The Unexplored Potential of Edible Flowers Lipids
Abstract
:1. Introduction
2. Edible Flowers
3. Lipid Content and Composition
3.1. Fatty Acids
3.2. Tocopherols
3.3. Carotenoids
4. Oil Extraction
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lim, G.H.; Singhal, R.; Kachroo, A.; Kachroo, P. Fatty acid—And lipid-mediated signaling in plant defense. Annu. Rev. Phytopathol. 2017, 55, 505–536. [Google Scholar] [CrossRef] [PubMed]
- Chapman, K.D.; Dyer, J.M.; Mullen, R.T. Biogenesis and functions of lipid droplets in plants—Thematic review series: Lipid droplet synthesis and metabolism: From yeast to man. J. Lipid Res. 2012, 53, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Velasco, L.; Goffman, F.D. Chemotaxonomic significance of fatty acids and tocopherols in Boraginaceae. Phytochemistry 1999, 52, 423–426. [Google Scholar] [CrossRef]
- Szentmihályi, K.; Vinkler, P.; Lakatos, B.; Illés, V.; Then, M. Rose hip (Rosa canina L.) oil obtained from waste hip seeds by different extraction methods. Bioresour. Technol. 2002, 82, 195–201. [Google Scholar] [CrossRef]
- Younis, Y.M.H.; Ghirmay, S.; Al-Shihry, S.S. African Cucurbita pepo L.: Properties of seed and variability in fatty acid composition of seed oil. Phytochemistry 2000, 54, 71–75. [Google Scholar] [CrossRef]
- Rezig, L.; Chouaibi, M.; Msaada, K.; Hamdi, S. Chemical composition and profile characterisation of pumpkin (Cucurbita maxima) seed oil. Ind. Crops. Prod. 2012, 37, 82–87. [Google Scholar] [CrossRef]
- Yunus, I.S.; Cazenave-Gassiot, A.; Liu, Y.C.; Lin, Y.C.; Wenk, M.R.; Nakamura, Y. Phosphatidic acid is a major phospholipid class in reproductive organs of Arabidopsis thaliana. Plant Signal. Behav. 2015, 10, e1049790. [Google Scholar] [CrossRef] [PubMed]
- Chalchat, J.C.; Ozcan, M.M. Comparative essential oil composition of flowers, leaves and stems of basil (Ocimum basilicum L.) used as herb. Food Chem. 2008, 110, 501–503. [Google Scholar] [CrossRef] [PubMed]
- Shunying, Z.; Yang, Y.; Huaidong, Y.; Yue, Y.; Guolin, Z. Chemical composition and antimicrobial activity of the essential oils of Chrysanthemum indicum. J. Ethnopharmacol. 2005, 96, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, E.R.; Ballerini, G.; Sequeira, A.F.; Velasco, G.A.; Zalazar, M.F. Chemical composition of essential oil from Tagetes minuta L. leaves and flowers. J. Argic. Chem. Soc. 2008, 96, 80–86. [Google Scholar]
- Figueiredo, A.C.; Barroso, J.G.; Pais, M.S.S.; Scheffer, J.J.C. Composition of the essential oils from leaves and flowers of Achillea millefolium L. ssp. Millefolium. Flavor Fragr. J. 1992, 7, 219–222. [Google Scholar] [CrossRef]
- Gazim, Z.C.; Rezende, C.M.; Fraga, S.R.; Svidzinski, T.I.E.; Cortez, D.A.G. Antifungal activity of the essential oil from Calendula officinalis L. (Asteraceae) growing in Brazil. Braz. J. Microbiol. 2008, 39, 61–63. [Google Scholar] [CrossRef] [PubMed]
- Babu, K.G.D.; Singh, Ł.B.; Joshi, V.P.; Singh, V. Essential oil composition of Damask rose (Rosa damascena Mill.) distilled under different pressures and temperatures. Flavour Fragr. J. 2002, 17, 136–140. [Google Scholar]
- Manning, R. Fatty acids in pollen: A review of their importance for honey bees. Bee World 2001, 82, 60–75. [Google Scholar] [CrossRef]
- Patel, M.; Naik, S.N. Flowers of Madhuca indica J.F. Gmel, Present status and future perspectives. Indian J. Nat. Prod. Resour. 2010, 1, 438–443. [Google Scholar]
- Mlcek, J.; Rop, O. Fresh edible flowers of ornamental plants—A new source of nutraceutical foods. Trends Food Sci. Technol. 2011, 22, 561–569. [Google Scholar] [CrossRef]
- Rop, O.; Mlcek, J.; Jurikova, T.; Neugebauerova, J.; Vabkova, J. Edible flowers—A new promising source of mineral elements in human nutrition. Molecules 2012, 17, 6672–6683. [Google Scholar] [CrossRef] [PubMed]
- Bastin, S. Edible Flowers. Available online: http://www2.ca.uky.edu/hes/fcs/factshts/FN-SSB.025.pdf (accessed on 2 August 2018).
- Flora de Portugal Interactiva (2014), Sociedade Portuguesa de Botânica. Available online: http://www.flora-on.pt (accessed on 10 September 2018).
