An Overview of the Post-Harvest Grain Storage Practices of Smallholder Farmers in Developing Countries
Abstract
:1. Introduction
2. Post-Harvest Losses of Grain
3. Factors Affecting Grain Storage Practices
3.1. Physical Factors—Temperature, Moisture, and Oxygen
3.2. Biological Factors—Insect and Rodent Activity, and Mold Growth during Grain Storage
3.2.1. Insect/Pest and Rodent Activity
3.2.2. Mold Formation and Growth
3.3. Socioeconomic Factors
4. Grain Storage Practices in Developing Countries
4.1. Conventional Storage Structures and Grain Handling Systems
4.2. Use of Chemicals and Pest Repellents
4.3. Non-Hermetic Storage
4.3.1. Self-Build Silos
4.3.2. On-Farm Storage and Community Storage Structures
4.3.3. Warehouses
4.4. Hermetic Metal Silos
4.5. Hermetic Bagging Technology
5. Comparison of Different Grain Storage Practices of Smallholder Farmers in Developing Countries
6. Desirable Features of an Improved Grain Storage System
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Food and Agriculture Organization. The State of Food and Agriculture: Innovation in Family Farming; Food and Agriculture Organization: Rome, Italy, 2014. [Google Scholar]
- Food and Agriculture Organization. Smallholders and Family Farmers; Food and Agriculture Organization: Rome, Italy, 2012. [Google Scholar]
- Leff, B.; Ramankutty, N.; Foley, J.A. Geographic distribution of major crops across the world. Glob. Biogeochem. Cycles 2004, 18. [Google Scholar] [CrossRef]
- Abass, A.B.; Ndunguru, G.; Mamiro, P.; Alenkhe, B.; Mlingi, N.; Bekunda, M. Post-harvest food losses in maize-based farming system of semi-arid savannah area of Tanzania. J. Stored Prod. Res. 2014, 57, 49–57. [Google Scholar] [CrossRef]
- Pedrick, C. Going to Waste—Missed Opportunities in the Battle to Improve Food Security; The Technical Centre for Agricultural and Rural Cooperation: Wageningen, The Netherlands, 2012. [Google Scholar]
- Food and Agriculture Organization. Global Food Losses and Food Waste—Extent, Causes and Prevention; Food and Agriculture Organization: Rome, Italy, 2011; ISBN 9789251072059. [Google Scholar]
- Kumar, D.; Kalita, P. Reducing Postharvest Losses during Storage of Grain Crops to Strengthen Food Security in Developing Countries. Foods 2017, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Sergiy, Z.; Nancy, M.; Luz, D.R.; Rick, H.; Ben, B.; Tanya, S.; Paul, M.; John, L. Missing Food: The Case of Postharvest Grain Losses in Sub-Saharan Africa; The World Bank: Washington, DC, USA, 2011. [Google Scholar]
- Hodges, R.J. Postharvest Quality Losses of Cereal Grains in Sub-Saharan Africa. Afr. Postharvest Losses Inf. Syst. 2012, 22. [Google Scholar]
- De Groote, H.; Kimenju, S.C.; Likhayo, P.; Kanampiu, F.; Tefera, T.; Hellin, J. Effectiveness of hermetic systems in controlling maize storage pests in Kenya. J. Stored Prod. Res. 2013, 53, 27–36. [Google Scholar] [CrossRef]
- Chigoverah, A.A.; Mvumi, B.M. Efficacy of metal silos and hermetic bags against stored-maize insect pests under simulated smallholder farmer conditions. J. Stored Prod. Res. 2016, 69, 179–189. [Google Scholar] [CrossRef]
- Nganga, J.; Mutungi, C.; Imathiu, S.; Affognon, H. Effect of triple-layer hermetic bagging on mould infection and aflatoxin contamination of maize during multi-month on-farm storage in Kenya. J. Stored Prod. Res. 2016, 69, 119–128. [Google Scholar] [CrossRef]
- ICVolunteers Cowpea. Available online: www.agriguide.org/index.php?what=agriguide&id=161&language=en (accessed on 19 March 2018).
- Uhrig, J.W.; Maier, D.E. Costs of Drying High-Moisture Corn. Available online: https://www.extension.purdue.edu/extmedia/gq/gq-3.html (accessed on 17 March 2018).
- Proctor, D.L. Grain Storage Techniques: Evolution and Trends in Developing Countries; Food and Agriculture Organization: Rome, Italy, 1994. [Google Scholar]
- Lindblad, C. Programming and Training for Small Farm Grain Storage. Appropriate Technologies for Development. Manual No. M-2B; Burton International School: Detroit, MI, USA, 1981. [Google Scholar]
- Fields, P.G. The control of stored-product insects and mites with extreme temperatures. J. Stored Prod. Res. 1992, 28, 89–118. [Google Scholar] [CrossRef]
- Eeckhout, M.; Landschoot, S.; Deschuyffeleer, N.; De Laethauwer, S.; Haesaert, G. Guidelines for Prevention and Control of Mould Growth and Mycotoxin Production in Cereals. 2013. Available online: http://synagra.be/Download.ashx?ID=6421 (accessed on 16 November 2017).
