Modelling the Collection and Delivery of Sheep Milk: A Tool to Optimise the Logistics Costs of Cheese Factories
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development of the Simulation Model
2.2. The Algorithm Applied to the Logistic of Sheep Milk Collection
2.3. Validation of the Simulation Model
3. Results and Discussion
3.1. Development of the Simulation Model Which Provides an Analytical Description of the Phases of Collection and Transport of the Sheep Milk and Their Relative Costs
3.2. Analysis of the Milk Collection Routes for the Cheese Factories in the Sample
3.3. Optimisation of the Milk Collection Routes for the Cheese Factories in the Sample
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fonterra. The Global Dairy Industry. 2016. Fonterra Co-Operative Group, New Zealand. 2014. Available online: http://www2.fonterra.com/our-financials/the-global-dairy-industry (accessed on 20 September 2017).
- ISTAT (Istituto Nazionale di Statistica). Annuario Statistico Italiano; ISTAT: Rome, Italy, 2015; ISBN 978-88-458-1866-0. [Google Scholar]
- European Commission (EC). EU Agricultural Outlook: Prospects for EU Agricultural Markets and Income 2015–2025; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Berlin, J.; Sonesson, U.; Tillman, A.M. Product Chain Actors’ Potential for greening the product life cycle: The Case of the Swedish postfarm milk chain. J. Ind. Ecol. 2008, 12, 95–110. [Google Scholar] [CrossRef]
- De Montis, A.; Caschili, S.; Ganciu, A.; Ledda, A.; Paoli, F.; Puddu, F.; Barra, M. Strategic environmental assessment implementation of transport and mobility plans. The case of Italian regions and provinces. J. Agric. Eng. 2016, 47, 100–110. [Google Scholar] [CrossRef]
- Todde, G.; Murgia, L.; Caria, M.; Pazzona, A. A multivariate statistical analysis approach to characterize mechanization, structural and energy profile in Italian dairy farms. Energy Rep. 2016, 2, 129–134. [Google Scholar] [CrossRef]
- Sethanan, K.; Pitakaso, R. Differential evolution algorithms for scheduling raw milk transportation. Comput. Electr. Agric. 2016, 121, 245–259. [Google Scholar] [CrossRef]
- Lahrichi, N.; Crainic, T.G.; Gendreau, M.; Rei, W.; Rousseau, L.M. Strategic analysis of the dairy transportation problem. J. Oper. Res. Soc. 2013, 66, 44–56. [Google Scholar] [CrossRef]
- Caramia, M.; Guerriero, F. A milk collection problem with incompatibility constraints. Interfaces 2010, 40, 130–143. [Google Scholar] [CrossRef]
- Sankaran, J.K.; Ubgade, R.R. Routing tankers for dairy milk pickup. Interfaces 1994, 24, 59–66. [Google Scholar] [CrossRef]
- Butler, M.; Herlihy, P.; Keenan, P.B. Integrating information technology and operational research in the management of milk collection. J. Food Eng. 2005, 70, 341–349. [Google Scholar] [CrossRef]
- Claassen, G.D.H.; Hendriks, T. An application of special ordered sets to a periodic milk collection problem. Eur. J. Oper. Res. 2007, 180, 754–769. [Google Scholar] [CrossRef]
- Pazzona, A. Razionalizzazione dei sistemi di raccolta e di trasporto del latte ovino dall’azienda al caseificio. In Proceedings of the V Nationale AIGR Conference “Ingegneria per lo Sviluppo Dell’agricoltura”, Alghero, Italy, 4–6 March 1988; pp. 532–541. [Google Scholar]
- Winfrid, M. Realisierung eines Logistikberater-Arbeitsplatzes für das Frachtkostencontrolling mit Wissensbasierten Elementen; Nürnberg University: Erlangen, Germany, 1995. [Google Scholar]
- Čujan, Z. Simulation of production lines supply within internal logistics systems. Open Eng. 2016, 6, 470–475. [Google Scholar] [CrossRef]
- Huang, M.; Yang, J.; Teng, M.; Li, X.; Wang, T. The modelling of milk-run vehicle routing problem based on improved C-W algorithm that joined. Transp. Res. Procedia 2017, 25, 716–728. [Google Scholar]