- Fernandes, L.; Casal, S.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E. Edible flowers: A review of the nutritional, antioxidant, antimicrobial properties and effects on human health. J. Food Compost. Anal. 2017, 60, 38–50. [Google Scholar] [CrossRef]
- Sánchez-Machado, D.I.; Núñez-Gastélum, J.A.; Reyes-Moreno, C.; Ramírez-Wong, B.; López-Cervantes, J. Nutritional quality of edible parts of Moringa oleifera. Food Anal. Methods 2010, 3, 175–180. [Google Scholar] [CrossRef]
- Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Leaves, flowers, immature fruits and leafy flowered stems of Malva sylvestris: A comparative study of the nutraceutical potential and composition. Food Chem. Toxicol. 2010, 48, 1466–1472. [Google Scholar] [CrossRef] [PubMed]
- Martins, D.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Nutritional and in vitro antioxidant properties of edible wild greens in Iberian Peninsula traditional diet. Food Chem. 2017, 125, 488–494. [Google Scholar] [CrossRef]
- Hanif, R.; Iqbal, Z.; Iqbal, M.; Hanif, S.; Rasheed, M. Use of vegetables as nutritional food: Role in human health. Res. J. Agric. Biol. Sci. 2006, 1, 18–22. [Google Scholar]
- Sotelo, A.; López-García, S.; Basurto-Peña, F. Content of nutrient and antinutrient in edible flowers of wild plants in Mexico. Plant Foods Hum. Nutr. 2007, 62, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Grzeszczuk, M.; Wesolowska, A.; Jadczak, D.; Jakubowska, B. Nutritional value of chive edible flowers. Acta Sci. Pol. Hortorum Cultus 2011, 10, 85–94. [Google Scholar]
- González-Barrio, R.; Periago, M.J.; Luna-Recio, C.; Javier, G.-A.F.; Navarro-González, I. Chemical composition of the edible flowers, pansy (Viola × wittrockiana) and snapdragon (Antirrhinum majus) as new sources of bioactive compounds. Food Chem. 2018, 252, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Rao, G.N.; Rao, P.G.P.; Satyanarayana, A. Chemical, fatty acid, volatile oil composition and antioxidant activity of shade dried neem (Azadirachta indica L.) flower powder. Int. Food Res. J. 2014, 21, 807–813. [Google Scholar]
- Vieira, P.M. Avaliação da Composição Química, dos Compostos Bioativos e da Atividade Antioxidante em seis Espécies de Flores Comestíveis. Master’s Thesis, Universidade Estadual Paulista, São Paulo, Brazil, 2013. [Google Scholar]
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Ferreira, I.C.F.R. Nutritional and chemical characterization of edible petals and corresponding infusions: Valorization as new food ingredients. Food Chem. 2017, 220, 337–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miguel, M.; Barros, L.; Pereira, C.; Calhelha, R.C.; Garcia, P.A.; Castro, M.Á.; Santos-Buelga, C.; Ferreira, I.C.F.R. Chemical characterization and bioactive properties of two aromatic plants: Calendula officinalis L. (flowers) and Mentha cervina L. (leaves). Food Funct. 2016, 7, 2223–2232. [Google Scholar] [CrossRef] [PubMed]
- Glew, R.H.; VanderJagt, D.J.; Lockett, C.; Grivetti, L.E.; Smith, G.C.; Pastuszyn, A.; Millson, M. Amino acid, fatty acid, and mineral composition of 24 indigenous plants of Burkina Faso. J. Food Compos. Anal. 1997, 10, 205–217. [Google Scholar] [CrossRef]
- Guimarães, R.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Studies on chemical constituents and bioactivity of Rosa micrantha: An alternative antioxidants source for food, pharmaceutical, or cosmetic applications. J. Agric. Food Chem. 2010, 58, 6277–6284. [Google Scholar] [CrossRef] [PubMed]
- Navarro-González, I.; González-Barrio, R.; García-Valverde, V.; Bautista-Ortín, A.B.; Periago, M.J. Nutritional composition and antioxidant capacity in edible flowers: Characterization of phenolic compounds by HPLC-DAD-ESI/MSn. Int. J. Mol. Sci. 2015, 16, 805–822. [Google Scholar] [CrossRef] [PubMed]
- WHO. Diet, Nutrition and the Prevention of Chronic Diseases; WHO Technical Report Series 916, Report of a Joint WHO/FAO Expert Consultation; World Health Organization: Geneva, Switzerland, 2003; p. 88. [Google Scholar]
- Ricchi, M.; Odoardi, M.R.; Carulli, L.; Anzivino, C.; Ballestri, S.; Pinetti, A.; Fantoni, L.I.; Marra, F.; Bertolotti, M.; Banni, S.; et al. Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. J. Gastroenterol. Hepatol. 2009, 24, 830–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, I.S.; Teixeira, M.C.; Brodelius, M. Fatty acids profile of selected Artemisia spp. plants: Health promotion. LWT-Food Sci. Technol. 2011, 44, 293–298. [Google Scholar] [CrossRef]
- French, M.A.; Sundram, K.; Clandinin, M.T. Cholesterolaemic effect of palmitic acid in relation to other dietary fatty acids. Asia Pac. J. Clin. Nutr. 2002, 11, S401–S407. [Google Scholar] [CrossRef] [PubMed]
- Mancini, A.; Imperlini, E.; Nigro, E.; Montagnese, C.; Daniele, A.; Orrù, S.; Buono, P. Biological and nutritional properties of palm oil and palmitic acid: Effects on health. Molecules 2015, 20, 17339–17361. [Google Scholar] [CrossRef] [PubMed]
- Boden, G.; Sargrad, K.; Homko, C.; Mozzoli, M.; Stein, T.P. Effect of a low-carbohydrate diet on appetite, blood glucose levels, and insulin resistance in obese patients with type 2 diabetes. Ann. Intern. Med. 2005, 142, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Peyron-Caso, E.; Taverna, M.; Guerre-Millo, M.; Veronese, A.; Pacher, N.; Slama, G.; Rizkalla, S.W. Dietary (n-3) polyunsaturated fatty acids up-regulate plasma leptin in insulin-resistant rats. J. Nutr. 2002, 132, 2235–2240. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. Essential fatty acids in health and chronic disease. Am. J. Clin. Nutr. 1999, 70, 560S–569S. [Google Scholar] [CrossRef] [PubMed]
