Relationship of Date Palm Tree Density to Dubas Bug Ommatissus lybicus Infestation in Omani Orchards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data Collection
2.3. Image Data and Processing
2.4. Tree Counting Assessment
2.5. Correlation between Infestation with Tree Density
2.6. Data Analysis
3. Results
3.1. Counting Date Palm Trees by Local Maxima Accuracy
3.2. Result of OLS Regression
3.3. Result of GWR Regression
4. Discussion
4.1. Detection Accuracy
4.2. Date Palm Density and O. lybicus Infestation
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Al-Yahyai, R.; Khan, M.M. Date palm status and perspective in Oman. In Date Palm Genetic Resources and Utilization; Springer: Dordrecht, The Netherlands, 2015; pp. 207–240. [Google Scholar]
- Ishag, K.H.M. Dates Palm Farming Systems Sustainability and Risk Efficiency in Oman. Sustain. Agric. Res. 2016, 6, 39. [Google Scholar] [CrossRef]
- Al-Khatri, S.A.H. Biological, Ecological and Phylogenic Studies of Pseudoligosita Babylonica Viggiani, a Native Egg Parasitoid of Dubas Bug Ommatissus lybicus de Bergevin, the Major Pest of Date Palm in the Sultanate of Oman. Ph.D. Thesis, University of Reading, Reading, UK, 2011. [Google Scholar]
- AI-Mjeni, A.; Mokhtar, A. A Novel Approach to Determine the Efficacy of Control Measures Against Dubas Bug, Ommatissus lybicus de Berg, on Date Palms. J. Agric. Mar. Sci. 1999, 4, 1–4. [Google Scholar] [CrossRef]
- Kinaway, M.; Al-Siyabi, A. Major arthropod pests of date palm in Arab countries. In First Regional Conference about Management of Date Palm Pests; Al-Ain, UAE, 2012; pp. 23–25. [Google Scholar]
- Ferguson, A.W.; Klukowski, Z.; Walczak, B.; Clark, S.J.; Mugglestone, M.A.; Perry, J.N.; Williams, I.H. Spatial distribution of pest insects in oilseed rape: Implications for integrated pest management. Agric. Ecosyst. Environ. 2003, 95, 509–521. [Google Scholar] [CrossRef]
- Talhouk, A. On the management of the date palm and its arthropod enemies in the Arabian Peninsula. J. Appl. Entomol. 1991, 111, 514–520. [Google Scholar] [CrossRef]
- Al-Kindi, K.M.; Kwan, P.; Andrew, N.R.; Welch, M. Impacts of human-related practices on Ommatissus lybicus infestations of date palm in Oman. PLoS ONE 2017, 12, e0171103. [Google Scholar] [CrossRef] [PubMed]
- Fadaei, H.; Sakai, T.; Yoshimura, T.; Kazuyuki, M. Estimation of Tree Density with High-Resolution Imagery in the Zarbin Forest of North Iran (Cupressus Sempervirence Var. Horzontalis). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38, 679–684. [Google Scholar]
- Karlson, M.; Reese, H.; Ostwald, M. Tree crown mapping in managed woodlands (parklands) of semi-arid West Africa using WorldView-2 imagery and geographic object based image analysis. Sensors 2014, 14, 22643–22669. [Google Scholar] [CrossRef] [PubMed]
- Pouliot, D.; King, D.; Bell, F.; Pitt, D. Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration. Remote Sens. Environ. 2002, 82, 322–334. [Google Scholar] [CrossRef]
- Katoh, M.; Gougeon, F.A. Improving the precision of tree counting by combining tree detection with crown delineation and classification on homogeneity guided smoothed high resolution (50 cm) multispectral airborne digital data. Remote Sens. 2012, 4, 1411–1424. [Google Scholar] [CrossRef]
- Santoso, H.; Tani, H.; Wang, X. A simple method for detection and counting of oil palm trees using high-resolution multispectral satellite imagery. Int. J. Remote Sens. 2016, 37, 5122–5134. [Google Scholar] [CrossRef]
- Larsen, M.; Eriksson, M.; Descombes, X.; Perrin, G.; Brandtberg, T.; Gougeon, F.A. Comparison of six individual tree crown detection algorithms evaluated under varying forest conditions. Int. J. Remote Sens. 2011, 32, 5827–5852. [Google Scholar] [CrossRef]
- Malek, S.; Bazi, Y.; Alajlan, N.; AlHichri, H.; Melgani, F. Efficient framework for palm tree detection in UAV images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4692–4703. [Google Scholar] [CrossRef]