- Dabbene, F.; Gay, P. Food traceability systems: Performance evaluation and optimization. Comput. Electr. Agric. 2011, 75, 139–146. [Google Scholar] [CrossRef]
- Comba, L.; Dabbene, F.; Gay, P.; Tortia, C. Open problems in traceability: From raw materials to finished food products. J. Agric. Eng. 2013, 44, 154–157. [Google Scholar] [CrossRef]
- Todde, G.; Caria, M.; Gambella, F.; Pazzona, A. Energy and Carbon Impact of Precision Livestock Farming Technologies Implementation in the Milk Chain: From Dairy Farm to Cheese Factory. Agriculture 2017, 7, 79. [Google Scholar] [CrossRef]
- Bošková, I. Effects of the length of the milk collection route on the choice of the locality of milk processing. Agric. Econ. 2009, 55, 501–507. [Google Scholar]
- Dooley, A.E.; Parker, W.J.; Blair, H.T. Modelling of transport costs and logistics for on-farm milk segregation in New Zealand dairying. Comput. Electr. Agric. 2005, 48, 75–91. [Google Scholar] [CrossRef]
- Lou, Z.; Li, Z.; Luo, L.; Dai, X. Study on multi-depot collaborative transportation problem of milk-run pattern. In Proceedings of the MATEC Web of Conferences, Wenzhou, China, 25 October 2016. [Google Scholar]
- Sun, H.; Jiang, G.; Kong, Q.; Chen, Z.; Li, X. Design of Real-Time Monitoring System on Raw Milk Transport Process. Int. J. Multimed. Ubiquitous Eng. 2016, 11, 335–342. [Google Scholar] [CrossRef]
- Vorotnikov, I.; Sukhanova, I.; Tretyak, L.; Baskakov, S. A logistics model of sustainable food supply of the region. In Proceedings of the XIII International Gottfried von Haberler Conference, Vaduz, Liechtenstein, 19 May 2017; Volume 164, pp. 94–98. [Google Scholar]
- Paredes-Belmar, G.; Lüer-Villagra, A.; Marianov, V.; Cortés, C.E.; Bronfman, A. The milk collection problem with blending and collection points. Comput. Electr. Agric. 2017, 134, 109–123. [Google Scholar] [CrossRef]
- Butler, M.; Williams, H.P.; Yarrow, L.A. The 2-period travelling salesman problem applied to milk collection in Ireland. Comput. Optim. Appl. 1997, 7, 291–306. [Google Scholar] [CrossRef]
- Chuda, B.; Foulds, L.; Igbaria, M. Fleet Manager: A microcomputer-based decision support system for vehicle routing. Decis. Support Syst. 1996, 16, 195–207. [Google Scholar]
- Gerdessen, J.C. Vehicle routing problems with trailors. Eur. J. Oper. Res. 1996, 93, 135–147. [Google Scholar] [CrossRef]
- Huia, W. Comparison of several intelligent algorithms for solving TSP problem in industrial engineering. Syst. Eng. Procedia 2012, 4, 226–235. [Google Scholar] [CrossRef]
- Filip, E.; Otakar, M. The travelling salesman problem and its application in logistic practice. WSEAS Trans. Bus. Econ. 2011, 4, 163–173. [Google Scholar]
- Uğur, A.; Aydin, D. An interactive simulation and analysis software for solving TSP using Ant Colony Optimization algorithms. Adv. Eng. Softw. 2009, 40, 341–349. [Google Scholar] [CrossRef]
- Stützle, T.; Dorigo, M. ACO Algorithms for the Traveling Salesman Problem. In Evolutionary Algorithms in Engineering and Computer Science: Recent Advances in Genetic Algorithms, Evolution Strategies, Evolutionary Programming, Genetic Programming and Industrial Applications; Miettinen, K., Mäkelä, M.M., Neittaanmäki, P., Periaux, J., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Dorigo, M.; Stützle, T. Ant Colony Optimization: Overview and Recent Advances; 1-34. IRIDIA–Technical Report Series; Technical Report No. TR/IRIDIA/2009-013; Springer Nature: Berlin, Germany, 1999; ISSN 2010. [Google Scholar]
- ENEA. Inventario Annuale delle Emissioni di Gas Serra su Scala Regionale. Le Emissioni di Anidride Carbonica dal Sistema Energetico; Report; ENEA: Rome, Italy, 2010. [Google Scholar]
- Dorigo, M. Optimization, Learning and Natural Algorithms. Ph.D. Thesis, Politecnico di Milano, Milano, Italy, 1992. (In Italian). [Google Scholar]
- Ministero delle Infrastrutture e dei Trasporti. Available online: http://www.mit.gov.it/ (accessed on 19 July 2017).