- North Carolina Public Health. Mold: Where It Can Grow. Available online: http://epi.publichealth.nc.gov/oee/mold/grow.html (accessed on 21 December 2017).
- Hellevang, K.J. Grain Moisture Content Effects and Management. Available online: www.ag.ndsu.edu/pubs/ageng/grainsto/ae905.pdf (accessed on 18 November 2017).
- Weinberg, Z.G.; Yan, Y.; Chen, Y.; Finkelman, S.; Ashbell, G.; Navarro, S. The effect of moisture level on high-moisture maize (Zea mays L.) under hermetic storage conditions in vitro studies. J. Stored Prod. Res. 2008, 44, 136–144. [Google Scholar] [CrossRef]
- Jay, E. Recent advanced in the use of modified atmospheres for the control of stored-product insects. In Insect Management for Food Storage and Processing; Baur, F., Ed.; American Association of Cereal Chemists: St. Paul, MN, USA, 1984. [Google Scholar]
- Yakubu, A.; Bern, C.J.; Coats, J.R.; Bailey, T.B. Hermetic on-farm storage for maize weevil control in East Africa. Afr. J. Agric. Res. 2011, 6, 3311–3319. [Google Scholar]
- Chi, Y.H.; Ahn, J.-E.; Yun, D.-J.; Lee, S.Y.; Liu, T.-X.; Zhu-Salzman, K. Changes in oxygen and carbon dioxide environment alter gene expression of cowpea bruchids. J. Insect Physiol. 2011, 57, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Navarro, S. Modified atmospheres for the control of stored-product insects and mites. In Insect Management for Food Storage and Processing; Elsevier: Amsterdam, The Netherlands, 2006; pp. 105–146. [Google Scholar]
- Xihong, R.; Zhanggui, Q.; Yongjian, F.; Shuzhong, F.; Quan, L.; Jin, Z.; Liang, Q.; Liang, Y.; Tan, X.; Guan, L. Effects of oxygen concentration on the mortality of four adult stored-product insects in low dosage phosphine fumigation. In Proceedings of the 7th International Working Conference on Stored-Product Protection, Beijing, China, 14–19 October 1998; pp. 364–366. [Google Scholar]
- Kamanula, J.; Sileshi, G.W.; Belmain, S.R.; Sola, P.; Mvumi, B.M.; Nyirenda, G.K.C.; Nyirenda, S.P.; Stevenson, P.C. Farmers’ insect pest management practices and pesticidal plant use in the protection of stored maize and beans in Southern Africa. Int. J. Pest Manag. 2010, 57, 41–49. [Google Scholar] [CrossRef]
- Rajendran, S.; Sriranjini, V. Plant products as fumigants for stored-product insect control. J. Stored Prod. Res. 2008, 44, 126–135. [Google Scholar] [CrossRef]
- Mulungu, L.S.; Lupenza, G.; Reuben, S.; Misangu, R.N. Evaluation of botanical products as stored grain protectant against maize weevil, Sitophilus zeamais (L.), on maize. J. Entomol. 2007, 4, 258–262. [Google Scholar]
- Porter, J.H.; Parry, M.L.; Carter, T.R. The potential effects of climatic change on agricultural insect pests. Agric. For. Meteorol. 1991, 57, 221–240. [Google Scholar] [CrossRef]
- Kisimoto, R.; Dyck, V.A. Climate and rice insects. In Proceedings of the Symposium on Climate and Rice; International Rice Research Institute: Los Banos, Philippines, 1976; pp. 367–390. [Google Scholar]
- Hagstrum, D. Stored-Product Insect Resource; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Food and Agriculture Organization. Pests and Diseases Management in Maize, Uganda. Available online: http://teca.fao.org/read/7019 (accessed on 14 December 2017).
- Phiri, N.; Otieno, G. Managing Pests of Stored Maize in Kenya, Malawi and Tanzania; The MDG Centre, East and Southern Africa: Nairobi, Kenya, 2008. [Google Scholar]
- Food and Agriculture Organization. Insect Damage: Post-Harvest Operations. Available online: http://www.fao.org/3/a-av013e.pdf (accessed on 12 December 2017).