- Agustin, S.; Devi, P.A.R.; Sutaji, D.; Fahriani, N. Oil Palm Age Classification on Satellite Imagery Using Fractal-Based Combination. J. Theor. Appl. Inf. Technol. 2016, 89, 18. [Google Scholar]
- Korom, A.; Phua, M.; Hirata, Y.; Matsuura, T. Extracting oil palm crown from WorldView-2 satellite image. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2014; p. 012188. [Google Scholar]
- Li, W.; Fu, H.; Yu, L.; Cracknell, A. Deep Learning Based Oil Palm Tree Detection and Counting for High-Resolution Remote Sensing Images. Remote Sens. 2016, 9, 22. [Google Scholar] [CrossRef]
- Arasato, L.S.; Amaral, S.; Rennó, C.D. Detecting individual palm trees (Arecaceae family) in the Amazon rainforest using high resolution image classification. In Anais XV Simpósio Brasileiro de Sensoriamento Remoto; SBSR: Curitiba, PR, Brazil, 2011; pp. 7628–7635. [Google Scholar]
- Shafri, H.Z.; Hamdan, N.; Saripan, M.I. Semi-automatic detection and counting of oil palm trees from high spatial resolution airborne imagery. Int. J. Remote Sens. 2011, 32, 2095–2115. [Google Scholar] [CrossRef]
- Komba Mayossa, P.; Coppens D’Eeckenbrugge, G.; Borne, F.; Gadal, S.; Viennois, G. Developing a method to map coconut agrosystems from high-resolution satellite images. In Proceedings of the 27th International Cartographic Conference 16th General Assembly, Rio de Janeiro, Brazil, 23–28 August 2015. [Google Scholar]
- Kattenborn, T.; Sperlich, M.; Bataua, K.; Koch, B. Automatic single tree detection in plantations using UAV-based photogrammetric point clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 40, 139. [Google Scholar] [CrossRef]
- Ozdarici-Ok, A. Automatic detection and delineation of citrus trees from VHR satellite imagery. Int. J. Remote Sens. 2015, 36, 4275–4296. [Google Scholar] [CrossRef]
- Malik, Z.; Ziauddin, S.; Shahid, A.R.; Safi, A. Detection and Counting of On-Tree Citrus Fruit for Crop Yield Estimation. IJACSA Int. J. Adv. Comput. Sci. Appl. 2016, 7. [Google Scholar] [CrossRef]
- Bazi, Y.; Al-Sharari, H.; Melgani, F. An automatic method for counting olive trees in very high spatial remote sensing images. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; pp. 125–128. [Google Scholar]
- Maillard, P.; Gomes, M.F. Detection and Counting of Orchard Trees From thr Images Using a Geometrical-Optical Model and Marked Template Matching. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 75. [Google Scholar] [CrossRef]
- Wang, L. A multi-scale approach for delineating individual tree crowns with very high resolution imagery. Photogramm. Eng. Remote Sens. 2010, 76, 371–378. [Google Scholar] [CrossRef]
- Ke, Y.; Quackenbush, L.J. A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing. Int. J. Remote Sens. 2011, 32, 4725–4747. [Google Scholar] [CrossRef]
- Gebreslasie, M.; Ahmed, F.; Van Aardt, J.A.; Blakeway, F. Individual tree detection based on variable and fixed window size local maxima filtering applied to IKONOS imagery for even-aged Eucalyptus plantation forests. Int. J. Remote Sens. 2011, 32, 4141–4154. [Google Scholar] [CrossRef]
- Jing, L.; Hu, B.; Noland, T.; Li, J. An individual tree crown delineation method based on multi-scale segmentation of imagery. ISPRS J. Photogramm. Remote Sens. 2012, 70, 88–98. [Google Scholar] [CrossRef]
- Garrity, S.R.; Vierling, L.A.; Smith, A.M.; Falkowski, M.J.; Hann, D.B. Automatic detection of shrub location, crown area, and cover using spatial wavelet analysis and aerial photography. Can. J. Remote Sens. 2008, 34, S376–S384. [Google Scholar] [CrossRef]
- Weatherspark Average Weather in Sufālat Samā’il Oman. Available online: https://weatherspark.com/y/105796/Average-Weather-in-Suf%C4%81lat-Sam%C4%81%E2%80%99il-Oman-Year-Round#Sections-Summary (accessed on 24 November 2017).
- MAF, Agriculture Census Results 2012/2013: Ad’Dakhiliyah Governorate. Minitery of Agriculture and Fisheries Oman 2013. Available online: http://maf.gov.om/Pages/PageCreator.aspx?lang=AR&I=0&DId=0&CId=0&CMSId=800708 (accessed on 1 December 2017).
