Camelina as a Rotation Crop for Weed Control in Organic Farming in a Semiarid Mediterranean Climate
Abstract
:1. Introduction
2. Material and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Weed Sampling and Removing
2.4. Statistical Analysis
3. Results
3.1. Climatic Conditions
3.2. Crop Cycle
3.3. Weed Species Number and Coverage
3.4. Seed Yield Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liebman, M.; Dyck, E. Crop rotation and intercropping strategies for weed management. Ecol. Appl. 1993, 3, 92–122. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.L. Improving resource-use-efficiency with no-till and crop diversity. Renew. Agric. Food Syst. 2017, 32, 105–108. [Google Scholar] [CrossRef]
- Rey-Caballero, J.; Royo-Esnal, A.; Recasens, J.; González, I.; Torra, J. Management options for multiple herbicide-resistant corn poppy (Papaver rhoeas) in Spain. Weed Sci. 2017, 65, 295–304. [Google Scholar] [CrossRef]
- Torra, J.; Royo-Esnal, A.; Rey-Caballero, J.; Recasens, J.; Salas, M.L. Management of Herbicide-Resistant Corn Poppy (Papaver rhoeas) under Different Tillage Systems Does Not Change the Frequency of Resistant Plants. Weed Sci. 2018. [Google Scholar] [CrossRef]
- Agencia Estatal de Meteorología (AEMET). Ministerio para la Transición Ecológica. Gobierno de España. Available online: www.aemet.es/es/serviciosclimaticos/datosclimatologicos/valoresclimatologicos (accessed on 2 July 2018).
- Abalos, D.; Sanz-Cobena, A.; Andreu, G.; Vallejo, A. Rainfall amount and distribution regulate DMPP effects on nitrous oxide emissions under semiarid Mediterranean conditions. Agric. Ecosyst. Environ. 2017, 238, 36–45. [Google Scholar] [CrossRef]
- García-Garizábal, I.; Causapé, J.; Abrahao, R.; Merchan, D. Impact of climate change on Mediterranean irrigation demand: Historical dynamics of climate and future projections. Water Resour. Manag. 2014, 28, 1449–1462. [Google Scholar]
- Ministerio de Agricultura, Alimentación y Medio Ambiente (MAGRAMA). MAGRAMA Stat Database. Available online: http://www.magrama.gob.es/estadistica/temas/publicaciones/anuario-de-estadistica/ (accessed on 27 September 2014).
- Karg, S. Oil-rich seeds from prehistoric contexts in southern Scandinavia—Reflections on archaeobotanical records of flax, hemp, gold of pleasure, and corn spurrey. Acta Palaebot. 2012, 52, 17–24. [Google Scholar]
- Larsson, M. Cultivation and processing of Linum usitatissimum and Camelina sativa in southern Scandinavia during the Roman Iron Age. Veg. Hist. Archaeobot. 2013, 22, 509–520. [Google Scholar] [CrossRef]
- Zanetti, F.; Eynck, C.; Christou, M.; Kryzaniak, M.; Righini, D.; Alexopoulou, E.; Stolarski, M.J.; Van Loo, E.N.; Puttick, D.; Monti, A. Agronomic performance and seed quality attirbutes of Camelina (Camelina sativa L. cranzt) in multi-environment trials across Europe and Canada. Ind. Crops Prod. 2017, 107, 602–608. [Google Scholar] [CrossRef]
- Berti, M.; Gesch, R.W.; Eynck, C.; Anderson, J.; Cermak, S. Camelina uses, genetics, genomics, production, and management. Ind. Crops Prod. 2016, 94, 690–710. [Google Scholar] [CrossRef]
