Effect of Chicken Manure Application on Cassava Biomass and Root Yields in Two Agro-Ecologies of Zambia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Sites
2.2. Experimental Design
2.3. Agronomic Data Collection
2.4. Soil Sampling and Analysis
2.5. Data Analysis
2.6. Economic Analysis
- Mean cassava root yield is the average root yield (ton/ha) of each treatment for the two locations minus 10% of the yield (to estimate what can be expected for a farmers’ field);
- Field price of cassava is the farm gate price (from the local market at harvest) of cassava root per kg minus the cost of harvesting and packing;
- Gross field benefit (GFB) per ha is the product of the field price of cassava and mean cassava root yield of each treatment;
- Field price of manure is the retail price of chicken manure per kg and its transportation to the field;
- Field price of NPK fertilizer is the retail price of fertilizer per kilogram and its transportation to the field;
- Field cost of manure per ha is the product of the quantity of manure applied per ha in each treatment and the field price of manure;
- Field cost of NPK fertilizer is the product of the quantity of fertilizer required per ha by each treatment and the field price of the fertilizers;
- Fertilizer application cost is the product of labor hours used to apply both organic and mineral fertilizers and the wage rate per-day;
- Total variable cost (TVC) is the sum of all costs;
- The net benefit (NB) per ha for each treatment is GFB minus TVC.
3. Results and Discussion
3.1. Soil Fertility Status and Manure Quality
3.2. Effect of Chicken Manure on Growth Parameters of Cassava
3.3. Fresh and Dry Cassava Root and Biomass Yield
3.4. Economic Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hyman, G.; Bellotti, A.; Lopez-Lavalle, L.A.B.; Palmer, N.; Creamer, B. Cassava and Overcoming the Challenges of Global Climate Change: Report of the Second Scientific Conference of the Global Cassava Partnership for the 21st Century; Springer: Berlin, Germany, 2012; Volume 4, pp. 671–674. [Google Scholar]
- Chitundu, M.; Droppelmann, K.; Haggblade, S. A Value Chain task force Approach for Managing Private-Public Partinerships: Zambia’s Task force on Acceleration of Cassava Utilization; Food Security Research Project: Lusaka, Zambia, 2006; Volume 21. [Google Scholar]
- IITA/SARRNET. Cassava Transformation in Southern Africa (Catisa) Project Zambia Draft Report—2007/2008: Southern Africa Root Crops Research Network (Iita/Sarrnet); Department of Social and Economic Geography, Lund University: Lund, Swiden, 2008. [Google Scholar]
- Chipeta, M.M.; Shanahan, P.; Melis, R.; Sibiya, J.; Benesi, I.R.M. Early storage root bulking index and agronomic traits associated with early bulking in cassava. Field Crops Res. 2016, 198, 171–178. [Google Scholar] [CrossRef]
- Prudencio, Y.C.; Al-Hassan, R. The food security stabilization roles of cassava in Africa. Food Policy 1994, 19, 57–64. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Bationo, A.; Chianu, J.; Giller, K.E.; Merckx, R.; Mokwunye, U.; Ohiokpehai, O.; Pypers, P.; Tabo, R.; Shepherd, K.D.; et al. Integrated soil fertility management: An operational definition and consequences for implementation and dissemination. Outlook Agric. 2010, 39, 17–24. [Google Scholar] [CrossRef]
- Ezui, K.S.; Franke, A.C.; Mando, A.; Ahiabor, B.D.K.; Tetteh, F.M.; Sogbedji, J.; Janssen, B.H.; Giller, K.E. Fertiliser requirements for balanced nutrition of cassava across eight locations in west Africa. Field Crops Res. 2016, 185, 69–78. [Google Scholar] [CrossRef]
- Howeler, R.H.; Lutaladio, N.; Thomas, G. Save and Grow: Cassava—A Guide to Sustainable Production Intensification; Food and Agricultural Organization of the United Nations (FAO): Rome, Italy, 2013; p. 142. [Google Scholar]