- Tortosa-Caparrós, E.; Navas-Carrillo, D.; Marín, F.; Orenes-Piñero, E. Anti-inflammatory effects of omega 3 and omega 6 polyunsaturated fatty acids in cardiovascular disease and metabolic syndrome. Crit. Rev. Food Sci. Nutr. 2017, 57, 3421–3429. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Geelen, A.; Brouwer, I.A.; Geleijnse, J.M.; Zock, P.L.; Katan, M.B. Effect of fish oil on heart rate in humans: A meta-analysis of randomized controlled trials. Circulation 2005, 112, 1945–1952. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.J.; Shin, M.S.; Park, J.N.; Lee, S.S. The effects of polyunsaturated:saturated fatty acids ratios and peroxidisability index values of dietary fats on serum lipid profiles and hepatic enzyme activities in rats. Br. J. Nutr. 2005, 94, 526–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- HMSO, U.K. Department of Health. Nutritional aspects of cardiovascular disease. London. Rep. Health Soc. Subj. 1994, 46, 37–46. [Google Scholar]
- Liu, L.; Hu, Q.; Wu, H.; Xue, Y.; Cai, L.; Fang, M.; Liu, Z.; Yao, P.; Wu, Y.; Gong, Z. Protective role of n6/n3 PUFA supplementation with varying DHA/EPA ratios against atherosclerosis in mice. J. Nutr. Biochem. 2016, 32, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Q.; Qiu, Y.; Mu, Y.; Zhang, X.J.; Liu, L.; Hou, X.H.; Zhang, L.; Xu, X.N.; Ji, A.L.; Cao, R.; et al. A high ratio of dietary n-3/n-6 polyunsaturated fatty acids improves obesity-linked inflammation and insulin resistance through suppressing activation of TLR4 in SD rats. Nutr. Res. 2013, 33, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Tsoupras, A.; Lordan, R.; Zabetakis, I. Inflammation, not cholesterol, is a cause of chronic disease. Nutrients 2018, 10, 604. [Google Scholar] [CrossRef] [PubMed]
- Loizzo, M.R.; Pugliese, A.; Bonesi, M.; Tenuta, M.C.; Menichini, F.; Xiao, J.; Tundis, R. Edible flowers: A rich source of phytochemicals with antioxidant and hypoglycemic properties. J. Agric. Food Chem. 2016, 64, 2467–2474. [Google Scholar] [CrossRef] [PubMed]
- Barnaby, A.G.; Reid, R.; Warren, D. Antioxidant activity, total phenolics and fatty acid profile of Delonix regia, Cassia fistula, Spathodea campanulata, Senna siamea and Tibouchina granulosa. J. Anal. Pharm. Res. 2016, 3, 2–7. [Google Scholar]
- Ukiya, M.; Akihisa, T.; Yasukawa, K.; Kasahara, Y.; Kimura, Y.; Koike, K.; Nikaido, T.; Takido, M. Constituents of compositae plants. 2. Triterpene diols, triols, and their 3-o-fatty acid esters from edible Chrysanthemum flower extract and their anti-inflammatory effects. J. Agric. Food Chem. 2001, 49, 3187–3197. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.I.; Barros, L.; Alves, R.C.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Nutritional composition, antioxidant activity and phenolic compounds of wild Taraxacum sect. Ruderalia. Food Res. Int. 2014, 56, 266–271. [Google Scholar] [CrossRef]
- Matthäus, B.; Özcan, M.M. Chemical evaluation of flower bud and oils of tumbleweed (Gundelia tourneforti L.) as a new potential nutrition sources. J. Food Biochem. 2011, 35, 1257–1266. [Google Scholar] [CrossRef]
- Meknia, M.; Flamini, G.; Garra, M.; Hmida, R.B.; Cheraiefa, I.; Mastouri, M.; Hammamia, M. Aroma volatile components, fatty acids and antibacterial activity of four Tunisian Punica granatum L. flower cultivars. Ind. Crops. Prod. 2013, 48, 111–117. [Google Scholar] [CrossRef]
- Barros, L.; Oliveira, S.; Carvalho, A.M.; Ferreira, I.C.F.R. In vitro antioxidant properties and characterization in nutrients and phytochemicals of six medicinal plants from the Portuguese folk medicine. Ind. Crops Prod. 2010, 32, 572–579. [Google Scholar] [CrossRef]
- Villavicencio, A.L.C.H.; Heleno, S.A.; Calhelha, R.C.; Santos-Buelga, C.; Barros, L.; Ferreira, I.C.F.R. The influence of electron beam radiation in the nutritional value, chemical composition and bioactivities of edible flowers of Bauhinia variegata L. var. candida alba Buch.-Ham from Brazil. Food Chem. 2018, 241, 163–170. [Google Scholar] [PubMed]
- Hastings, J.; Owen, G.; Dekker, A.; Ennis, M.; Kale, N.; Muthukrishnan, V.; Turner, S.; Swainston, N.; Mendes, P.; Steinbeck, C. ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res. 2015, 44, D1214–D1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokrosnop, V.M. Functions of tocopherols in the cells of plants and other photosynthetic organisms. Ukr. Biochem. J. 2014, 86, 26–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murkovic, M.; Hillebrand, A.; Winkler, J.; Pfannhauser, W. Variability of vitamin E content in pumpkin seeds (Cucurbita pepo L.). Z. Lebensm. Unters. Forsch. 1996, 202, 275–278. [Google Scholar] [CrossRef] [PubMed]
- Morales, P.; Carvalho, A.M.; Sánchez-Mata, M.C.; Cámara, M.; Molina, M.; Ferreira, I.C.F.R. Tocopherol composition and antioxidant activity of Spanish wild vegetables. Genet. Resour. Crops. Evol. 2012, 59, 851–863. [Google Scholar] [CrossRef]