- Drenth, A.; Olsen, D.; Cabot, P.; Johnson, J. Fuel property quantification of triglyceride blends with an emphasis on industrial oilseeds camelina, carinata, and pennycress. Fuel 2015, 153, 19–30. [Google Scholar] [CrossRef]
- Yang, J.; Caldwell, C.; Corscadden, K.; He, Q.S.; Li, J. An evaluation of biodiesel production from Camelina sativa grown in Nova Scotia. Ind. Crops Prod. 2016, 81, 162–168. [Google Scholar] [CrossRef]
- Crowley, J.G. Evaluation of Camelina Sativa as an Alternative Crop; Technical Report for Teagasc; Teagasc: Dublin, Ireland, 1999. [Google Scholar]
- Zubr, J.; Matthäus, B. Effects of growth conditions on fatty acids and tocopherols in Camelina sativa oil. Ind. Crops Prod. 2002, 15, 155–162. [Google Scholar] [CrossRef]
- Zubr, J. Carbohydrates, vitamins and minerals of Camelina sativa seed. Nutr. Food Sci. 2010, 40, 523–531. [Google Scholar] [CrossRef]
- Gesch, R.W.; Archer, D.W. Double cropping with winter Camelina in the northern Corn belt to produce fuel and food. Ind. Crops Prod. 2013, 44, 718–725. [Google Scholar] [CrossRef]
- McVay, K.A.; Khan, Q.A. Camelina yield response to different plant populations under dryland conditions. Agron. J. 2011, 103, 1265–1269. [Google Scholar] [CrossRef]
- Urbaniak, S.D.; Caldwell, C.D.; Zheljazkov, V.D.; Lada, R.; Luan, L. The effect of seeding rate, seeding date and seeder type on the performance of Camelina sativa L. in the Maritime Provinces of Canada. Can. J. Plant Sci. 2008, 88, 501–508. [Google Scholar] [CrossRef]
- Berti, M.; Wilckens, R.; Fischer, S.; Solis, A.; Johnson, B. Seeding date influence on camelina seed yield, yield components, and oil content in Chile. Ind. Crops Prod. 2011, 34, 1358–1365. [Google Scholar] [CrossRef]
- Robinson, R. Camelina: A Useful Research Crop and a Potential Oilseed Crop; Bulletin for Minnesota Agricultural Experiment Station: St Paul, MN, USA, 1987; pp. 1–12. [Google Scholar]
- Angelini, L.G.; Moscheni, E.; Colonna, G.; Belloni, P.; Bonari, E. Variation in agronomic characteristics and seed oil composition of new oilseed crops in Central Italy. Ind. Crops Prod. 1997, 6, 313–323. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Albalat, A. El Cultivo de la Camelina en Aragón; Technical Report for Servicio de Recursos Agrícolas; Gobierno de Aragón: Zaragoza, Spain, 2013. [Google Scholar]
- Gesch, R.W. Influence of genotype and sowing date on camelina growth and yield in the north central US. Ind. Crops Prod. 2014, 54, 209–215. [Google Scholar] [CrossRef]
- Pavlista, A.D.; Isbell, T.A.; Baltensperger, D.D.; Hergert, G.W. Planting date and development of spring-seeded irrigated canola, brown mustard and camelina. Ind. Crops Prod. 2011, 33, 451–456. [Google Scholar] [CrossRef]
- Schillinger, W.F.; Wysocki, D.J.; Chastain, T.G.; Guy, S.O.; Karow, R.S. Camelina: Planting date and method effects on stand establishment and seed yield. Field Crops Res. 2012, 130, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Rivas-Martinez, S.; Rivas-Saenz, S. Worldwide Bioclimatic Classification System, 1996–2018. Phytosociological Research Center, Spain. Available online: http://www.globalbioclimatics.org/ (accessed on 2 July 2018).