Collection Route | Suppliers (No.) | Milk (L) | Time Taken for the Route (h:min:s) | Distance (km) | Cost (€ Cent/L) | Average Cost of the Route (€) | Density of Collection (L/km) | Emissions (kg CO2) | ||
---|---|---|---|---|---|---|---|---|---|---|
Total | Dead | Useful | ||||||||
1 | 18 | 7559 | 06:57:22 | 243.7 | 174.8 | 68.2 | 3.97 | 299.85 | 31.0 | 143 |
2 | 18 | 5994 | 05:35:18 | 150.3 | 55.2 | 95.3 | 2.97 | 177.74 | 39.9 | 72 |
3 | 16 | 3432 | 06:48:32 | 240.6 | 88.0 | 152.2 | 6.57 | 225.48 | 14.3 | 90 |
4 | 18 | 7923 | 05:24:35 | 144.2 | 23.6 | 120.5 | 2.54 | 201.64 | 55.0 | 84 |
5 | 16 | 5291 | 03:58:34 | 135.7 | 23.7 | 112.1 | 3.10 | 164.22 | 39.0 | 65 |
6 | 20 | 6835 | 07:12:06 | 220.3 | 121.3 | 98.9 | 3.41 | 232.86 | 31.0 | 105 |
7 | 15 | 6848 | 06:08:11 | 194.4 | 131.7 | 62.7 | 3.13 | 214.33 | 35.2 | 93 |
8 | 22 | 4547 | 06:18:57 | 165.7 | 53.3 | 112.4 | 4.21 | 191.27 | 27.4 | 79 |
9 | 18 | 5874 | 06:00:50 | 143.8 | 39.6 | 104.2 | 2.92 | 171.76 | 40.9 | 68 |
10 | 15 | 6028 | 05:35:53 | 199.3 | 56.0 | 143.3 | 3.62 | 218.01 | 30.2 | 95 |
11 | 11 | 5614 | 04:31:53 | 122.0 | 53.1 | 68.9 | 2.69 | 150.76 | 46.0 | 58 |
12 | 18 | 10,148 | 06:18:35 | 169.4 | 60.5 | 108.9 | 2.26 | 229.08 | 59.9 | 99 |
13 | 14 | 8256 | 04:46:45 | 134.2 | 42.8 | 91.4 | 2.30 | 190.22 | 61.5 | 78 |
14 | 21 | 11,716 | 07:17:24 | 161.9 | 65.7 | 96.2 | 1.89 | 221.08 | 72.4 | 94 |
15 | 23 | 11,055 | 06:03:08 | 134.0 | 20.4 | 113.6 | 1.72 | 190.03 | 82.5 | 78 |
16 | 17 | 6497 | 05:57:28 | 125.5 | 23.4 | 102.1 | 2.37 | 154.25 | 51.8 | 60 |
17 | 21 | 11,985 | 08:00:03 | 238.3 | 46.6 | 191.7 | 2.46 | 295.16 | 50.3 | 139 |
18 | 19 | 11,247 | 07:37:01 | 246.1 | 22.8 | 223.3 | 2.68 | 301.88 | 45.7 | 144 |
19 | 11 | 7990 | 05:25:09 | 116.9 | 12.0 | 104.9 | 2.12 | 169.71 | 68.3 | 68 |
20 | 5 | 5187 | 04:11:27 | 118.2 | 39.5 | 78.6 | 2.83 | 146.92 | 43.9 | 57 |
21 | 26 | 12,757 | 05:50:33 | 107.7 | 20.8 | 86.9 | 1.24 | 158.35 | 118.4 | 63 |
22 | 25 | 11,046 | 05:58:52 | 118.3 | 19.9 | 98.4 | 1.55 | 171.33 | 93.4 | 69 |
23 | 26 | 10,939 | 07:12:48 | 149.0 | 22.0 | 127.0 | 1.89 | 206.97 | 73.4 | 87 |
24 | 27 | 11,531 | 06:45:07 | 129.7 | 23.7 | 106.0 | 1.60 | 185.00 | 88.9 | 76 |
25 | 24 | 8769 | 05:57:41 | 98.7 | 13.7 | 85.0 | 1.67 | 146.87 | 88.9 | 58 |
26 | 22 | 8913 | 07:30:08 | 113.9 | 7.6 | 106.3 | 1.86 | 165.99 | 78.3 | 67 |
27 | 13 | 5065 | 04:54:00 | 118.6 | 35.5 | 83.1 | 2.91 | 147.35 | 42.7 | 57 |
28 | 23 | 12,393 | 05:06:50 | 116.0 | 60.2 | 55.8 | 1.36 | 168.54 | 106.9 | 68 |
29 | 29 | 8698 | 08:57:58 | 234.4 | 80.2 | 154.2 | 3.35 | 291.67 | 37.1 | 137 |