- Health and Medicine Division the National Academies (Former IOM). Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academy Press: Washington, DC, USA, 2000. [Google Scholar]
- European Food Safety Authority (EFSA). Opinion on mixed tocopherols, tocotrienol tocopherol and tocotrienols as sources for vitamin E added as a nutritional substance in food. Scientific opinion of the panel on food additives, flavourings, processing aids and materials in contact with food. EFSA J. 2008, 640, 1–34. [Google Scholar]
- Nambara, E.; Marion-Poll, A. Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 2005, 56, 165–185. [Google Scholar] [CrossRef] [PubMed]
- Green, B.R.; Durnford, D.G. The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev. Plant Biol. 1996, 47, 685–714. [Google Scholar] [CrossRef] [PubMed]
- Niyogi, K. Safety valves for photosynthesis. Curr. Opin. Plant Biol. 2000, 3, 455–460. [Google Scholar] [CrossRef]
- Auldridge, M.E.; McCarty, D.R.; Klee, H.J. Plant carotenoid cleavage oxygenase and their apocarotenoid products. Curr. Opin. Plant Biol. 2006, 9, 315–332. [Google Scholar] [CrossRef] [PubMed]
- Mayne, S.T. β-Carotene, carotenoids and disease prevention in humans. FASEB J. 1996, 10, 690–701. [Google Scholar] [CrossRef] [PubMed]
- Kamalambigeswari, R.; Rebecca, L.J. Extraction of major carotenoids from flower petals. Int. J. Pharm. Sci. Rev. Res. 2016, 39, 37–39. [Google Scholar]
- Britton, G. Chapter 10: Functions of intact carotenoids. In Carotenoids: Natural Functions; Britton, G., Liaaen-Jensen, S., Pfander, H., Eds.; Birkhäuser: Berlin, Germany, 2008; Volume 4, pp. 189–221. [Google Scholar]
- Ohmiya, A.; Tanase, K.; Hirashima, M.; Yamamizo, C.; Yagi, M. Analysis of carotenogenic gene expression in petals and leaves of carnation (Dianthus caryophyllus L.). Plant Breed. 2013, 132, 423–429. [Google Scholar] [CrossRef]
- Singh, G.; Kawatra, A.; Sehgal, S. Nutritional composition of selected green leafy vegetables, herbs and carrots. Plant Food. Hum. Nutr. 2001, 56, 359–364. [Google Scholar] [CrossRef]
- Tlili, N.; Nasri, N.; Saadaoui, E.; Khaldi, A.; Triki, S. Carotenoid and Tocopherol Composition of Leaves, Buds, and Flowers of Capparis spinosa grown wild in Tunisia. J. Agric. Food Chem. 2009, 57, 5381–5385. [Google Scholar] [CrossRef] [PubMed]
- Bakó, E.; Deli, J.; Tóth, G. HPLC study on the carotenoid composition of Calendula products. J. Biochem. Biophys. Methods 2002, 53, 241–250. [Google Scholar] [CrossRef]
- Pintea, A.; Bele, C.; Andrei, S.; Socaciu, C. HPLC analysis of carotenoids in four varieties of Calendula officinalis L. flowers. Acta Biol. Szeged. 2003, 47, 37–40. [Google Scholar]
- Seroczyńska, A.; Korzeniewska, A.; Sztangret-Wiśniewska, J.; Niemirowicz-Szczytt, K.; Gajewski, M. Relationship between carotenoids content and flower or fruit flesh colour of winter squash (Cucurbita maxima Duch.). Folia Hortic. 2006, 18, 51–61. [Google Scholar]
- Park, C.H.; Chae, S.C.; Park, S.-Y.; Kim, J.K.; Kim, Y.J.; Chung, S.O.; Arasu, M.V.; Al-Dhabi, N.A.; Park, S.U. Anthocyanin and carotenoid contents in different cultivars of chrysanthemum (Dendranthema grandiflorum Ramat.) flower. Molecules 2015, 20, 11090–11102. [Google Scholar] [CrossRef] [PubMed]
- Kelley, K.M.; Behe, B.K.; Biernbaum, J.A.; Poff, K.L. Consumer preference for edible flower color, container size, and price. HortScience 2001, 36, 801–804. [Google Scholar]
- Kelley, K.M.; Behe, B.K.; Biernbaum, J.A.; Poff, K.L. Combinations of colors and species of containerized edible flowers: Effect on consumer preferences. HortScience 2002, 37, 218–221. [Google Scholar]
- Ching, L.S.; Mohamed, S. Alpha-tocopherol content in 62 edible tropical plants. J. Agric. Food Chem. 2001, 49, 3101–3105. [Google Scholar] [CrossRef] [PubMed]
- Tlili, N.; Khaldi, A.; Triki, S.; Munné-Bosch, S. Phenolic compounds and vitamin antioxidants of caper (Capparis spinosa). Plant Food Hum. Nutr. 2010, 65, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Bona, G.S.; Boschetti, W.; Bortolin, R.C.; Vale, M.G.R.; Moreira, J.C.F.; Rios, O.A.; Flôres, S.H. Characterization of dietary constituents and antioxidant capacity of Tropaeolum pentaphyllum Lam. J. Food Sci. Technol. 2017, 54, 3587–3597. [Google Scholar] [CrossRef] [PubMed]
- Roriz, C.L.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. HPLC-Profiles of tocopherols, sugars, and organic acids in three medicinal plants consumed as infusions. Int. J. Food Sci. 2014. [Google Scholar] [CrossRef] [PubMed]
- Sausserde, R.; Kampuss, K. Composition of carotenoids in calendula (Calendula officinalis L.) flowers. In Proceedings of the 9th Baltic Conference on Food Science and Technology “Food for Consumer Well-Being”, Jelgava, Latvia, 9 May 2014; pp. 13–18. [Google Scholar]
- Petrova, I.; Petkova, N.; Ivanov, I. Five Edible flowers-valuable source of antioxidants in human nutrition. Int. J. Phytochem. Res. 2016, 8, 604–610. [Google Scholar]
- Toiu, A.; Benedec, D.; Duda, M.; Hanganu, D.; Oniga, I. Determination of total carotenoid content in some Calendula officinalis and Tagetes patula varieties. Hop Med. Plant 2016, 24, 57–62. [Google Scholar]
- Kishimoto, S.; Sumitomo, K.; Yagi, M.; Nakayama, M.; Ohmiya, A. Three routes to orange petal color via carotenoid components in 9 compositae species. J. Jpn. Soc. Horitic. Sci. 2007, 76, 250–257. [Google Scholar] [CrossRef]