- Fermont, A.M.; Tittonell, P.A.; Baguma, Y.; Ntawuruhunga, P.; Giller, K.E. Towards understanding factors that govern fertilizer response in cassava: Lessons from east Africa. Nutr. Cycl. Agroecosyst. 2010, 86, 133–151. [Google Scholar] [CrossRef] [Green Version]
- Suja, G.; Nayar, T.V.R.; Potty, V.P. Response of cassava (Manihot esculenta crantz) to biofertilizers. J. Root Crops 2005, 31, 100–105. [Google Scholar]
- Smaling, E.M.A.; Nandwa, S.M.; Janssen, B.H. Soil fertility in Africa is at stake. In Replenishing Soil Fertility in Africa; Buresh, R.J., Sanchez, P.A., Calhoun, F., Eds.; Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 1997. [Google Scholar]
- Sanchez, P.A.; Shepherd, K.D.; Soule, M.J.; Place, F.M.; Buresh, R.J.; Izac, A.N.; Mokwunye, A.U.; Kwesiga, F.R.; Ndiritu, C.G.; Woomer, P.L. Soil fertility replenishment in Africa: An investment in natural resource capital. In Replenishing Soil Fertility in Africa; Buresh, R.J., Sanchez, P.A., Calhoun, F., Eds.; Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 1997. [Google Scholar]
- Sanchez, P.A. Soil fertility and hunger in Africa. Sci. New Ser. 2002, 295, 2019–2020. [Google Scholar]
- Osundare, B. Observations on cassava (Manihot esculenta crantz) root yield and soil fertility under different k—Sources. J. Biol. Agric. Healthc. 2014, 4, 81–86. [Google Scholar]
- Fermont, A.M.; Babirye, A.; Obiero, H.M.; Abele, S.; Giller, K.E. False beliefs on the socio-economic drivers of cassava cropping. Agron. Sustain. Dev. 2010, 30, 433–444. [Google Scholar] [CrossRef]
- FAOSTAT. Faostat. Food and Agriculture Organization of the United Nations Statistics Division. Available online: http://faostat3.fao.org/browse/Q/QC/E (accessed on 15 May 2016).
- Bhardwaj, D.; Ansari, M.W.; Sahoo, R.K.; Tuteja, N. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb. Cell Fact. 2014, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Fermont, A.M.; van Asten, P.J.A.; Tittonell, P.; van Wijk, M.T.; Giller, K.E. Closing the cassava yield gap: An analysis from smallholder farms in East Africa. Field Crops Res. 2009, 112, 24–36. [Google Scholar] [CrossRef]
- Bakayoko, S.; Soro, D.; Nindjin, C.; Dao, D.; Tschannen, A.; Girardin, O.; Assa, A. Effects of cattle and poultry manures on organic matter content and adsorption complex of a sandy soil under cassava cultivation (Manihot esculenta crantz.). Afr. J. Environ. Sci. Technol. 2009, 3, 190–197. [Google Scholar]
- Amanullah, M.M.; Vaiyapuri, K.; Sathyamoorthi, K.; Pazhanivelan, S.; Alagesan, A. Nutrient uptake, tuber yield of cassava (Manihot esculenta crantz.) and soil fertility as influenced by organic manures. J. Agron. 2007, 6, 183–187. [Google Scholar]
- Adekiya, A.O.; Agbede, T.M. Effect of methods and time of poultry manure application on soil and leaf nutrient concentrations, growth and fruit yield of tomato (Lycopersicon esculentum mill). J. Saudi Soc. Agric. Sci. 2017, 16, 383–388. [Google Scholar] [CrossRef]
- Barratt, N.; Chitundu, D.; Dover, O.; Elsinga, J.; Eriksson, S.; Guma, L.; Haggblade, M.; Haggblade, S.; Henn, T.O.; Locke, F.R.; et al. Cassava as drought insurance: Food security implication of cassava trials in central Zambia. Agrekon 2006, 45, 106–123. [Google Scholar] [CrossRef]
- Phiri, T. Factors Affecting Cassava Adoption in Southern Province of Zambia: A Case Study of Mazabuka District. Master’s Thesis, University of Massey, New Zealand, 2011. [Google Scholar]
- Aregheore, E.M. Country Pasture/Forage Resource Profiles: Zambia; Agricultural Organization of the United Nations (FAO): Rome, Italy, 2009. [Google Scholar]
- Agricultural Organization of the United Nations (FAO). Country Report on the State of Plant Genetic Resources for Food and Agriculture: Zambia; FAO: Rome, Italy, 2008. [Google Scholar]
- Zambia Environmental Management Agency (ZEMA). Mansa District State of Environment Outlook Report; ZEMA: Lusaka, Zambia, 2013.