30 | 18 | 11,904 | 04:32:58 | 110.8 | 28.2 | 82.5 | 1.36 | 162.12 | 107.5 | 65 |
31 | 25 | 11,665 | 07:08:21 | 131.7 | 33.9 | 97.8 | 1.61 | 187.28 | 88.6 | 77 |
32 | 10 | 6557 | 05:53:27 | 245.7 | 87.6 | 158.1 | 3.80 | 249.13 | 26.7 | 118 |
33 | 18 | 6190 | 04:34:00 | 102.5 | 18.7 | 83.7 | 2.11 | 130.51 | 60.4 | 49 |
34 | 14 | 4346 | 04:15:05 | 141.5 | 17.4 | 124.1 | 3.90 | 169.64 | 30.7 | 68 |
35 | 25 | 5476 | 04:22:25 | 62.7 | 14.6 | 48.2 | 1.55 | 84.90 | 87.3 | 30 |
36 | 17 | 8400 | 03:30:35 | 70.3 | 31 | 39.3 | 1.30 | 108.85 | 119.5 | 41 |
37 | 13 | 5388 | 03:18:49 | 88.8 | 12.3 | 76.4 | 2.14 | 115.47 | 60.7 | 43 |
Average | 18.7 | 8109.8 | 05:50:14 | 149.9 | 45.4 | 104.4 | 2.57 | 189.09 | 60.4 | 79.6 |
SD | 5.38 | 2731.93 | 01:18:55 | 51.61 | 36.78 | 37.38 | 1.07 | 51.93 | 27.98 | 28.12 |
Collection Route | Suppliers (No.) | Milk (L) | Time Taken for the Route (h:min:s) | Distance (km) | Cost (€ Cent/L) | Average Cost of the Route (€) | Density of Collection (L/km) | Emissions (kg CO2) | ||
---|---|---|---|---|---|---|---|---|---|---|
Total | Dead | Useful | ||||||||
1 | 18 | 7559 | 06:37:34 | 205.9 | 125.5 | 80.5 | 3.51 | 265.56 | 36.7 | 120 |
2 | 18 | 5994 | 05:29:20 | 147.0 | 61.1 | 86.0 | 2.92 | 174.77 | 40.8 | 70 |
3 | 16 | 3432 | 06:08:44 | 227.7 | 31.6 | 196.1 | 6.34 | 217.48 | 15.1 | 86 |
4 | 18 | 7923 | 05:24:35 | 144.2 | 23.6 | 120.5 | 2.54 | 201.64 | 55.0 | 84 |
5 | 16 | 5291 | 03:58:34 | 135.7 | 23.7 | 118.3 | 3.10 | 164.22 | 39.0 | 65 |
6 | 20 | 6835 | 05:36:05 | 190.6 | 66.3 | 75.1 | 3.09 | 211.37 | 35.9 | 91 |
7 | 15 | 6848 | 05:25:53 | 178.2 | 98.4 | 79.8 | 2.94 | 201.63 | 38.4 | 85 |
8 | 22 | 4547 | 05:18:03 | 137.7 | 54.6 | 83.2 | 3.65 | 166.13 | 33.0 | 66 |
9 | 18 | 5874 | 05:32:20 | 127.2 | 26.5 | 100.7 | 2.65 | 155.92 | 46.2 | 61 |
10 | 15 | 6028 | 05:31:20 | 196.1 | 15.7 | 180.4 | 3.58 | 215.61 | 30.7 | 94 |
11 | 11 | 5614 | 03:34:28 | 114.3 | 44.9 | 69.3 | 2.55 | 142.92 | 49.1 | 55 |
12 | 18 | 10148 | 05:35:19 | 149.7 | 24.0 | 86.2 | 2.05 | 207.75 | 67.8 | 87 |
13 | 14 | 8256 | 04:43:48 | 132.6 | 16.4 | 86.3 | 2.28 | 188.39 | 62.3 | 78 |
14 | 21 | 11,716 | 07:17:24 | 161.9 | 65.7 | 100.9 | 1.89 | 221.08 | 72.4 | 95 |
15 | 23 | 11,055 | 06:03:08 | 134.0 | 20.4 | 136.7 | 1.72 | 190.03 | 82.5 | 78 |
16 | 17 | 6497 | 05:43:36 | 119.7 | 23.5 | 91.6 | 2.28 | 148.43 | 54.3 | 57 |
17 | 21 | 11,985 | 07:49:40 | 233.1 | 18.3 | 179.6 | 2.42 | 290.51 | 51.4 | 136 |
18 | 19 | 11,247 | 07:17:51 | 235.3 | 25.3 | 201.3 | 2.60 | 292.49 | 47.8 | 138 |
19 | 11 | 7990 | 04:03:36 | 102.7 | 3.0 | 89.3 | 1.90 | 151.95 | 77.8 | 60 |