- Aquino-Bolaños, E.N.; Urrutia-Hernández, T.; Castillo-Lozano, M.L.; Chavéz-Servia, J.; Verdalet-Guzmán, I. Physicochemical parameters and antioxidant compounds in edible squash (Cucurbita pepo) flower stored under controlled atmospheres. J. Food Qual. 2013, 36, 302–308. [Google Scholar] [CrossRef]
- Trivellini, A.; Vernieri, P.; Ferrante, A.; Serra, G. Physiological characterization of flower senescence in long life and ephemeral Hibiscus (Hibiscus rosa-sinensis L.). Acta Hortic. 2007, 755, 457–464. [Google Scholar] [CrossRef]
- Telesiñski, A.; Grzeszczuk, M.; Jadczak, D.; Zakrzewska, H. Fluoride content and biological value of flowers of some chamomile (Matricaria recutita L.) cultivars. J. Elem. 2012, 703–712. [Google Scholar]
- Murakami, Y.; Fukui, Y.; Watanabe, H.; Kokubun, H.; Toya, Y.; Ando, T. Distribution of carotenoids in the flower of non-yellow commercial petunia. J. Hortic. Sci. Biotechnol. 2003, 78, 127–130. [Google Scholar] [CrossRef]
- Tinoi, J.; Rakariyatham, N.; Deming, R.L. Determination of major carotenoid constituents in petal extracts of eight selected flowering plants in the north of Thailand. Chiang Mai J. Sci. 2006, 33, 327–334. [Google Scholar]
- Prata, G.G.B.; Souza, K.O.; Lopes, M.M.A.; Oliveira, L.S.; Aragao, F.A.S.; Alves, R.E.; Silva, S.M. Nutritional characterization, bioactive compounds and antioxidant activity of Brazilian roses (Rosa spp.). J. Agric. Sci. Technol. 2017, 19, 929–941. [Google Scholar]
- Komes, D.; Belščak-Cvitanović, A.; Horžić, D.; Marković, K.; Kovačević, G.K. Characterisation of pigments and antioxidant properties of three medicinal plants dried under different drying conditions. In Proceedings of the 11th International Congress on Engineering and Food, Atenas, Costa Rica, 22–26 May 2011. [Google Scholar]
- Hansmann, P.; Sitte, P. Composition and molecular structure of chromoplast globules of Viola tricolor. Plant Cell Rep. 1982, 1, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Niizu, P.Y.; Rodriguez-Amaya, D.B. Flowers and leaves of Tropaeolum majus L. as rich sources of lutein. J. Food Sci. 2005, 70, S605–S609. [Google Scholar] [CrossRef]
- Toiu, A.; Muntean, E.; Oniga, I.; Tămaş, M. Pharmacognostic research on Viola declinata Waldst. et Kit. (Violaceae). Farmacia 2009, 57, 218–222. [Google Scholar]
- Kishimoto, S.; Maoka, T.; Sumitomo, K.; Ohmiya, A. Analysis of carotenoid composition in petals of calendula (Calendula officinalis L.). Biosci. Biotechnol. Biochem. 2005, 69, 2122–2128. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, S.; Ohmiya, A. Regulation of carotenoid biosynthesis in petals and leaves of chrysanthemum (Chrysanthemum morifolium). Physiol. Plant. 2006, 128, 436–447. [Google Scholar] [CrossRef]
- Azimova, S.S.; Glushenkova, A.I. Lipids, Lipophilic Components and Essential Oils from Plant Sources; Springer: New York, NY, USA, 2012; p. 307. [Google Scholar]
- Meléndez-Martínez, A.J.; Britton, G.; Vicario, I.M.; Heredia, F.J. HPLC analysis of geometrical isomers of lutein epoxide isolated from dandelion (Taraxacum officinale F. Weber ex Wiggers). Phytochemistry 2006, 67, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Gamsjaeger, S.; Baranska, M.; Schulz, H.; Heiselmayer, P.; Musso, M. Discrimination of carotenoid and flavonoid content in petals of pansy cultivars (Viola × wittrockiana) by FT-Raman spectroscopy. J. Raman Spectrosc. 2011, 42, 1240–1247. [Google Scholar] [CrossRef]
Flower | Fat (g/100 g Dry Weight) | References | |
---|---|---|---|
Scientific Name | Common Name | ||
Agave salmiana Otto ex Salm-Dyck | Agave | 2.8 | [25] |
Allium schoenoprasum | Chives | 3.4 | [26] |
Antirrhinum majus | Snapdragon | 4.2–8.5 | [25,27] |
Arbutus xalapensis Kunth | Texas madrone | 3.9 | [25] |
Azadirachta indica L. | Neem | 5.2 | [28] |
Calendula officinalis | Calendula/common marigold/pot marigold | 3.6–5.6 | [29,30,31] |
Centaurea cyanus | Centaurea | 0.1 | [30] |
Cucurbita pepo L. | Pumpkin | 5.0 | [25] |
Cynara scolymus | Artichoke | 2.8 | [29] |
Dahlia mignon | Dahlia | 2.2 | [30] |
Erythrina americana Mill. | Coral tree | 2.3 | [25] |
Erythrina caribaea Krukoff & Barneby | Erythrina | 1.5 | [25] |
Euphorbia radians Benth. | Sun spurge | 4.9 | [25] |
Hibiscus esculentus L. | Hibiscus | 19.0 | [32] |
Hibiscus sabdariffa | 26.0 | [32] | |
Madhuca indica J.F.Gmel. | Mahua | 6.1 | [15] |
Malva sylvestris | Common mallow | 2.8 | [22] |
Moringa oleifera Lam. | Moringa | 2.9 | [21] |
Rosa canina L. | Rose | 2.0 | [30] |
Rosa micrantha | 1.3 | [33] | |
Spilanthes oleracea L. | Sechuan button | 2.2 | [34] |
Tagetes erecta L. | Mexican marigold | 1.9 | [34] |
Tropaeolum majus | Garden nasturtium | 3.1–3.6 | [29,34] |
Viola × wittrockiana | Pansies | 5.0–6.0 | [27,29] |
Yucca filifera Chabaud | Yucca | 2.1 | [25] |
Fatty Acids | Allium schoenoprasum | Anchusa azurea | Azadirachta indica | Calendula officinalis | Capparis spinosaL. | Cassia fistulaL. | Centaurea cyanus | Chrysanthemum morifolium | Cichorium intybus | Taraxacumsect. Ruderalia | Dahlia mignon | Gundelia tournefortii | |
Flowers | Flowers | Flowers | Petals | Flowers | Flowers | Flowers | Petals | Flowers | Flowers | Flowers | Petals | Bud | |
Caproic (C6:0) | 0.3 | 0.5 | 0.2 | 0.9 | nd | ||||||||
Caprylic (C8:0) | 0.3 | 0.3 | 0.7 | 0.07 | 0.9 | nd | |||||||
Capric (C10:0) | 0.1 | 0.2 | 0.3 | 0.1 | 1 | nd | |||||||
Undecylic (C11:0) | 0.3 | 0.1 | nd | nd | nd | ||||||||