- Association for International Collaboration of Agriculture and Forestry (JAICAF). Agriculture and Forestry in Zambia: Present Situation and Issues for Development; JAICAF: Tokyo, Japan, 2008. [Google Scholar]
- Ekanayake, I.J.; Osiru, D.; Porto, M.C.M. Physiology of Cassava: Iita Research Guide, No. 55; International Institute of Tropical Agriculture (IITA): Ibadan, Nigeria, 1998. [Google Scholar]
- Spectrum Technologies Inc. Spad 502 Plus Chlorophyll Meter Product Manual; Spectrum Technologies Inc.: Plainfield, IL, USA, 2009. [Google Scholar]
- Hauser, S.; Yomeni, M.; Kintche, K.; Uzokwe, V.; Nhamo, N. Nutrient Expert Cassava: Sustainable Intensification through Increased Root Yield in Sub-Saharan Africa Cassava System; Trial protocol; IITA: Ibadan, Nigeria, Unpublished work; 2015. [Google Scholar]
- Bouyoucos, G.H. A recalibration of the hydrometer for making mechanical analysis of soils. Agron. J. 1951, 43, 434–438. [Google Scholar] [CrossRef]
- Day, P.R. Experimental confirmation of hydrometer theory. Soil Sci. 1953, 75, 181–186. [Google Scholar] [CrossRef]
- McLean, E.O. Soil pH and lime requirement. In Methods of Soil Analysis; Chemical and Microbiological Properties. Part 2. Agronomy Siries No. 9; Page, A.L., Ed.; ASA/SSSA: Madison, WI, USA, 1982; pp. 199–234. [Google Scholar]
- Heanes, D.L. Determination of organic C in soils by an improved chromic acid digestion and spectophotometric procedure. Commun. Soil Sci. Plant Anal. 1984, 15, 1191–1213. [Google Scholar] [CrossRef]
- Buondonno, A.A.; Rashad, A.A.; Coppola, E. Comparing tests for soil fertility. II. The hydrogen peroxide/sulfuric acid treatment as an alternative to the copper/selenium catalyzed digestion process for routine determination of soil nitrogen-kjeldahl. Commun. Soil Sci. Plant Anal. 1995, 26, 1607–1619. [Google Scholar] [CrossRef]
- Anderson, J.M.; Ingram, J.S.I. Tropical Soil Biology and Fertility: A Handbook of Methods, 2nd ed.; CAB International, The Cambrian News: Aberstwyth, UK, 1993. [Google Scholar]
- Mehlich, M. Mehlich 3 soil test extractant: A modification of the mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Van Reeuwijk, L.P. Procedures for Soil Analysis; International Soil Reference and Information Center (ISRIC): Wageningen, The Netherlands, 2002. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- De Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. R package version 1.2-8. Available online: https://CRAN.R-project.org/package=agricolae (accessed on 08 March 2018).