- Allen, B.L.; Vigil, M.F.; Jabro, J.D. Camelina growing degree hour and base temperature requirements. Agron. J. 2014, 106, 940–944. [Google Scholar] [CrossRef]
- García, A.L.; Royo-Esnal, A.; Torra, J.; Cantero-Martínez, C.; Recasens, J. Integrated management of Bromus diandrus in dry land cereal fields under no-till. Weed Res. 2014, 54, 408–417. [Google Scholar]
- Leguizamón, E.S.; Fernández-Quintanilla, C.; Barroso, J.; González-Andújar, J.L. Using termal and hydrothermal time to model seedling emergence of Avena sterilis subsp. ludoviciana in Spain. Weed Res. 2005, 45, 149–156. [Google Scholar]
- Izquierdo, J.; Bastida, F.; Lezáun, J.A.; Sánchez del Arco, M.J.; González-Andújar, J.L. Development and evaluation of a model for predicting Lolium rigidum emergence in winter cereal crops in the Mediterranean area. Weed Res. 2013, 53, 269–278. [Google Scholar] [CrossRef]
- Izquierdo, J.; González-Andújar, J.L.; Bastida, F.; Lezáun, J.A.; Sánchez del Arco, M.J. A thermal time model to predict corn poppy (Papaver rhoeas) emergence in cereal fields. Weed Sci. 2009, 57, 660–664. [Google Scholar] [CrossRef]
- Westerman, P.R.; Atanackovic, V.; Royo-Esnal, A.; Torra, J. Differential weed seed removal in dryland cereals. Arthropod-Plant Interact. 2012, 6, 591–599. [Google Scholar] [CrossRef]
- Obour, A.K.; Chen, C.; Sintim, A.Y.; McVay, K.; Lamb, P.; Obeng, E.; Mohammed, Y.A.; Khan, Q.; Afshar, R.K.; Zheljazkov, V.D. Camelina sativa as fallow replacement crop in wheat–based crop production systems in the US Great Plains. Ind. Crops Prod. 2018, 111, 22–29. [Google Scholar] [CrossRef]
- French, A.N.; Hunsaker, D.; Thorp, K.; Clarke, T. Evapotranspiration over a Camelina crop at Maricopa, Arizona. Ind. Crops Prod. 2009, 29, 289–300. [Google Scholar] [CrossRef]
- Zubr, J. Oil-seed crop: Camelina sativa. Ind. Crops Prod. 1997, 6, 113–119. [Google Scholar] [CrossRef]
- Fernández-Getino, A.P.; Santín-Montanyá, M.I.; Zambrana, E.; De Andrés, E.F.; Tenorio, J.L. The response of barley to rainfall and temperature in different tillage and crop rotation systems in semi-arid conditions. Ann. Appl. Biol. 2015, 166, 143–153. [Google Scholar] [CrossRef]
- Morell, F.J.; Lampurlanés, J.; Álvaro-Fuentes, J.; Cantero-Martínez, C. Yield and water use efficiency of barley in a semiarid Mediterranean agroecosystem: Long-term effects of tillage and N fertilization. Soil Tillage Res. 2011, 117, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Gesch, R.W.; Royo-Esnal, A.; Edo-Tena, E.; Recasens, J.; Isbell, T.; Forcella, F. Growth environment but not seed position on the parent plant affect seed germination of two Thlaspi arvense L. populations. Ind. Crops Prod. 2016, 84, 241–247. [Google Scholar] [CrossRef]
Year | Sowing | Harvest | N | GDD |
---|---|---|---|---|
SD1 | ||||
2015–2016 | 29 Oct 15 | 06 June 16 | 221 | 2653 |
2016–2017 | 02 Nov 16 | 11 May 17 | 190 | 1959 |
2017–2018 | 15 Oct 17 | 22 May 18 | 219 | 2319 |