- Vowotor, K.A.; Meikle, W.G.; Ayertey, J.N.; Markham, R.H. Distribution of and association between the larger grain borer Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) and the maize weevil Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) in maize stores. J. Stored Prod. Res. 2005, 41, 498–512. [Google Scholar] [CrossRef]
- Jacobs, S.; Calvin, D. Weevils of Stored Grains; Entomological Notes; College of Agriculture Sciences Cooperative Extension, Pennsylvania State University: State College, PA, USA, 2001. [Google Scholar]
- Rugumamu, C.P. A Technique for Assessment of Intrinsic Resistance of Maize Varieties for the Control of Sitophilus zeamais (Coleoptera: Curculionidae). TaJONAS Tanzan. J. Nat. Appl. Sci. 2012, 3, 481–488. [Google Scholar]
- CIMMYT. Effective Grain Storage for Better Livelihoods of African Farmers Project; CIMMYT: Texcoco, Mexico, 2011. [Google Scholar]
- Food and Agriculture Organization. Insect pests of stored grains in hot climates. Available online: http://www.fao.org/docrep/t1838e/T1838E1f.htm (accessed on 12 January 2017).
- Quezada, M.Y.; Moreno, J.; Vázquez, M.E.; Mendoza, M.; Méndez-Albores, A.; Moreno-Martínez, E. Hermetic storage system preventing the proliferation of Prostephanus truncatus Horn and storage fungi in maize with different moisture contents. Postharvest Biol. Technol. 2006, 39, 321–326. [Google Scholar] [CrossRef]
- Magan, N.; Lacey, J. Ecological determinants of mould growth in stored grain. Int. J. Food Microbiol. 1988, 7, 245–256. [Google Scholar] [CrossRef]
- Fleurat-Lessard, F. Integrated management of the risks of stored grain spoilage by seedborne fungi and contamination by storage mould mycotoxins—An update. J. Stored Prod. Res. 2017, 71, 22–40. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Mycotoxins in Grains. Available online: www.fao.org/Wairdocs/X5008E/X5008e00.htm#Contents (accessed on 7 January 2017).
- Montgomery, M. Molds in Stored Grains. Available online: http://web.extension.illinois.edu/state/newsdetail.cfm?NewsID=28028 (accessed on 7 January 2017).
- Foroud, N.A.; Eudes, F. Trichothecenes in cereal grains. Int. J. Mol. Sci. 2009, 10, 147–173. [Google Scholar] [CrossRef] [PubMed]
- Pfohl-Leszkowicz, A.; Manderville, R.A. Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans. Mol. Nutr. Food Res. 2007, 51, 61–99. [Google Scholar] [CrossRef] [PubMed]
- European Union. Opinion of the Scientific Committee on Food on Fusarium Toxins. Part 4: Nivalenol; European Union: Brussels, Belgium, 2000. [Google Scholar]
- Gitonga, Z.M.; De Groote, H.; Kassie, M.; Tefera, T. Impact of metal silos on households’ maize storage, storage losses and food security: An application of a propensity score matching. Food Policy 2013, 43, 44–55. [Google Scholar] [CrossRef]
- Wambugu, P.W.; Mathenge, P.W.; Auma, E.O.; Van Rheenen, H.A. Efficacy of traditional maize (Zea mays L.) seed storage methods in western Kenya. Afr. J. Food Agric. Nutr. Dev. 2009, 9. [Google Scholar] [CrossRef]
- Ndegwa, M.K.; De Groote, H.; Gitonga, Z.M.; Bruce, A.Y. Effectiveness and economics of hermetic bags for maize storage: Results of a randomized controlled trial in Kenya. Crop Prot. 2016, 90, 17–26. [Google Scholar] [CrossRef]
- Baoua, I.B.; Amadou, L.; Margam, V.; Murdock, L.L. Comparative evaluation of six storage methods for postharvest preservation of cowpea grain. J. Stored Prod. Res. 2012, 49, 171–175. [Google Scholar] [CrossRef]
- Baoua, I.B.; Amadou, L.; Lowenberg-Deboer, J.D.; Murdock, L.L. Side by side comparison of GrainPro and PICS bags for postharvest preservation of cowpea grain in Niger. J. Stored Prod. Res. 2013, 54, 13–16. [Google Scholar] [CrossRef]
- Freitas, R.S.; Faroni, L.R.A.; Sousa, A.H. Hermetic storage for control of common bean weevil, Acanthoscelides obtectus (Say). J. Stored Prod. Res. 2016, 66, 1–5. [Google Scholar] [CrossRef]
- Mlambo, S.; Mvumi, B.M.; Stathers, T.; Mubayiwa, M.; Nyabako, T. Field efficacy of hermetic and other maize grain storage options under smallholder farmer management. Crop Prot. 2017, 98, 198–210. [Google Scholar] [CrossRef]
- Naik, S.N.; Kaushik, G. Grain Storage in India: An Overview. Available online: http://www.vigyanprasar.gov.in/Radioserials/GrainStorageinIndiabyProf.S.N.Naik,IITDelhi.pdf (accessed on 7 November 2017).