20 | 5 | 5187 | 03:10:21 | 115.5 | 20.2 | 92.8 | 2.78 | 144.25 | 44.9 | 55 |
21 | 26 | 12,757 | 05:34:05 | 90.9 | 15.4 | 65.9 | 1.07 | 136.72 | 140.4 | 53 |
22 | 25 | 11,046 | 05:45:18 | 103.5 | 17.7 | 76.2 | 1.39 | 153.01 | 106.7 | 60 |
23 | 26 | 10,939 | 06:49:58 | 139.3 | 18.5 | 110.3 | 1.79 | 196.13 | 78.5 | 81 |
24 | 27 | 11,531 | 06:32:49 | 121.3 | 26.4 | 85.6 | 1.52 | 175.02 | 95.1 | 71 |
25 | 24 | 8769 | 05:19:41 | 74.4 | 11.5 | 60.1 | 1.31 | 114.56 | 117.9 | 43 |
26 | 22 | 8913 | 05:22:50 | 102.5 | 12.0 | 101.5 | 1.70 | 151.82 | 86.9 | 60 |
27 | 13 | 5065 | 04:22:07 | 101.0 | 22.3 | 65.5 | 2.55 | 128.99 | 50.1 | 48 |
28 | 23 | 12,393 | 04:50:24 | 102.3 | 1.3 | 61.3 | 1.22 | 151.46 | 121.2 | 60 |
29 | 29 | 8698 | 08:42:20 | 224.2 | 45.4 | 132.7 | 3.25 | 282.55 | 38.8 | 131 |
30 | 18 | 11,904 | 04:23:54 | 104.6 | 26.4 | 78.2 | 1.30 | 154.36 | 113.9 | 61 |
31 | 25 | 11,665 | 05:42:38 | 118.6 | 34.0 | 84.6 | 1.47 | 171.69 | 98.4 | 69 |
32 | 10 | 6557 | 05:02:21 | 232.5 | 69.3 | 215.7 | 3.67 | 240.92 | 28.2 | 111 |
33 | 18 | 6190 | 04:01:28 | 93.9 | 17.1 | 76.8 | 1.96 | 121.17 | 65.9 | 45 |
34 | 14 | 4346 | 04:13:38 | 141.2 | 15.6 | 141.2 | 3.90 | 169.37 | 30.8 | 68 |
35 | 25 | 5476 | 04:08:38 | 58.7 | 2.0 | 47.3 | 1.46 | 79.96 | 93.2 | 28 |
36 | 17 | 8400 | 03:13:13 | 69.0 | 17.7 | 46.6 | 1.27 | 106.99 | 121.8 | 40 |
37 | 13 | 5388 | 02:59:33 | 79.2 | 25.4 | 49.3 | 1.94 | 104.53 | 68.0 | 38 |
Average | 18.7 | 8109.8 | 05:20:11 | 139.1 | 31.5 | 101.4 | 2.42 | 178.15 | 65.9 | 73.8 |
SD | 5.38 | 2731.93 | 01:17:53 | 49.58 | 26.32 | 44.00 | 1.04 | 51.56 | 31.82 | 26.99 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caria, M.; Todde, G.; Pazzona, A. Modelling the Collection and Delivery of Sheep Milk: A Tool to Optimise the Logistics Costs of Cheese Factories. Agriculture 2018, 8, 5. https://doi.org/10.3390/agriculture8010005
Caria M, Todde G, Pazzona A. Modelling the Collection and Delivery of Sheep Milk: A Tool to Optimise the Logistics Costs of Cheese Factories. Agriculture. 2018; 8(1):5. https://doi.org/10.3390/agriculture8010005
Chicago/Turabian StyleCaria, Maria, Giuseppe Todde, and Antonio Pazzona. 2018. "Modelling the Collection and Delivery of Sheep Milk: A Tool to Optimise the Logistics Costs of Cheese Factories" Agriculture 8, no. 1: 5. https://doi.org/10.3390/agriculture8010005
APA StyleCaria, M., Todde, G., & Pazzona, A. (2018). Modelling the Collection and Delivery of Sheep Milk: A Tool to Optimise the Logistics Costs of Cheese Factories. Agriculture, 8(1), 5. https://doi.org/10.3390/agriculture8010005