SD2 | ||||
2015–2016 | 01 Dec 15 | 20 June 16 | 202 | 2575 |
2016–2017 | 13 Dec 16 | 25 May 17 | 163 | 1897 |
2017–2018 | 04 Dec 17 | 08 June 18 | 186 | 2146 |
SD3 | ||||
2015–2016 | 22 Jan 16 | 20 June 16 | 150 | 2174 |
2016–2017 | 22 Jan 17 | 25 May 17 | 123 | 1720 |
2017–2018 | 16 Jan 18 | 08 June 18 | 143 | 1889 |
Weed Species | 2015–2016 | |||||||
---|---|---|---|---|---|---|---|---|
SD1R1 | SD2R1 | SD3R1 | SD1R2 | SD2R2 | SD3R2 | |||
1 | Capsella bursa–pastoris (L.) Medicus | WW | 3 | |||||
2 | Chenopodium album L. | SW | 0.10 | 0.03 | 0.37 | |||
3 | Chenopodium opulifolium Schrad. | SW | 1.20 | 0.02 | 0.10 | 0.05 | ||
4 | Convolvulus arvensis L. | SW | 0.30 | |||||
5 | Diplotaxis erucoides (L.) DC. | WW | 17.50 | 0.10 | 0.08 | 21.20 | 0.14 | |
6 | Euphorbia helioscopia L. | WW | 0.30 | |||||
7 | Fumaria officinalis L. | WW | 0.06 | 2 | ||||
8 | Geranium molle L. | WW | 0.10 | |||||
9 | Hordeum murinum L. | WW | 4.90 | 5.80 | 0.20 | |||
10 | Kochia scoparia (L.) Schrad. | WW | 0.10 | 0.02 | 0.02 | 0.08 | ||
11 | Lactuca serriola L. | WW | 0.30 | |||||
12 | Lolium rigidum Gaudin | WW | 0.30 | |||||
13 | Polygonum aviculare L. | WW | 0.08 | |||||
14 | Rumex obtusifolius L. | SW | 0.10 | |||||
15 | Scorzonera laciniata L. | WW | 0.20 | |||||
16 | Senecio vulgaris L. | WW | 0.40 | 0.20 | ||||
17 | Sonchus oleraceus L. | WW | 0.50 | 0.37 | ||||
18 | Trifolium repens L. | WW | 0.20 |
Weed Species | 2016–2017 | ||||||
---|---|---|---|---|---|---|---|
SD1R1 | SD2R1 | SD3R1 | SD1R2 | SD2R2 | SD3R2 | ||
1 | Capsella bursa–pastoris (L.) Medicus | 0.83 | 0.15 | 0.11 | 0.77 | 0.57 | 0.05 |
2 | Chenopodium album L. | 1.97 | 2.89 | 0.03 | 0.12 | 0.21 | |
3 | Chenopodium opulifolium Schrad. | 0.19 | 4.47 | 7.69 | 0.23 | 22.54 | 9.76 |
4 | Convolvulus arvensis L. | 0.01 | 0.02 | 0.02 | 0.01 | ||
5 | Diplotaxis erucoides (L.) DC. | 8.1 | 1.98 | 2.63 | 5.60 | 1.17 | 0.89 |
6 | Euphorbia peplus L. | 0.02 | |||||
7 | Fumaria capreolata L. | 0.27 | |||||
8 | Fumaria officinalis L. | 0.28 | 0.02 | ||||
9 | Kochia scoparia (L.) Schrad. | 0.02 | 0.88 | 0.19 | 0.02 | 0.88 | 0.40 |
10 | Lactuca serriola L. | 0.07 | 0.01 | 0.01 | 0.01 | ||
11 | Malva sylvestris L. | 0.07 | |||||
12 | Papaver rhoeas L. | 0.87 | 0.07 | 0.2 | |||
13 | Polygonum aviculare L. | 0.07 | 0.23 | 0.2 | |||
14 | Scorzonera laciniata L. | ||||||
15 | Senecio vulgaris L. | 0.13 | |||||
16 | Rumex obtusifolius L. | 0.07 | 0.01 | ||||
17 | Sonchus oleraceus L. | 0.20 | 0.02 | 0.02 | 0.05 | 0.01 | |
18 | Sisymbrium crassifolium Cav. | 0.47 | 0.33 | 0.33 | |||
19 | Sisymbrium irio L. | 0.67 | 0.07 | 0.43 | 3.80 | 0.51 | 0.58 |
20 | Xanthium spinosum L. | 0.01 |
Weed Species | 2017–2018 | |||
---|---|---|---|---|
SD1R1 | SD2R1 | SD3R1 | ||
1 | Chenopodium album L. | 0.04 | 0.05 | 0.07 |
2 | Convolvulus arvensis L. | 0.58 | 0.30 | 0.12 |
3 | Diplotaxis erucoides (L.) DC. | 8.97 | 0.06 | 0.01 |
4 | Fumaria capreolata L. | 0.05 | ||