- Lenth, R.V. Least-squares means: The R package lsmeans. J. Stat. Softw. 2016, 69, 1–33. [Google Scholar] [CrossRef]
- CIMMYT. From Agronomic Data to Farmer Recommendations: An Economics Training Manual. Completely Revised Edition; Mexico, D.F., Ed.; CIMMYT: El Batán, Mexico, 1988. [Google Scholar]
- Hazelton, P.; Murphy, B. Interpreting Soil Test Results: What Do All the Numbers Mean? CSIRO, NSW Department of Natural Resources: Clayton, VIC, Australia, 2007; p. 169. [Google Scholar]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soil, 13rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Elias, E. Soils of the Ethioian Highlands: Geomorphology and Properties; Capacity Building for Scaling Up of Evidence-Based Best Practices for Increased Agricultural Production in Ethiopia (CASCAPE); Wageningen University: Wageningen, The Netherlands, 2016. [Google Scholar]
- Howeler, R.H. Sustainable Soil and Crop Management of Cassava in Asia; The International Center for Tropical Agriculture (CIAT): Cali, Colombia, 2014. [Google Scholar]
- Cock, J.H. New Potential for a Neglected Crop; Westview Press: Boulder, CO, USA, 1985; p. 192. [Google Scholar]
- Suchitra, C.S.; Byju, G. Spatial and temporal variability in canopy properties and root yield in cassava (Manihot esculenta) field under various fertilization regimes. Curr. Horticult. 2015, 3, 7–18. [Google Scholar]
- Odedina, J.; Ojeniyi, S.; Odedina, S.; Fabunmi, T.; Olowe, V. Growth and yield responses of cassava to poultry manure and time of harvest in rainforest agro-ecological zone of Nigeria. Int. J. Agric. Sci. Nat. Resour. 2015, 2, 67–72. [Google Scholar]
- Haynes, R.J.; Mokolobate, M.S. Amelioration of al toxicity and P deficiency in acid soils by additions of organic residues: A critical review of the phenomenon and the mechanisms involved. Nutr. Cycl. Agroecosyst. 2001, 59, 47–63. [Google Scholar] [CrossRef]
- Akanza, K.P.; Yao-Kouame, A. Organo-mineral fertilization of cassava (Manihot esculenta crantz) and diagnosis of the soil deficiencies. J. Appl. Biosci. 2011, 46, 3163–3172. [Google Scholar]
- Rós, A.B.; Hirata, A.C.S.; Narita, N. Cassava roots yield and soil chemical and physical properties according to chicken manure fertilization. Pesquisa Agropecuária Tropical 2013, 43, 247–254. [Google Scholar]
- Agbede, T.; Ojeniyi, S.; Adeyemo, A. Effect of poultry manure on soil physical and chemical properties, growth and grain yield of sorghum in southwest, Nigeria. Am.-Eurasian J. Sustain. Agric. 2008, 2, 72–77. [Google Scholar]
- Druilhe, Z.; Barreiro-Hurlé, J. Fertilizer Subsidies Sub-Saharan Africa; ESA Working Paper; ESA: Paris, France, 2012. [Google Scholar]
- Manyong, V.M.; Makinde, K.O.; Sanginga, N.; Vanlauwe, B.; Diels, J. Fertiliser use and definition of farmer domains for impact-oriented research in the northern guinea savanna of Nigeria. Nutr. Cycl. Agroecosyst. 2001, 59, 129–141. [Google Scholar] [CrossRef]