- Nukenine, E.N. Stored product protection in Africa: Past, present and future. Julius Kühn Arch. 2010, 425, 26. [Google Scholar]
- Moreno, L.L.; Tuxill, J.; Moo, E.Y.; Reyes, L.A.; Alejo, J.C.; Jarvis, D.I. Traditional maize storage methods of Mayan farmers in Yucatan, Mexico: Implications for seed selection and crop diversity. Biodivers. Conserv. 2006, 15, 1771–1795. [Google Scholar] [CrossRef]
- Ganesh, K.K.C. Farm Level Grain Storage Pest Management in Nepal. Available online: http://www.fao.org/docrep/x5048e/x5048E12.htm (accessed on 20 February 2018).
- Shengbin, L. Study on farm grain storage in China. In Proceedings of the 9th International Working Conference on Stored-Product Protection, ABRAPOS, Passo Fundo, RS, Brazil, 15–18 October 2006. [Google Scholar]
- Paliwal, R.L. El Maíz en los Trópicos: Mejoramiento y Producción; Food and Agriculture Organization: Rome, Italy, 2001. [Google Scholar]
- Dunkel, F.V. Underground and Earth Sheltered Food Storage: Historical, Geographic, and Economic Considerations. Available online: http://about.elsevier.com/media/tust-vsi/v9i5pp310-315.pdf (accessed on 28 March 2018).
- Nagnur, S.; Channal, G.; Channamma, N. Indigenous grain structures and methods of storage. Indian J. Tradit. Knowl. 2006, 5, 114–117. [Google Scholar]
- Nduku, T.M.; De Groote, H.; Nzuma, J.M. Comparative Analysis of Maize Storage Structures in Kenya. In Proceedings of the 2013 AAAE Fourth International Conference, Hammamet, Tunisia, 22–25 September 2013. [Google Scholar]
- Murdock, L.L.; Seck, D.; Ntoukam, G.; Kitch, L.; Shade, R.E. Preservation of cowpea grain in sub-Saharan Africa—Bean/Cowpea CRSP contributions. Field Crop. Res. 2003, 82, 169–178. [Google Scholar] [CrossRef]
- Negi, T.; Solanki, D. Tradition Grain Storage Structures and Practices Followed by Farm Families of Kumaon Region in Uttarakhand. Indian Res. J. Ext. Educ. 2015, 15, 137–141. [Google Scholar]
- Bett, C.; Nguyo, R. Post-harvest storage practices and techniques used by farmers in semi-arid eastern and central Kenya. In Proceedings of the 8th African Crop Science Society Conference, El-Minia, Egypt, 27–31 October 2007; Volume 8, pp. 1023–1227. [Google Scholar]
- Rajashekar, Y.; Bakthavatsalam, N.; Shivanandappa, T. Botanicals as grain protectants. Psyche A J. Entomol. 2012, 2012, 646740. [Google Scholar] [CrossRef]
- Kumar, S.; Mohapatra, D.; Kotwaliwale, N.; Singh, K.K. Vacuum Hermetic Fumigation: A review. J. Stored Prod. Res. 2017, 71, 47–56. [Google Scholar] [CrossRef]
- Hodges, R.J. The biology and control of Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae)—A destructive storage pest with an increasing range. J. Stored Prod. Res. 1986, 22, 1–14. [Google Scholar] [CrossRef]
- Lv, J.; Jia, S.; Liu, C.; Zhu, Q.; Liu, Q.; Zhang, Z.; Liu, S.; Zhang, J. Electively applying Phosphine fumigation technology in Tianjin area of China. In Proceedings of the 9th International Working Conference on Stored-Product Protection, ABRAPOS, Passo Fundo, RS, Brazil, 15–18 October 2006; pp. 600–604. [Google Scholar]
- Danga, S.P.Y.; Nukenine, E.N.; Fotso, G.T.; Adler, C. Use of NeemPro®, a neem product to control maize weevil Sitophilus zeamais (Motsch.) (Coleoptera: Curculionidae) on three maize varieties in Cameroon. Agric. Food Secur. 2015, 4, 18. [Google Scholar] [CrossRef]
- Dowell, F.E.; Dowell, C.N. Reducing grain storage losses in developing countries. Qual. Assur. Saf. Crop. Foods 2017, 9, 93–100. [Google Scholar] [CrossRef]
- Collins, P.J. Resistance to chemical treatments in insect pests of stored grain and its management. In Proceedings of the 9th International Working Conference on Stored Product Protection, Campinas, São Paulo, Brazil, 15–18 October 2006; pp. 277–282. [Google Scholar]