5 | Fumaria officinalis L. | 0.01 | ||
6 | Kochia scoparia (L.) Schrad. | 0.01 | 0.01 | 0.01 |
7 | Lactuca serriola L. | 0.01 | 0.01 | |
8 | Lolium rigidum Gaudin | 0.01 | ||
9 | Papaver rhoeas L. | 0.01 | ||
10 | Polygonum aviculare L. | 0.06 | 0.09 | 0.03 |
11 | Senecio vulgaris L. | 0.43 | 0.02 | |
12 | Sonchus oleraceus L. | 0.68 | ||
13 | Veronica hederifolia L. | 0.06 | 0.01 | |
14 | Veronica persica Poir. | 0.03 | ||
15 | Xanthium spinosum L. | 0.01 |
Number and Coverage of Weed Species | 2015–2016 | |||||
---|---|---|---|---|---|---|
SD1R1 | SD2R1 | SD3R1 | SD1R2 | SD2R2 | SD3R2 | |
Total weed species | 13 | 3 | 4 | 8 | 3 | 4 |
Total weed coverage | 26.1 aA | 0.2 cC | 0.5 bB | 33.0 a | 0.3 c | 0.4 b |
Number WW/SpW | 9 | 1 | 2 | 8 | 2 | 3 |
WW/SpW coverage | 24.4 aA | 0.1 bB | 0.2 bB | 33.0 a | 0.2 b | 0.3 b |
Number SW | 4 | 2 | 2 | 0 | 1 | 1 |
SW coverage | 1.7 | 0.1 | 0.4 | 0.0 | 0.1 | 0.1 |
2016–2017 | ||||||
Total weed species | 12 | 13 | 9 | 10 | 12 | 10 |
Total weed coverage | 11.6 aA | 10.3 aA | 14.1 aA | 11.0 a | 26.4 a | 12.1 a |
Number WW/SpW | 10 | 10 | 6 | 7 | 7 | 8 |
WW/ SpW coverage | 11.5 aA | 3.9 bA | 3.4 bA | 10.7 a | 3.5 b | 2.0 b |
Number SW | 2 | 3 | 3 | 3 | 5 | 2 |
SW coverage | 0.2 | 6.5 | 10.6 | 0.3 | 22.7 | 10.1 |
2017–2018 | ||||||
Total weed species | 8 | 9 | 11 | |||
Total weed coverage | 10.8 aA | 0.6 bB | 0.3 bB | |||
Number WW/SpW | 6 | 7 | 8 | |||
WW/ SpW coverage | 10.1 aA | 0.2 bB | 0.1 bC | |||
Number SW | 2 | 2 | 3 | |||
SW coverage | 0.6 | 0.4 | 0.2 |
Seed Yield Results | 2015–2016 | 2016–2017 | 2017–2018 | ||||
---|---|---|---|---|---|---|---|
R1 | R2 | R1 | R2 | R1 | |||
SD1 | 766 ± 210 | 1026 ± 262 | 1768 ± 250 | 1476 ± 186 | 2369 ± 136 | Y | p ≤ 0.001 |
SD2 | 598 ± 133 | 557 ± 131 | 1374 ± 95 | 1941 ± 320 | 2426 ± 163 | SD | p = 0.451 |
SD3 | 1382 ± 135 | 950 ± 163 | 1473 ± 183 | 1482 ± 153 | 2135 ± 242 | Y × SD | p = 0.082 |
SD | p = 0.032 | p = 0.939 | |||||
R | p = 0.662 | p = 0.378 | |||||
SD × R | p = 0.240 | p = 0.827 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Royo-Esnal, A.; Valencia-Gredilla, F. Camelina as a Rotation Crop for Weed Control in Organic Farming in a Semiarid Mediterranean Climate. Agriculture 2018, 8, 156. https://doi.org/10.3390/agriculture8100156
Royo-Esnal A, Valencia-Gredilla F. Camelina as a Rotation Crop for Weed Control in Organic Farming in a Semiarid Mediterranean Climate. Agriculture. 2018; 8(10):156. https://doi.org/10.3390/agriculture8100156
Chicago/Turabian StyleRoyo-Esnal, Aritz, and Francisco Valencia-Gredilla. 2018. "Camelina as a Rotation Crop for Weed Control in Organic Farming in a Semiarid Mediterranean Climate" Agriculture 8, no. 10: 156. https://doi.org/10.3390/agriculture8100156
APA StyleRoyo-Esnal, A., & Valencia-Gredilla, F. (2018). Camelina as a Rotation Crop for Weed Control in Organic Farming in a Semiarid Mediterranean Climate. Agriculture, 8(10), 156. https://doi.org/10.3390/agriculture8100156