- Fermont, A.M. Cassava and Soil Fertility in Intensifying Smallholder Farming Systems of East Africa; Wageningen University: Wageningen, The Netherlands, 2009. [Google Scholar]
- El-Sharkawy, M.A. Cassava biology and physiology. Plant Mol. Biol. 2004, 56, 481–501. [Google Scholar] [CrossRef] [PubMed]
- Ezui, K.S. Understanding the Productivity of Cassava in West Africa; Wageningen University: Wageningen, The Netherlands, 2017. [Google Scholar]
- Kapekele, E.M. Determinats of Slash and Burn: The Case of Chitemene Farming System in Zambia; University of Pretoria: Pretoria, South Africa, 2006. [Google Scholar]
- Adjei-Nsiah, S.; Leeuwis, C.; Giller, K.E.; Sakyi-Dawson, O.; Cobbina, J.; Kuyper, T.W.; Abekoe, M.; van der Werf, W. Land tenure and differential soil fertility management practices among native and migrant farmers in Wenchi, Ghana: Implications for interdisciplinary action research. NJAS Wagening. J. Life Sci. 2004, 52, 331–348. [Google Scholar] [CrossRef]
- Feder, G.; Just, R.E.; Zilberman, D. Adoption of agricultural innovations in developing countries: A survey. Econ. Dev. Cult. Chang. 1985, 33, 255–298. [Google Scholar] [CrossRef]
- Chianu, J.N.; Chianu, J.N.; Mairura, F. Mineral fertilizers in the farming systems of sub-saharan Africa. A review. Agron. Sustain. Dev. 2012, 32, 545–566. [Google Scholar] [CrossRef]
- Poole, N.; Chitundu, M.; Msoni, R.; Tembo, I. Constraints to Smallholder Participation in Cassava Value Chain Development in Zambia; FAO: Québec City, QC, Canada, 2010. [Google Scholar]
Characterisics | Sites | |
---|---|---|
Mansa | Kabangwe | |
Province | Luapula | Central |
Districts | Mansa | Chibombo |
Longitude | 28°56′33.4″ E | 28°18′26.9″ E |
Latitude | 11°14′30.2″ S | 15°18′11.6″ S |
Elevation | 1246 | 1204 |
Agroecology | III | II |
Growing days | 120–150 | 100–120 |
Rainfall type | Unimodal | Unimodal |
Soils | Gleysols associated with Acrisols | Acrisol and Luvisol Vertisols in some areas |
Vegetation | Wet miombo woodland | Dry miombo woodland |
Parameters | Mansa | Kabangwe | Manure | Requirement ** |
---|---|---|---|---|
Particle size (%) | ||||
Sand | 77 | 54 | ||
Silt | 7 | 20 | ||
Clay | 16 | 26 | ||
Textural class | Sandy loam | Sandy clay loam | ||
pH (water) | 4.9 | 5.28 | 7.48 | 3.5–4.5 (in H2O 1:1) |
Org. C (%) | 1.07 | 1.19 | 26 | 1–2 (Walkley & Black) |
TN (%) | 0.05 | 0.06 | 3.6 | |
C/N | 22.34 | 19.39 | 7.86 | |
AvP (mg/kg) | 20.51 | 3.78 | 13200 | 2–4 |
CEC (cmol (+)/kg) | 2.97 | 4.56 | 22.01 | |
Exchangeable bases (cmol (+)/kg) Ca | 1.22 | 2.57 | 8.6 * | 0.25–1 |
Mg | 0.29 | 1.2 | 0.62 * | 0.2–0.4 |
K | 0.12 | 0.09 | 1.99 * | 0.1–0.15 |
Na | 0.044 | 0.045 | 7.75 | |
Total exchangeable bases | 1.674 | 3.905 | ||
Micronutrients (mg/kg) Zn | 0.74 | 0.41 | 142.8 | 0.5–1 |
Cu | 6.18 | 1.31 | 10.39 | 0.1–0.3 |
Mn | 57 | 107 | 182 | 5–10 |
Fe | 78 | 59 | 95 | 1–10 |
Parameter | Mansa | Kabangwe | ||||
---|---|---|---|---|---|---|