- Benhalima, H.; Chaudhry, M.Q.; Mills, K.A.; Price, N.R. Phosphine resistance in stored-product insects collected from various grain storage facilities in Morocco. J. Stored Prod. Res. 2004, 40, 241–249. [Google Scholar] [CrossRef]
- Harish, G.; Nataraja, M.V.; Ajay, B.C.; Holajjer, P.; Savaliya, S.D.; Gedia, M.V. Comparative efficacy of storage bags, storability and damage potential of bruchid beetle. J. Food Sci. Technol. 2014, 51, 4047–4053. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, P.C.; Nyirenda, S.P.; Mvumi, B.; Sola, P.; Kamanula, J.M.; Sileshi, G.; Belmain, S.R. Pesticidal plants: A viable alternative insect pest management approach for resource-poor farming in Africa. In Biopesticides in Environment and Food Security: Issues and Strategies; Scientific Publishers: Valencia, CA, USA, 2012. [Google Scholar]
- Sola, P.; Mvumi, B.M.; Ogendo, J.O.; Mponda, O.; Kamanula, J.F.; Nyirenda, S.P.; Belmain, S.R.; Stevenson, P.C. Botanical pesticide production, trade and regulatory mechanisms in sub-Saharan Africa: Making a case for plant-based pesticidal products. Food Secur. 2014, 6, 369–384. [Google Scholar] [CrossRef]
- Barbari, M.; Monti, M.; Rossi, G.; Simonini, S.; Guerri, F.S. Self-build silos for storage of cereals in African rural villages. Afr. J. Agric. Res. 2014, 9, 1384–1390. [Google Scholar]
- Said, P.P.; Pradhan, R. Food Grain Storage Practices—A Review. J. Grain Process. Storage 2014, 1, 1–5. [Google Scholar]
- Edwards, W. Grain Storage Alternatives: An Economic Comparison; Ag Decision Maker, Iowa State University Extension: Ames, IA, USA, 2015; pp. 1–7. [Google Scholar]
- India Agronet. Storage and Warehousing. Available online: www.indiaagronet.com/indiaagronet/Agri_marketing/contents/StorageandWarehousing.htm (accessed on 2 January 2017).
- Garg, M.K. CAP storage, an economic warehousing technique. In Proceedings of the Conference of International Federation of Public Warehousing Association, London, UK, 1985. [Google Scholar]
- Tefera, T.; Kanampiu, F.; De Groote, H.; Hellin, J.; Mugo, S.; Kimenju, S.; Beyene, Y.; Boddupalli, P.M.; Shiferaw, B.; Banziger, M. The metal silo: An effective grain storage technology for reducing post-harvest insect and pathogen losses in maize while improving smallholder farmers’ food security in developing countries. Crop Prot. 2011, 30, 240–245. [Google Scholar] [CrossRef]
- Martinez, J.B. Metal Silos and Food Security. Lessons Learned from a Successful Central American Post-Harvest Program; Swiss Agency for Development and Cooperation: Quito, Ecuador, 2009. [Google Scholar]
- Bala, A.; Kaur, K. An Exploratory study on selected household food storage practices of women in Punjab. J. Community Mobil. Sustain. Dev. 2015, 10, 70–75. [Google Scholar]
- Anankware, P.J.; Fatunbi, A.O.; Afreh-Nuamah, K.; Obeng-Ofori, D.; Ansah, A.F. Efficacy of the multiple-layer hermetic storage bag for biorational management of primary beetle pests of stored maize. Acad. J. Entomol. 2012, 5, 47–53. [Google Scholar]
- Bbosa, D.; Brumm, T.J.; Bern, C.J.; Rosentrater, K.A.; Raman, D.R. Evaluation of Hermetic Maize Storage in 208 Liter (55 Gal) Steel Barrels for Smallholder Farmers. Trans. ASABE 2017, 60, 981–987. [Google Scholar] [CrossRef]
- Hell, K.; Edoh Ognakossan, K.; Lamboni, Y. PICS hermetic storage bags ineffective in controlling infestations of Prostephanus truncatus and Dinoderus spp. in traditional cassava chips. J. Stored Prod. Res. 2014, 58, 53–58. [Google Scholar] [CrossRef]
- SDC. Central America: Fighting Poverty with Silos and Job Creation. Available online: https://www.shareweb.ch/site/Agriculture-and-Food-Security/focusareas/Documents/phm_sdc_latin_brief_silos_central_america_e.pdf (accessed on 10 January 2017).