Lauric (C12:0) | 1 | 1.6 | 3.7 | nd | nd | 0.1–1.1 | 0.7 | nd | |||||
Myristic (C14:0) | 11.6 | 1.9 | 9.9 | 24.9 | 1.9 | 2.1 | 0.9 | 0.1–14.8 | 0 | 3.1 | nd | ||
Myristoleic (C14:1ω5) | nd | 0.1 | 0.2 | 7 | 0.6 | nd | |||||||
Pentadecylic (C15:0) | 7.9–16.9 | 0.6 | 0.8 | 0.2 | 0.5 | 1.6 | 0.4 | 1.8 | 0.7 | nd | |||
Palmitic (C16:0) | 14.3 | 31.8 | 23.4 | 35.6 | 25.7 | 34.5 | 23.4 | 0.6–53.9 | 18.5 | 17 | 23.4 | 23.4 | |
Palmitoleic (C16:1ω7) | 0.2 | 0.2 | 0.3 | 0.9 | nd | ||||||||
Margaric (C17:0) | nd | 0.3 | 0.2 | 0.5 | tr | 0.8 | 0.4 | 0.9 | nd | ||||
Stearic (C18:0) | 5.5 | 2.9 | 3.9 | 5.9 | 3.3 | 15.2 | 9.7 | 1 | 1.7 | 7.6 | 2.5 | ||
Oleic (C18:1ω9) | 5.8 | 9.7 | 1.6 | 2.5 | 0.4 | nd | 4.4 | 1 | 5.8 | 28.5 | |||
Linoleic (C18:2ω6) | 7.6–13.4 | 6 | 18.6 | 20.3 | 9.3 | 0.7 | 41.2 | 6.7 | 1.9 | 33 | 36.5 | 57.8 | |
α-Linolenic (C18:3ω3) | 7.3 | 12.6 | 36.9 | 11.1 | 0.5 | 18.8 | 0.6 | 23.1 | 8.6 | 0.1 | |||
Arachidic (C20:0) | tr | 1.3 | 0.63 | 0.8 | 2.6 | 2.8 | 5.3 | 0.8 | 1.6 | 0.3 | |||
Eicosenoic (C20:1ω9) | 0.4 | nd | 0.1 | nd | nd | nd | nd | ||||||
Eicosadienoic (C20:2ω6) | nd | nd | 0.4 | nd | |||||||||
Eicosatrienoic (C20:3ω3) | 0.26 | 0.5 | 0.6 | nd | |||||||||
Dihomo-γ-linolenic (C20:3ω6) | |||||||||||||
Eicosapentaenoic (C20:5ω3) | nd | 26.9 | nd | nd | |||||||||
Behenic (C22:0) | 1.7 | 2.1 | 0.56 | 0.3 | 5.9 | 0.9 | 2 | 1.5 | nd | nd | |||
Erucic (C22:1ω9) | nd | nd | 6 | nd | nd | ||||||||
Docosadienoic (C22:2ω6) | 5.7 | ||||||||||||
Tricosylic (C23:0) | 1.8 | 0.1 | nd | 0.2 | 0.3 | 0.2 | nd | ||||||
Lignoceric (C24:0) | nd | 1.7 | 0.9 | 0.9 | tr | nd | 1.1 | nd | 2.3 | nd | |||
References | [26] | [50] | [28] | [29] | [31] | [50] | [51] | [30] | [52] | [50] | [53] | [30] | [54] |
Fatty Acids | Hedysarum coronarium | Hibiscus esculentus | Hibiscus sabdariffa | Malva sylvestris | Moringa oleifera | Punica granatum | Robinia pseudoacacia | Rosa canina | Rosa micrantha | Rosmarinus officinalis | Sambucus nigra | Trifolium angustifolium | |
Flowers | Flowers | Flowers | Flowers | Flowers | Flowers | Flowers | Petals | Petals | Flowers | Flowers | Flowers | ||
Caproic (C6:0) | 0.6 | nd | 0.2 | 0.1 | 0.2 | ||||||||
Caprylic (C8:0) | 0.03 | 0.09 | 0.2 | 0.4 | 0.8 | ||||||||
Capric (C10:0) | 0.02 | nd | 0.3 | 0.3 | 0.2 | ||||||||
Undecylic (C11:0) | nd | nd | nd | nd | |||||||||
Lauric (C12:0) | 0.12 | 0.09 | 1.2–6.6 | 1.22 | 0.9 | 2.3 | |||||||
Tridecylic (C13:0) | nd | 0.03 | nd | 0.02 | |||||||||
Myristic (C14:0) | tr | tr | 0.9 | 0.59 | 0.6–3.7 | 2.6 | 1.5 | 4.8 | |||||
Myristoleic (C14:1) | 6.4 | 0.2–0.8 | 1.96 | 2.4 | 0.3 | nd | 3.7 | 1.7 | 0.2 | ||||
Pentadecylic (C15:0) | 1 | 0.07–1.5 | nd | nd | 0.3 | 0.2 | 0.4 | 1.2 | 0.3 | ||||
Palmitic (C16:0) | 7.7 | 3.4 | 0.08 | 17.2–22.4 | 23.43 | 27.7–43.6 | 9.1 | 23.4 | 11.3 | 7.1 | 17.7 | 15.4 | |
Palmitoleic (C16:1) | 0.03 | nd | 0.62 | nd | nd–0.95 | 0.22 | nd | 0.3 | |||||
Margaric (C17:0) | nd | nd–0.3 | nd | 0.7 | 0.53 | 0.7 | 0.3 | nd | 0.4 | ||||
Stearic (C18:0) | 4.4 | 0.3 | 0.01 | 2.4–3.6 | 4.52 | 4.8–10.1 | 2.3 | 16.8 | 0.6 | 2.2 | nd | 3.2 | |
Oleic (C18:1ω9) | 0.4 | 1.8 | 0.01 | 1.9–6.1 | 21.55 | 6.3–20.5 | 0.7 | 1.95 | 1.8 | 1.1 | 1.5 | 6.1 | |
Linoleic (C18:2ω6) | 1.3 | 2.5 | 0.05 | 0.8–23.5 | 18.96 | 47.4–57.0 | 2.7 | 31.9 | 21.2 | 1.5 | 0.8 | 20.2 | |
α-Linolenic (C18:3ω3) | 0.7 | 0.02 | 0.03 | 3.1–33.5 | 23.01 | 14.8–25.4 | 0.6 | 19.5 | 32.3 | 1.9 | 1.3 | 34.7 | |
Arachidic (C20:0) | 1.2 | 0.02 | tr | 1.2–1.6 | 0.98 | 2.3–8.4 | 0.8 | 3.6 | 3.7 | 0.5 | 0.2 | 2.6 | |
Eicosenoic (C20:1) | 0.07 | nd | 0.9–4.9 | nd | 0.6 | 0.2 | |||||||
Eicosadienoic (C20:2ω6) | 0.1 | 0.75 | 0.8–1.8 | nd | nd | 1 | 0.1 | ||||||
Eicosatrienoic (C20:3ω3) | nd | nd–0.5 | 0.33 | nd | |||||||||
Dihomo-γ-linolenic (C20:3ω6) | 0.6–0.9 | ||||||||||||
Eicosapentaenoic (C20:5ω3) | nd | nd | nd | ||||||||||
Behenic (C22:0) | 2.1 | 1–1.5 | 2.06 | 0.3–5.5 | 0.5 | 1.8 | 4.4 | nd | nd | 2.4 | |||
Erucic (C22:1) | nd | 0.7–1.8 | nd | ||||||||||
Docosadienoic (C22:2ω6) | 0.9–1.6 | ||||||||||||
Tricosylic (C23:0) | nd | 10 | nd | nd | 0.08 | 9.3 | 0.3 | nd | 0.2 | ||||
Lignoceric (C24:0) | 0.2 | 1 | nd | 0.3–1.5 | 0.3 | 1 | 3.4 | nd | nd | 3.2 | |||
References | [50] | [32] | [32] | [22,50] | [21] | [55] | [50] | [30] | [33] | [50] | [50] | [56] |
Flowers | SFA (%) | MUFA (%) | PUFA (%) | UFA (%) | PUFA/SFA | ω-6/ω-3 | References | |
---|---|---|---|---|---|---|---|---|
Scientific Name | Common Name | |||||||
Azadirachta indica | Neem | 45.1 | 10.2 | 44.7 | 54.9 | 1.0 | 1.5 | [28] |
Bauhinia variegata L. | Cow’s foot | 42.3 | 6.2 | 51.4 | 57.6 | 1.2 | 1.2 | [57] |
Calendula officinalis | Calendula (common marigold) | 40.7–76.7 | 1.8–2.9 | 20.5–57.5 | 23.3–59.3 | 0.3–1.4 | 0.6–0.8 | [30,31] |
Centaurea cyanus | Centaurea | 36.2 | 10.9 | 52.9 | 63.8 | 1.5 | 0.4 | [30] |
Dahlia mignon | Dahlia | 46.6 | 7.2 | 46.2 | 53.4 | 1.0 | 4.2 | [30] |
Moringa oleifera | Moringa | 31.8 | 26.3 | 42.2 | 68.4 | 1.3 | 0.8 | [21] |
Punica granatum cv. Chelfi | Punica | 15.0 | 59.2 | 25.8 | 85.0 | 1.7 | 2.6 | [55] |
Punica granatum cv. Gabsi | Punica | 33.5 | 14.4 | 52.0 | 66.5 | 1.6 | 2.8 | [55] |
Punica granatum cv. Tounsi | Punica | 33.8 | 8.8 | 57.4 | 66.2 | 1.7 | 3.2 | [55] |
Punica granatum cv. Nabli | Punica | 31.6 | 8.1 | 14.4 | 59.2 | 1.4 | 2.3 | [55] |