Mean 1 | Sig. | CV | Mean | Sig. | CV | |
Plant height (cm) | 182.91 | * | 9.01 | 177.13 | *** | 7.02 |
Canopy diameter (cm) | 123.59 | * | 8.72 | 117.94 | ** | 3.86 |
Stem girth (mm) | 25.25 | NS | 10.87 | 23.96 | ** | 4.77 |
Leaf area index | 2.82 | * | 6.70 | 3.13 | * | 9.27 |
Chlorophyll index | 41.56 | NS | 3.94 | 42.64 | ** | 3.10 |
Fresh root weight (ton/ha) | 21.64 | * | 13.53 | 21.59 | ** | 11.12 |
Fresh leaf weight (ton/ha) | 3.70 | *** | 11.79 | 4.28 | *** | 6.82 |
Fresh stem weight (ton/ha) | 15.28 | *** | 14.44 | 15.85 | *** | 5.56 |
Total fresh biomass weight (ton/ha) | 40.62 | *** | 8.16 | 41.71 | *** | 7.25 |
Dry root weight (ton/ha) | 7.37 | * | 13.95 | 7.32 | * | 13.62 |
Dry leaf weight (ton/ha) | 0.94 | ** | 13.02 | 1.05 | ** | 9.95 |
Dry stem weight (ton/ha) | 4.68 | ** | 15.16 | 4.05 | *** | 8.57 |
Total dry biomass (ton/ha) | 13.00 | *** | 8.32 | 12.43 | ** | 10.33 |
Treatments | Parameters | ||||
---|---|---|---|---|---|
Height (cm) | Canopy (cm) | Girth (mm) | LAI | Chlorophyll | |
Mansa | |||||
O0 | 151.27 c | 101.60 c | 21.49 a | 2.40 c | 39.95 a |
O1 | 169.93 bc | 116.67 bc | 24.11 a | 2.63 bc | 40.98 a |
O2 | 188.07 ab | 127.40 ab | 25.51 a | 2.83 b | 42.89 a |
O3 | 207.60 a | 140.13 a | 28.21 a | 3.37 a | 41.25 a |
RF | 197.67 ab | 132.17 ab | 26.91 a | 2.87 b | 42.74 a |
Mean | 182.91 | 123.60 | 25.25 | 2.82 | 41.56 |
LSD | 31.04 | 20.29 | 5.17 | 0.36 | 3.08 |
Trt. vs. contr | ** | ** | * | * | . |
Kabangwe | |||||
O0 | 129.67 c | 101.70 b | 20.68 b | 2.50 c | 38.75 b |
O1 | 176.00 b | 118.87 a | 24.00 a | 2.97 bc | 42.19 a |
O2 | 190.20 ab | 123.90 a | 24.69 a | 3.40 ab | 43.89 a |
O3 | 205.33 a | 123.50 a | 25.81 a | 3.57 a | 43.91 a |
RF | 184.47 ab | 121.73 a | 24.60 a | 3.20 ab | 44.43 a |
Mean | 177.13 | 117.94 | 23.96 | 3.16 | 42.63 |
LSD | 23.42 | 8.56 | 2.15 | 2.42 | 2.48 |
Trt. Vs. contr | *** | *** | *** | ** | *** |
Treatments | Parameters | |||
---|---|---|---|---|
Root (ton/ha) | Leaf (ton/ha) | Stem (ton/ha) | Total Biomass (ton/ha) | |
Mansa | ||||
O0 | 15.56 c | 2.41 c | 9.31 c | 27.29 d |
O1 | 20.24 bc | 3.47 b | 12.83 bc | 36.54 c |
O2 | 22.64 ab | 3.77 b | 16.61 b | 43.02 b |
O3 | 26.59 a | 5.12 a | 22.82 a | 54.54 a |
RF | 23.20 ab | 3.72 b | 14.80 b | 41.72 bc |
Mean | 21.65 | 3.70 | 15.27 | 40.62 |
LSD | 5.52 | 0.82 | 4.15 | 6.24 |
Trt. Vs. contr | ** | *** | *** | *** |
Kabangwe | ||||
O0 | 15.27 c | 3.20 c | 10.35 d | 28.82 c |
O1 | 20.08 b | 4.14 b | 15.04 c | 39.26 b |
O2 | 22.76 b | 4.80 a | 16.84 b | 44.40 b |
O3 | 27.66 a | 5.05 a | 20.97 a | 53.68 a |
RF | 22.18 b | 4.19 b | 16.04 bc | 42.41 b |
Mean | 21.29 | 4.28 | 15.85 | 41.71 |
LSD | 4.52 | 0.55 | 1.66 | 5.69 |
Trt. Vs. contr | *** | *** | *** | *** |
Treatments | Parameters | |||
---|---|---|---|---|
Root(ton/ha) | Leaf(ton/ha) | Stem(ton/ha) | Total(ton/ha) | |
Mansa | ||||
O0 | 5.16 b | 0.64 c | 3.09 d | 8.88 d |
O1 | 7.06 ab | 0.92 b | 3.78 cd | 11.76 c |