- Ognakossan, K.E.; Tounou, A.K.; Lamboni, Y.; Hell, K. Post-harvest insect infestation in maize grain stored in woven polypropylene and in hermetic bags. Int. J. Trop. Insect Sci. 2013, 33, 71–81. [Google Scholar] [CrossRef]
- Ognakossan, K.E.; Tounou, A.K.; Lamboni, Y.; Hell, K. Economic analysis of alternative maize storage technologies in Kenya. In Proceedings of the Joint 3rd African Association of Agricultural Economists (AAAE) and 48th Agricultural Economists Association of South Africa (AEASA) Conference, Cape Town, South Africa, 19–23 September 2010; pp. 19–23. [Google Scholar]
- Bokusheva, R.; Finger, R.; Fischler, M.; Berlin, R.; Marín, Y.; Pérez, F.; Paiz, F. Factors determining the adoption and impact of a postharvest storage technology. Food Secur. 2012, 4, 279–293. [Google Scholar] [CrossRef]
- Smale, M.; Jayne, T. Maize in Eastern and Southern Africa: “Seeds” of Success in Retrospect; Environment and Production Technology Division, International Food Policy Research Institute: Washington, DC, USA, 2003. [Google Scholar]
- Cardoso, M.L.; Bartosik, R.E.; Rodriguez, J.C.; Ochandio, D. Factors affecting carbon dioxide concentration in interstitial air of soybean stored in hermetic plastic bags (silo-bag). In Proceedings of the 8th International Conference on Controlled Atmosphere and Fumigation in Stored Products, Chengdu, China, 21–26 September 2008. [Google Scholar]
- Cardoso, L.; Bartosik, R.; Campabadal, C.; De La Torre, D. Air-Tightness Level in Hermetic Plastic Bags (Silo-Bags) for Different Storage Conditions; Navarro, S., Banks, H.J., Jayas, D.S., Bell, C.H., Eds.; Instituto Nacional de Tecnología Agropecuaria: Balcarce, Spain, 2012; pp. 583–589. [Google Scholar]
- De Bruin, T.; Villers, P.; Wagh, A.; Navarro, S. Worldwide use of hermetic storage for the preservation of agricultural products. In Proceedings of the 9th International Controlled Atmosphere & Fumigation Conference (CAF), Antalya, Turkey, 15–19 October 2012; pp. 1–8. [Google Scholar]
- Murdock, L.L.; Baoua, I.B. On Purdue Improved Cowpea Storage (PICS) technology: Background, mode of action, future prospects. J. Stored Prod. Res. 2014, 58, 3–11. [Google Scholar] [CrossRef]
- Baributsa, D.; Lowenberg-DeBoer, J.; Murdock, L.; Moussa, B. Profitable chemical-free cowpea storage technology for smallholder farmers in Africa: Opportunities and challenges. Julius Kühn Arch. 2010, 425, 1046–1052. [Google Scholar]
- Baoua, I.B.; Margam, V.; Amadou, L.; Murdock, L.L. Performance of triple bagging hermetic technology for postharvest storage of cowpea grain in Niger. J. Stored Prod. Res. 2012, 51, 81–85. [Google Scholar] [CrossRef]
- García-Lara, S.; Ortíz-Islas, S.; Villers, P. Portable hermetic storage bag resistant to Prostephanus truncatus, Rhyzopertha dominica, and Callosobruchus maculatus. J. Stored Prod. Res. 2013, 54, 23–25. [Google Scholar] [CrossRef]
Insects and Rodents | Commodities Infested | Status Level | ||||
---|---|---|---|---|---|---|
Pre-Harvest | Unshelled | Shelled | Milled Kernels | |||
Beetles | Sitophilus zeamais (Maize weevil) | Maize, sorghum and rice | 2 | 3 | 5 | 4 |
Sitophilus oryzae (Rice weevil) | Wheat, sorghum and rice | 1 | 3 | 5 | 4 | |
Acanthoscelides obtectus | Beans | 3 | 3 | 5 | 3 | |
Prostephanus truncatus (Large Grain borer) | Maize | 2 | 5 | 3 | 1 | |
Rhyzopertha dominica | All cereals | - | 2 | 4 | 2 | |
Tribolium castaneum & other secondary beetles | All cereals | 1 | 1 | 2 | 3 | |
Lasioderma serricorne | All cereals | - | - | 1 | 1 | |
Moths | Sitotroga cerealella (Angoumois Grain moth) | All cereals | 2 | 4 | 3 | 2 |
Ephestia cautella & other warehouse moths | All cereals | - | 1 | 3 | 3 | |
Rodents | Rats and mice | All cereals | 4 | 3 | 2 | 1 |
Mycotoxin | Fungal Source | Contamination Location | Effects |
---|---|---|---|
Aflatoxin (B1, B2, G1, G2) | Aspergillus flavus, Aspergillus parasiticus | Field and storage | Potent human carcinogen and increased susceptibility to disease. Adverse effects in animals, especially chickens. |