Rosa canina | Rose | 45.8 | 2.5 | 51.7 | 54.2 | 1.1 | 1.6 | [30] |
Rosa micrantha | Rose | 11.2 | 13.4 | 75.4 | 88.8 | 6.7 | 1.4 | [33] |
Taraxacum officinale | Dandelion | 33.5 | 3.0 | 63.5 | 66.5 | 1.9 | 1.1 | [53] |
Flowers | Tocopherols (mg/100 g dw) | Ref. | ||||
---|---|---|---|---|---|---|
Scientific Name | Common Name | α-Tocopherol | β-Tocopherol | γ-Tocopherol | δ-Tocopherol | |
Musa × sapientum L. | Banana flower | 5.1 | [80] | |||
Calendula officinalis | Calendula (Common marigold) | 19.4–56.8 | 1.1–1.5 | 2.4–2.9 | nd | [30,31] |
Capparis spinosa | Caper (different regions) | 1.8–2.7 | 0.4–1.1 | [81] | ||
Centaurea cyanus | Centaurea | 0.6 | nd | 0.3 | nd | [30] |
Matricaria recutita | Chamomile | 3.5 | 0.2 | 2.6–4.0 | 1.2 | [56] |
Trifolium angustifolium | Clover | 12.7 | 0.6 | 5.4 | 0.4 | [56] |
Malva sylvestris | Common mallow | 14.0 | 0.6 | 2.5 | 0.2 | [22] |
Tropaeolum pentaphyllum Lam. | Crem | 2.8 | 1.0 | [82] | ||
Dahlia mignon | Dahlia | 4.4 | 1.8 | 0.7 | 0.4 | [30] |
Bauhinia variegata | Cow’s foot | 1.7 | [57] | |||
Taraxacum sect. Ruderalia | Dandelion | 21.6 | 11.2 | 5.6 | 6.3 | [53] |
Gomphrena globosa L. | Globe amaranth | 0.4 | 3.0 | 5.2 | [83] | |
Rosa canina | Rose | 8.2 | 0.2 | 0.8 | 0.1 | [30] |
Rosa micrantha | Rose | 26.7 | 0.7 | 7.7 | 0.2 | [33] |
Gundelia tournefortii | Tumbleweed | 7.9 | 0.2 | 0.2 | [54] |
Edible Flowers | Part Flower | Color | Total Carotenoids | Reference | |
---|---|---|---|---|---|
Scientific Name | Common Name | Results Expressed in µg/g Fresh Weight | |||
Calendula officinalis | Calendula/Common marigold | Flowers | Dark orange to yellow | 57–2760 | [75,84,85,86] |
Petals | Yellow and orange | 1073–1696 | [87] | ||
Chrysanthemum morifolium | Chrysanthemum | Petals | Yellow and orange | 122–343 | [87] |
Cucurbita pepo | Squash flower | Flowers | ns | 768 | [88] |
Cucurbita maxima Duchesne | Squash flower | Flowers | Yellow | 12–188 | [76] |
Dianthus caryophyllus L. | Carnation | Petals | Green and red | 2–12 | [71] |
Helianthus annuus L. | Sunflower | Petals | Yellow and orange | 144–1600 | [87] |
Helianthus tuberosus L. | Jerusalem artichoke | Flower | ns | 15.6 | [85] |
Hibiscus rosa-sinensis | Hibiscus | Flowers (different cultivars) | ns | 2 × 103–40 × 103 | [89] |
Matricaria recutita | Chamomile | Flowers (different varieties) | ns | 135–162 | [90] |
Petunia × hybrida Vilm. | Garden petunias | Flowers | Solid colour or bicolour (Red, rose, pink, blue, burgundy, white, yellow) | 0.32–96.8 | [91] |
Tagetes erecta | Mexican marigold African Marigold | Petals | Yellow and orange | 48–2130 | [87] |
Flowers | Deep orange | 6.3–1304 | [85,92] | ||
Tagetes patula L. | French marigold | Petals | Yellow and orange | 270–2020 | [86] |
Rosa spp. | Rose | Flowers | Pink; Yellow; Red; Orange; White | 0.1–61.7 | [93] |
Results expressed in µg/g dry weight | |||||
Antirrhinum majus | Snapdragon | Flowers | ns | 29 1 | [27] |
Calendula officinalis | Calendula/Common marigold | Petals | ns | 7.71 × 103 | [74] |
Flowers | ns | 1405 | [94] | ||
Dendranthema grandiflorum (Ramat.) Kitam. | Chrysanthemum | Flowers (different cultivars) | Purple, White, Green, Red, Yellow | 19–346 | [77] |
Tropaeolum pentaphyllum | Crem | Flowers | ns | 396 | [82] |
Viola×wittrockiana | Pansies | Flowers | ns | 146 1 | [27] |
Viola tricolor | Viola | Petals | ns | 23 2 | [95] |
Edible Flower | Part Flower | Color | Carotenoids | Reference | ||
---|---|---|---|---|---|---|
Scientific Name | Common Name | Results Expressed in μg/g fw | ||||
Calendula officinalis | Calendula/ Common marigold | Petals (different var.) | Orange Yellow | Luteoxanthin | 186.6–195.0 1 | [87] |
Lutein-5,6-epoxide | 27.1–40.0 1 | |||||
Flavoxanthin | 483.4–532.5 1 | |||||
Auroxanthin | 120.4–133.7 1 | |||||
(9’Z)-Lutein-5,6-epoxide | 84.8–106.2 1 | |||||
Lutein | 33.9–62.5 1 | |||||
Antheraxanthin | 17.0–31.2 1 | |||||
(9Z)-Lutein | 10.2–18.7 1 | |||||
(5’Z,9’Z)-Rubixanthin | 67.8 1 | |||||
α-Carotene | 13.6 1 | |||||
β-Carotene | 12.5–57.7 1 | |||||
(5’Z)-Rubixanthin | 50.9 1 | |||||
δ-Carotene | 23.7 1 | |||||
(5Z,9Z,5’Z,9’Z)-Lycopene | 69.5 1 | |||||
γ-Carotene | 33.9 1 | |||||
(5’Z)-γ-Carotene | 74.6 1 | |||||
(5Z,9Z,5’Z)-Lycopene | 59.4 1 | |||||
(5Z,9Z)-Lycopene | 68.5 1 | |||||
Lycopene | 147.6 1 | |||||
Capparis spinosa | Caper | Flower buds | --- | β-carotene | 4–23.3 | [73] |
Lutein | 5.2–40.8 | |||||
Chrysopsis scabrella Torr. & A.Gray | Golden aster | Flowers | --- | Auroxanthin | 29.1 | [69] |
Bixin | 3.5 | |||||
Cucurbita maxima | Squash flower | Petals | Yellow | β-Carotene | 10.1–133.5 | [76] |
Delonix regia (Hook.) Raf. | Flame tree | Flower | --- | Astaxanthin | 2.9 | [69] |
Violaxanthin | 38.7 | |||||
Neoxanthin | 38.7 | |||||
Zeaxanthin | 36.7 | |||||
Delonix regia var. flavida Stehle | Yellow bloom | Flowers | --- | Violaxanthin | 12 | [69] |
Canthaxanthin | 0.13 | |||||
Gerbera jamesonii Bolus ex Adlam | Gerbera | Flowers | --- | Antheraxanthin | 11.9 | [69] |
Crocetin | 3.7 | |||||
Petunia hybrida | Garden petunias | Flowers | Solid color/ bicolor (Red, rose, pink, blue, burgundy, white yellow) | β-Carotene | 0.14–35.8 | [91] |
Lutein | 0.00–13.9 | |||||
Zeaxanthin | 0.00–3.3 | |||||
Rosa | Rose | Petals | --- | Antheraxanthin | 10.2 | [69] |
Crocetin | 2.7 | |||||
Solidaster lutens M.L.Green | Solid aster | Petals | --- | Auroxanthin | 22.1 | [69] |