O2 | 7.71 a | 0.92 b | 5.34 ab | 13.97 b |
O3 | 8.99 a | 1.25 a | 6.54 a | 16.78 a |
RF | 7.95 a | 0.97 b | 4.68 bc | 13.59 bc |
Mean | 7.37 | 0.94 | 4.69 | 13.00 |
LSD | 1.94 | 0.23 | 1.34 | 2.04 |
Trt. Vs. contr | ** | *** | ** | *** |
Kabangwe | ||||
O0 | 5.40 c | 0.77 c | 2.63 d | 8.80 c |
O1 | 6.85 bc | 1.05 b | 3.96 bc | 11.86 b |
O2 | 7.64 b | 1.18 ab | 4.53 b | 13.34 b |
O3 | 9.55 a | 1.28 a | 5.29 a | 16.12 a |
RF | 7.16 bc | 0.99 b | 3.87 c | 12.02 b |
Mean | 7.32 | 1.05 | 4.06 | 12.43 |
LSD | 1.88 | 0.20 | 0.65 | 2.42 |
Trt. Vs. contr | ** | *** | *** | *** |
Treatments | O0 | O1 | O2 | O3 | RF |
---|---|---|---|---|---|
Mean cassava root yield (ton/ha) | 15.42 | 20.16 | 22.7 | 27.13 | 22.69 |
Adjusted yield (10% reduction) | 13.878 | 18.144 | 20.43 | 24.417 | 20.421 |
Gross field benefit (GFB) per ha | 9714.6 | 12700.8 | 14301 | 17091.9 | 14294.7 |
Field price of manure per kg | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 |
Field cost of manure | 0 | 672 | 1344 | 2016 | 0 |
Field price of Urea per kg | 6.3 | 6.3 | 6.3 | 6.3 | 6.3 |
Field cost of Urea per ha | 0 | 0 | 0 | 0 | 1367.1 |
Field price of TSP per kg | 11.4 | 11.4 | 11.4 | 11.4 | 11.4 |
Field cost of TSP per ha | 0 | 0 | 0 | 0 | 1242.6 |
Field price of SOP per kg | 10.65 | 10.65 | 10.65 | 10.65 | 10.65 |
Field cos of SOP per ha | 0 | 0 | 0 | 0 | 2130 |
Manure application cost (29/Man day) | 0 | 580 | 580 | 580 | |
Fertilizer application cost (29/man day) | 0 | 0 | 0 | 0 | 870 |
Total variable cost (TVC) | 0 | 1252 | 1924 | 2596 | 5609.7 |
The net benefit (NB) | 9714.6 | 11448.8 | 12377 | 14495.9 | 8685 |
MRR | 1.385144 | 1.38125 | 3.153125 | −1.92816 D | |
Sensitivity analysis | |||||
GFB decreased by 15% | 8257.41 | 10795.68 | 12155.85 | 14528.12 | 12150.5 |
TVC increased by 15% | 0 | 1439.8 | 2212.6 | 2985.4 | 6451.16 |
NB | 8257.41 | 9355.88 | 9943.25 | 11542.72 | 5699.34 |
MRR | 0.7629 | 0.76 | 2.0697 | −1.686 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biratu, G.K.; Elias, E.; Ntawuruhunga, P.; Nhamo, N. Effect of Chicken Manure Application on Cassava Biomass and Root Yields in Two Agro-Ecologies of Zambia. Agriculture 2018, 8, 45. https://doi.org/10.3390/agriculture8040045
Biratu GK, Elias E, Ntawuruhunga P, Nhamo N. Effect of Chicken Manure Application on Cassava Biomass and Root Yields in Two Agro-Ecologies of Zambia. Agriculture. 2018; 8(4):45. https://doi.org/10.3390/agriculture8040045
Chicago/Turabian StyleBiratu, Gizachew Kebede, Eyasu Elias, Pheneas Ntawuruhunga, and Nhamo Nhamo. 2018. "Effect of Chicken Manure Application on Cassava Biomass and Root Yields in Two Agro-Ecologies of Zambia" Agriculture 8, no. 4: 45. https://doi.org/10.3390/agriculture8040045
APA StyleBiratu, G. K., Elias, E., Ntawuruhunga, P., & Nhamo, N. (2018). Effect of Chicken Manure Application on Cassava Biomass and Root Yields in Two Agro-Ecologies of Zambia. Agriculture, 8(4), 45. https://doi.org/10.3390/agriculture8040045