Fumonisin B1 | Fusarium moniliforme | Field and storage | Suspected human carcinogen. Toxic to pigs, poultry and horses. |
Ochratoxin A | Aspergillus ochraceus, Aspergillus carbonarius, Penicillium verrucosum | Storage, occasionally from field | Suspected human carcinogen. Shown to be carcinogenic in laboratory animals and pigs. |
Zearalenone | Fusarium graminearum, Fusarium culmorum, Fusarium crookwellense | Field and storage | Possible human carcinogen. Affects reproductive system in female pigs. |
Deoxynivalenol/nivalenol | Fusarium graminearum, Fusarium culmorum, Fusarium crookwellense | Field | Toxic to humans and animals, especially pigs. |
Trichothecenes | Fusarium graminearum, Fusarium culmorum | Storage | Intestinal irritation leading to feed refusal in livestock. |
Study | Storage Technology | Storage Duration (Months) | Grain Weight Loss 1 (%) | Grain Damage 2 (%) | Number of Holes in 100 Grain Seeds | Weight of 100 Grain Seeds (g) | Total Mold Counts (×103 cfu/g Grain) |
---|---|---|---|---|---|---|---|
De Groote, 2013 [10] Study on maize performed in Kenya | Propylene bag | 6 | 24 ± 9.8 | 80 | - | - | - |
Propylene bag + Actellic Super | 6 | 8.2 ± 4.1 | 18 | - | - | - | |
Super Grain bags | 6 | 6.3 ± 1.9 | 13 | - | - | - | |
Metal silos | 6 | 1.4 ± 0.4 | 8 | - | - | - | |
Metal silos + Actellic Super | 6 | 1.2 ± 1.1 | 1 | - | - | - | |
Metal silos + Phostoxin | 6 | 0.7 ± 0.6 | 1 | - | - | - | |
Wambugu, 2009 [50] Study on maize performed in Western Kenya | Stored above fireplace | 6 | - | 54.5 | - | - | - |
Gunny bag + Cow dung ash | 6 | - | 46.9 | - | - | - | |
Plastic container+ ash | 6 | - | 0.9 | - | - | - | |
Ndegwa, 2016 [51] Study on maize performed in Kenya | Polypropylene bags | 4 | 2.4 | 17.5 | - | - | - |
Polypropylene bags + insecticide | 4 | 1.3 | 14 | - | - | - | |
SuperGrainBagTM | 4 | 0.3 | 3 | - | - | - | |
SuperGrainBagTM + insecticide | 4 | 1.2 | 4 | - | - | - | |
Baoua, 2012 [52] Study on cowpea performed in Niger. 500 g of grain were stored for each treatment condition. 100 seeds were sampled for comparison | Linen bags (control) | 5 | - | - | 329.8 ± 71.2 | 6.6 ± 0.7 | - |
B. senegalensis | 5 | - | - | 331.3 ± 51.5 | 5.3 ± 1.0 | - | |
Sand | 5 | - | - | 74.7 ± 16.3 | 13.3 ± 0.6 | - | |
Ash | 5 | - | - | 77.7 ± 20.1 | 13.2 ± 0.6 | - | |
Triple bag | 5 | - | - | 59.8 ± 12.1 | 12.7 ± 0.6 | - | |
Solar | 5 | - | - | 48.2 ± 11.8 | 13.2 ± 0.6 | - | |
Phostoxin | 5 | - | - | 40.6 ± 8.6 | 13.6 ± 0.6 | - | |
Baoua, 2013 [53] Study on cowpea in Niger | Initial infestation | 4 | - | - | 21.6 ± 0.7 | 14.9 ± 0.1 | - |
PICS bags | 4 | - | - | 18.5 ± 0.7 | 15.2 ± 0.2 | - | |
SuperGrainBag | 4 | - | - | 21.9 ± 1.1 | 15.2 ± 0.1 | - | |
Woven bag | 4 | - | - | 227.6 ± 17.5 | 9.7 ± 0.1 | - | |
Chigoverah, 2016 [11] Study on maize performed in Zimbabwe | Untreated control | 10 | <27 | >80 | - | - | - |
Metal silo | 10 | <7 | <25 | - | - | - | |
SuperGrainBag | 10 | <12 | <25 | - | - | - | |
Synthetic pesticide | 10 | >34 | >75 | - | - | - | |
Nganga et al., 2016 [12] | Jute bags at mc < 13% | 9 | - | - | - | - | 115.6 |
Study on maize performed in Kenya | Polypropylene bags at mc < 13% | 9 | - | - | - | - | 126.3 |
PICS bag at mc < 13% | 9 | - | - | - | - | 21.6 | |
Jute bags at mc > 14% | 9 | - | - | - | - | 215.7 | |
Polypropylene bags at mc > 14% | 9 | - | - | - | - | 201.4 | |
PICS bag at mc > 14% | 9 | - | - | - | - | 160.3 | |
Quezada et al., 2006 [41] Study on maize performed in Mexico | Nonhermetic at mc = 14% | 0.5 | - | 2 | - | - | - |
Hermetic at mc = 14% | 0.5 | - | 1 | - | - | - | |
Nonhermetic at mc = 17% | 0.5 | - | 94 | - | - | - | |
Hermetic at mc = 17% | 0.5 | - | 1 | - | - | - | |
Freitas et al., 2016 [54] Study on beans storage in Brazil | Non-hermetic glass bottles mc = 15% | 4 | - | 54 | - | - | - |
Hermetic silo bags | 4 | - | <5 | - | - | - | |
Hermetic plastic bottles | 4 | - | <5 | - | - | - | |
Mlambo et al., 2017 [55] Study on maize storage in Zimbabwe | Untreated | 4 | 1.09 | - | - | - | - |