Bixin | 5.7 | |||||
Tagetes erecta | Mexican marigold | Flowers | Deep orange | β-cryptoxanthin | 31.6 | [92] |
Lutein | 1062 | |||||
Neoxanthin | nd | |||||
Violaxanthin | 43.7 | |||||
Zeaxanthin | 53.7 | |||||
β-Carotene | 85.5 | |||||
Tropaeolum majus | Garden nasturtium | Flowers | Yellow Brownish orange | Neoxanthin | nd | [96] |
Violaxanthin | tr | |||||
Lutein | 350–450 | |||||
β-Carotene | tr | |||||
Results expressed in μg/g dw | ||||||
Antirrhinum majus | Snapdragon | Flowers | --- | Violaxanthin | nd | [27] |
Antheraxanthin | nd | |||||
Lutein | 14.1 | |||||
Zeaxanthin | 7.4 | |||||
β-carotene | 7.7 | |||||
Dendranthema grandiflorum | Chrysanthemum | Flowers (different cultivars) | Purple White Green Red Yellow | Lutein | 11.8–307 | [77] |
Zeaxanthin | 0.14–2.9 | |||||
β-Cryptoxanthin | 0.09–2.1 | |||||
13-cis-β-Carotene | 0.13–5.6 | |||||
α-carotene | 0.04–3.5 | |||||
Trans-β-carotene | 1.4–55.8 | |||||
9-cis-β-carotene | 0.3–5.12 | |||||
Matricaria recutita | Chamomile | Flowering aerial parts | White | β-carotene | 1277 | [56] |
Viola declinata Waldst. & Kit. | Viola | Aerial parts | --- | Neoxanthin | tr | [97] |
Violaxanthin | 2.81 | |||||
Antheraxanthin | 2.83 | |||||
Lutein | 8.96 | |||||
Zeaxanthin | 4.79 | |||||
α-cryptoxanthin | tr | |||||
β-carotene 5,6-epoxide | 0.48 | |||||
β-carotene | 5.46 | |||||
9Z-β-carotene | 0.76 | |||||
Trifolium angustifolium | Clover | Flowering aerial parts | --- | β-carotene | 342–388 | [56] |
Tropaeolum pentaphyllum | Crem | Flowers | --- | Lutein | 243 | [82] |
Zeaxanthin | 14.2 | |||||
β-cryptoxanthin | 2.6 | |||||
α-carotene | 3.6 | |||||
β-carotene | 132 | |||||
Viola × wittrockiana | Pansies | Flowers | --- | Violaxanthin | 8.9 | [27] |
Antheraxanthin | 8.5 | |||||
Lutein | 51.1 | |||||
Zeaxanthin | 38.2 | |||||
β-carotene | 41.5 | |||||
Results expressed in % of peak area of carotenoids in the HPLC chromatogram | ||||||
Calendula officinalis | Calendula/ Common marigold | Petals | --- | Neoxanthin | 0.52 | [74] |
Z-Neoxanthin | 1.2 | |||||
Violaxanthin | 0.3 | |||||
Luteoxanthin | 11.8 | |||||
Auroxanthin | 9.5 | |||||
9Z-Violaxanthin | 2.6 | |||||
Flavoxanthin | 21.1 | |||||
Mutatoxanthin | 3 | |||||
9Z-Antheraxanthin | 5.1 | |||||
Lutein | 5.7 | |||||
9/9VZ-Lutein | 2.6 | |||||
13/13VZ-Lutein | 1.8 | |||||
α-Cryptoxanthin | 5.5 | |||||
β-Cryptoxanthin | 2.11 | |||||
Lycopene | 7.4 | |||||
α-Carotene | 5.7 | |||||
β-Carotene | 6.5 | |||||
Orange | (8’R)-Luteoxanthin | 11 | [98] | |||
Lutein-5,6-epoxide | 1.6 | |||||
Flavoxanthin | 28.5 | |||||
(8R,8’R)-Auroxanthin | 7.1 | |||||
(9’Z)-Lutein-5,6-epoxide | 5 | |||||
Lutein | 2 | |||||
Antheraxanthin | 1 | |||||
(9Z)-Lutein | 0.6 | |||||
(5’Z,9’Z)-Rubixanthin | 4 | |||||
α-Carotene | 0.8 | |||||
β-Carotene | 3.4 | |||||
(5’Z)-Rubixanthin | 3 | |||||
δ-Carotene | 1.4 | |||||
(5Z,9Z,5’Z,9’Z)-Lycopene | 4.1 | |||||
γ-Carotene | 2 | |||||
(5’Z)-Carotene | 4.4 | |||||
(5Z,9Z,5’Z)-Lycopene | 3.5 | |||||
(5Z,9Z)-Lycopene | 4.1 | |||||
(all-E)-Lycopene | 8.7 | |||||
Flowers (four varieties) | Yellow-orange Lemon yellow Orange Dark orange | Neoxanthin | 0.9–2.8 | [75] | ||
Luteoxanthin + Auro | 8.9–19.0 | |||||
Antheraxanthin | 2.1–6.8 | |||||
Flavoxanthin | 14.1–42.0 | |||||
Mutatoxanthin | 0.4–2.2 | |||||
Lactucaxanthin | 4.5–11.3 | |||||
Lutein | 8.3–12.3 | |||||
Zeaxanthin | 0.11–0.23 | |||||
Rubixanthin | 4.6–14.4 | |||||
Lycopene | 0.6–14.0 | |||||
γ-carotene | 5.1–12.2 | |||||
α-carotene | 0.1–1.9 | |||||
β-carotene | 2.4–17.5 | |||||
Identification without quantification | ||||||
Chrysanthemum morifolium | Florist’s daisy | Petals (different cultivars) | Yellow/White | Violaxanthin | ---- | [99] |
all-E-lutein | ||||||
β-carotene | ||||||
5,6-dihydro-5,6-dihydroxylutein | ||||||
9Z-L, (9Z)-lutein | ||||||
9’Z-L, (9’Z)-lutein | ||||||
9Z-Le, (9Z)-lutein 5,6-epoxide | ||||||
9’Z-Le, (9’Z)-lutein 5,6-epoxide | ||||||
Neoxanthin | ||||||
Zeaxanthin | ||||||
Antheraxanthin. | ||||||
Cucurbita pepo | Squash flower | Flowers | Yellow-orange | Zeaxanthin | ---- | [100] |
Flavoxanthin | ||||||
Cryptoxanthin | ||||||
Dianthus caryophyllus | Carnation | Petals | Green/Red (during development) | Lutein and violaxanthin | Decreased | [71] |
Zeaxanthin | Increased | |||||
Taraxacum officinale | Dandelion | Petals | Yellow | Isomers of lutein epoxide | ---- | [101] |
Viola × wittrockiana | Viola | Petals | --- | β-Carotene | --- | [102] |
Lycopene | ||||||
Xanthophyll |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, L.; Ramalhosa, E.; Pereira, J.A.; Saraiva, J.A.; Casal, S. The Unexplored Potential of Edible Flowers Lipids. Agriculture 2018, 8, 146. https://doi.org/10.3390/agriculture8100146
Fernandes L, Ramalhosa E, Pereira JA, Saraiva JA, Casal S. The Unexplored Potential of Edible Flowers Lipids. Agriculture. 2018; 8(10):146. https://doi.org/10.3390/agriculture8100146
Chicago/Turabian StyleFernandes, Luana, Elsa Ramalhosa, José A. Pereira, Jorge A. Saraiva, and Susana Casal. 2018. "The Unexplored Potential of Edible Flowers Lipids" Agriculture 8, no. 10: 146. https://doi.org/10.3390/agriculture8100146
APA StyleFernandes, L., Ramalhosa, E., Pereira, J. A., Saraiva, J. A., & Casal, S. (2018). The Unexplored Potential of Edible Flowers Lipids. Agriculture, 8(10), 146. https://doi.org/10.3390/agriculture8100146