRef]
- Meijide, A.; Diez, J.A.; Sanchez-Martin, L.; Lopez-Fernandez, S.; Vallejo, A. Nitrogen oxide emissions from an irrigated maize crop amended with treated pig slurries and composts in a Mediterranean climate. Agric. Ecosyst. Environ. 2007, 121, 383–394. [Google Scholar] [CrossRef]
- Chu, H.Y.; Hosen, Y.; Yagi, K. Nitrogen oxide emissions and soil microbial activities in a Japanese andisol as affected by N-fertilizer management. Soil Sci. Plant Nutr. 2004, 50, 287–292. [Google Scholar] [CrossRef]
- Akiyama, H.; Morimoto, S.; Tago, K.; Hoshino, Y.T.; Nagaoka, K.; Yamasaki, M.; Karasawa, T.; Takenaka, M.; Hayatsu, M. Relationship between ammonia oxidizer and N2O and CH4 fluxes in agricultural fields with different soil types. Soil Sci. Plant Nutr. 2014, 60, 520–529. [Google Scholar] [CrossRef]
- Hirono, Y.; Nonaka, K. Nitrous oxide emissions from green tea fields in Japan: Contribution of emissions from soil between rows and soil under the canopy of tea plants. Soil Sci. Plant Nutr. 2012, 58, 384–392. [Google Scholar] [CrossRef]
- Hou, M.; Ohkama-Ohtsu, N.; Suzuki, S.; Tanaka, H.; Schmidhalter, U.; Bellingrath-Kimura, S.D. Nitrous oxide emission from tea soil under different fertilizer managements in Japan. Catena 2015, 135, 304–312. [Google Scholar] [CrossRef]
- Trenkel, M.E. Improving Fertilizer Use Efficiency: Controlled-Release and Stabilized Fertilizers in Agriculture; International Fertilizer Industry Association: Paris, France, 1997. [Google Scholar]
- Agrium, I. A New Generation in Smart Nitrogen: ESN Controlled-Release Fertilizer; Potato. Agrium Inc.: Calgary, AB, Canada, 2009. [Google Scholar]
- Shaviv, A. Advances in controlled release of fertilizers. Adv. Agron. 2001, 71, 1–49. [Google Scholar]
- Beauchamp, E.G. Nitrous oxide emission from agricultural soils. Can. J. Soil Sci. 1997, 77, 113–123. [Google Scholar] [CrossRef]
- Shoji, S.; Kanno, H. Use of polyolefin-coated fertilizers for increasing fertilizerefficiency and reducing nitrate leaching and nitrous oxide emissions. Fertil. Res. 1994, 39, 147–152. [Google Scholar] [CrossRef]
- Mosier, A.; Wassmann, R.; Verchot, L.; Khing, J.; Palm, C. Methane and nitrogen oxide fluxes in tropical agricultural soils. Environ. Dev. Sustain. 2004, 6, 11–49. [Google Scholar] [CrossRef]
- Davidson, E.A. Sources of nitric oxide and nitrous oxide following wetting of dry soil. Soil Sci. Soc. Am. J. 1992, 56, 95–102. [Google Scholar] [CrossRef]
- Avrahami, S.; Conrad, R.; Braker, G. Effect of soil ammonium concentration on N2O release and on the community structure of ammonia oxidizers and denitrifiers. Appl. Environ. Microb. 2002, 68, 5685–5692. [Google Scholar] [CrossRef]
- Shaviv, A. Plant response and environmental aspects as affected by rate and pattern of nitrogen release from controlled release N fertilisers. In Proceedings of the 8th Nitrogen Workshop “Progress in Nitrogen CyclingStudies”, Ghent, Belgium, 5–8 September 1996; Kluwer Academ Pub: Dordrecht, The Netherlands; pp. 285–291.
Location | pH | NH4+-N (mg·kg−1) | NO3−-N (mg·kg−1) | Total C (g·kg−1) | Total N (g·kg−1) | Bulk Density (g·cm−3) |
---|---|---|---|---|---|---|
Row | 3.63 | 1.24 | 6.20 | 117.6 | 11.0 | 0.46 |
Canopy | 3.81 | 1.74 | 7.92 | 104.7 | 10.5 | 0.41 |
N (%) | P (%) | K (%) | C (%) | C/N | Water Content (%) | NH4+-N (mg·kg−1) | NO3−-N (mg·kg−1) | pH | |
---|---|---|---|---|---|---|---|---|---|
Chickenmanure 2014 & 2015 | 2.64 | 5.96 | 3.95 | 27.9 | 10.6 | 22.4 | 4.02 | 0.04 | 8.1 |
Oil cake in 2014 | 12.2 | 2.56 | 2.87 | 20.8 | 1.70 | 14.6 | 16.1 | 0.83 | 7.4 |
Oil cake in 2015 | 12.1 | 3.02 | 3.93 | 21.6 | 1.78 | 14.7 | 16.0 | 0.91 | 7.2 |
NH4+-N (mg·kg−1) | NO3−-N (mg·kg−1) | pH | Air Temp. (°C) | Soil Temp. (°C) | WFPS (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | P | R2 | P | R2 | P | R2 | P | R2 | P | R2 | P | |
Row | 0.50 | N.S. | 0.02 | * | 0.61 | N.S. | 0.22 | N.S. | 0.64 | N.S. | 0.97 | N.S. |
Canopy | 0.13 | N.S. | 0.03 | * | 0.05 | * | 0.00 | *** | 0.00 | *** | 0.00 | ** |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, M.; Hou, M.; Ohkama-Ohtsu, N.; Yokoyama, T.; Tanaka, H.; Nakajima, K.; Omata, R.; Bellingrath-Kimura, S.D. Nitrous Oxide Emission from Organic Fertilizer and Controlled Release Fertilizer in Tea Fields. Agriculture 2017, 7, 29. https://doi.org/10.3390/agriculture7030029
Deng M, Hou M, Ohkama-Ohtsu N, Yokoyama T, Tanaka H, Nakajima K, Omata R, Bellingrath-Kimura SD. Nitrous Oxide Emission from Organic Fertilizer and Controlled Release Fertilizer in Tea Fields. Agriculture. 2017; 7(3):29. https://doi.org/10.3390/agriculture7030029
Chicago/Turabian StyleDeng, Meihua, Mudan Hou, Naoko Ohkama-Ohtsu, Tadashi Yokoyama, Haruo Tanaka, Kenta Nakajima, Ryosuke Omata, and Sonoko Dorothea Bellingrath-Kimura. 2017. "Nitrous Oxide Emission from Organic Fertilizer and Controlled Release Fertilizer in Tea Fields" Agriculture 7, no. 3: 29. https://doi.org/10.3390/agriculture7030029
APA StyleDeng, M., Hou, M., Ohkama-Ohtsu, N., Yokoyama, T., Tanaka, H., Nakajima, K., Omata, R., & Bellingrath-Kimura, S. D. (2017). Nitrous Oxide Emission from Organic Fertilizer and Controlled Release Fertilizer in Tea Fields. Agriculture, 7(3), 29. https://doi.org/10.3390/agriculture7030029