Shumba super dust | 4 | 0.21 | - | - | - | - | |
Actellic gold dust | 4 | 0.16 | - | - | - | - | |
Metal silo | 4 | 0.14 | - | - | - | - | |
PICS bag | 4 | 0.01 | - | - | - | - | |
SuperGrainBag | 4 | 0.37 | - | - | - | - | |
Aloe ash | 4 | 0.20 | - | - | - | - | |
Untreated | 6 | 1.82 | - | - | - | - | |
Shumba super dust | 6 | 0.92 | - | - | - | - | |
Actellic gold dust | 6 | 0.03 | - | - | - | - | |
Metal silo | 6 | 0.28 | - | - | - | - | |
PICS bag | 6 | 0.04 | - | - | - | - | |
SuperGrainBag | 6 | 0.34 | - | - | - | - | |
Aloe ash | 6 | 1.94 | - | - | - | - |
Insecticide Common Name | Chemicals Used | Application Rate | Comments |
---|---|---|---|
Actellic Super | Pirimiphos methyl and Permethrin | 50 to 100 g in 90 kg | LGB, maize weevils |
Shumba dust | Deltamethrin and Fenitrothion | 50 g in 90 kg | LGB, maize weevils |
Super grain dust | Bifenthrin | 100 g in 90 kg | LGB, maize weevils |
Phostoxin or Phosphine | Aluminum phosphite | 6 tablets for 1 ton of maize under tarp | LGB Fumigant Very toxic Require trained applicators No residual protection |
Diatomaceous earth | Silica | 250 g in 90 kg maize | Weevil, beetle, moth Low grain moisture and RH preferred |
NeemPro | Neem | 6 g per kg of maize | Maize weevils |
Storage System | Advantages | Disadvantages | Cost | Grain Quality and Losses after Storage |
---|---|---|---|---|
Conventional woven polypropylene sack | Simple to use Available in different storage capacities Occupy less space | Do not last long Easy access to pests and rodents Susceptible to water | US$ 0.65 per 90 kg poly bag [39] US$ 1.6 for jute bags | Low quality, High loss |
Conventional granary | Simple to make and use Available in different storage capacities. | Occupy large space all time Do not last long Pests, insects, and rodents can get into the structure easily | About US$ 10 [34] for approx. 500 kg storage capacity | Low quality High loss |
Chemicals | Can be effective if applied at correct doses Ease of use flexible | Potential health hazards | Actellic super cost US$ 3.3 per 90 kg bag [39] Need to apply every 3 months | Low quality Low loss |
Hermetic metal silo | Simple to design and construct Easy to use Durable | Metal sheets are expensive High skills required for construction | US$ 29 for 90 kg capacity US$ 243 for 1.8 ton capacity | High quality, Low loss |
Hermetic bags | Low cost of production Simple, flexible, and durable Easy to use | Can be destroyed by sharp objects, pest, and rodents | US$ 3 for PICS bag US$ 5.3 for 90 kg SuperGrainBag [39] | High quality, Low loss |
Self-build silo | Uses local materials Very durable Simple to construct | Remain fixed at one point outside the house | - | - |
On-farm and condominium storage structures | Can be owned or rented by farmers Cost effective for farmers in developed countries | Farmers incur both fixed and variable costs Investment and operations costs are high for smallholder farmers in developing countries | Storage cost of US$ 0.03 per sack per year paid to operators 1 | Quality and losses depends on storage conditions |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manandhar, A.; Milindi, P.; Shah, A. An Overview of the Post-Harvest Grain Storage Practices of Smallholder Farmers in Developing Countries. Agriculture 2018, 8, 57. https://doi.org/10.3390/agriculture8040057
Manandhar A, Milindi P, Shah A. An Overview of the Post-Harvest Grain Storage Practices of Smallholder Farmers in Developing Countries. Agriculture. 2018; 8(4):57. https://doi.org/10.3390/agriculture8040057
Chicago/Turabian StyleManandhar, Ashish, Paschal Milindi, and Ajay Shah. 2018. "An Overview of the Post-Harvest Grain Storage Practices of Smallholder Farmers in Developing Countries" Agriculture 8, no. 4: 57. https://doi.org/10.3390/agriculture8040057
APA StyleManandhar, A., Milindi, P., & Shah, A. (2018). An Overview of the Post-Harvest Grain Storage Practices of Smallholder Farmers in Developing Countries. Agriculture, 8(4), 57. https://doi.org/10.3390/agriculture8040057