- Hadjimitsis, D.G.; Papadavid, G.; Agapiou, A.; Themistocleous, K.; Hadjimitsis, M.; Retalis, A.; Michaelides, S.; Chrysoulakis, N.; Toulios, L.; Clayton, C. Atmospheric correction for satellite remotely sensed data intended for agricultural applications: Impact on vegetation indices. Nat. Hazards Earth Syst. Sci. 2010, 10, 89–95. [Google Scholar] [CrossRef]
- Gomes, M.F.; Maillard, P. Detection of tree crowns in very high spatial resolution images. In Environmental Applications of Remote Sensing; IntechOpen: Rijeka, Croatia, 2016. [Google Scholar]
- Zaid, A.; De Wet, P. Chapter I Botanical and Systematic Description of Date Palm; FAO: Rome, Italy, 1999; pp. 1–28. [Google Scholar]
- Bunting, P.; Lucas, R. The delineation of tree crowns in Australian mixed species forests using hyperspectral Compact Airborne Spectrographic Imager (CASI) data. Remote Sens. Environ. 2006, 101, 230–248. [Google Scholar] [CrossRef]
- Deng, S.; Katoh, M.; Guan, Q.; Yin, N.; Li, M. Interpretation of forest resources at the individual tree level at Purple Mountain, Nanjing City, China, using WorldView-2 imagery by combining GPS, RS and GIS technologies. Remote Sens. 2013, 6, 87–110. [Google Scholar] [CrossRef]
- Zhao, Z.; Gao, J.; Wang, Y.; Liu, J.; Li, S. Exploring spatially variable relationships between NDVI and climatic factors in a transition zone using geographically weighted regression. Theor. Appl. Climatol. 2015, 120, 507–519. [Google Scholar] [CrossRef]
- Shrestha, P.M. Comparison of Ordinary Least Square Regression, Spatial Autoregression, and Geographically Weighted Regression for Modeling Forest Structural Attributes Using A Geographical Information System (GIS)/Remote Sensing (RS) Approach. Ph.D. Thesis, University of Calgary, Calgary, AB, Canada, 2006. [Google Scholar]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Chen, G.; Zhao, K.; McDermid, G.J.; Hay, G.J. The influence of sampling density on geographically weighted regression: A case study using forest canopy height and optical data. Int. J. Remote Sens. 2012, 33, 2909–2924. [Google Scholar] [CrossRef]
- Skurikhin, A.N.; Garrity, S.R.; McDowell, N.G.; Cai, D.M. Automated tree crown detection and size estimation using multi-scale analysis of high-resolution satellite imagery. Remote Sens. Lett. 2013, 4, 465–474. [Google Scholar] [CrossRef]
- Morton, J.F. Fruits of Warm Climates; Creative Resource Systems, Inc.: Miami, FL, USA, 1987; pp. 5–11. [Google Scholar]
- Latifian, M.; Rahnama, A.A.; Sharifnezhad, H. Effects of planting pattern on major date palm pests and diseases injury severity. Int. J. Agric. Crop Sci. 2012, 4, 1443–1451. [Google Scholar]
- Carnot, A.C.; Alvarest, T.T.E.; Justin, O.; Zachée, A.; Fabrice, M.T. Effect of Culture Density of Black Nightshade (Solanum nigrum) on the Insect Infestation. Plant 2017, 5, 19–26. [Google Scholar] [CrossRef]
- Chaudhary, O.; Kashyap, R. Effect of some management practices on the incidence of insect pests and yield of egg plant (Solanum melongena L.) in India. Int. J. Pest Manag. 1992, 38, 416–419. [Google Scholar] [CrossRef]
- Ihejirika, G.; Ibeawuchi, I.; Ogbedeh, K. Assessment of planting technique and planting density on insect’s damage, defoliation and pod-rot of groundnut. Life Sci. J. 2008, 52, 58–62. [Google Scholar]
- Sperry, C.E.; Chaney, W.R.; Shao, G.; Sadof, C. Effects of Tree Density, Tree Species Diversity and Percentage of Hardscape on Three Insect Pests of Honeylocust. J. Arboric. 2001, 27, 263–271. [Google Scholar]
- Mohamed, M. Impact of planting dates, spaces and varieties on infestation of cucumber plants with whitefly, Bemisia tabaci (Genn.). J. Basic Appl. Zool. 2012, 65, 17–20. [Google Scholar] [CrossRef]
- Kenny, G.; Chapman, R. Effects of an intercrop on the insect pests, yield, and quality of cabbage. N. Z. J. Exp. Agric. 1988, 16, 67–72. [Google Scholar] [CrossRef]
- Cherry, R.; Wang, Y.; Nuessly, G.; Raid, R. Effect of Planting Date and Density on Insect Pests of Sweet Sorghum Grown for Biofuel in Southern Florida. J. Entomol. Sci. 2013, 48, 52–60. [Google Scholar] [CrossRef]
- Haynes, K.J.; Liebhold, A.M.; Johnson, D.M. Elevational gradient in the cyclicity of a forest-defoliating insect. Popul. Ecol. 2012, 54, 239–250. [Google Scholar] [CrossRef]
Village | Field Count | Local Maxima Prediction | Estimation Error | ||||
---|---|---|---|---|---|---|---|
Window 3 | Window 5 | Window 7 | Window 3 | Window 5 | Window 7 | ||
Al’Afiah | 282 | 529 | 371 | 244 | 87.6% | 31.6% | −13.5% |
Al Ayn | 298 | 484 | 380 | 323 | 62.4% | 27.5% | 8.4% |
Al Falajain | 302 | 400 | 400 | 268 | 32.5% | 32.5% | −11.3% |
Al Ghobrah | 179 | 984 | 553 | 180 | 449.7% | 208.9% | 0.6% |
Al Jinah | 271 | 457 | 347 | 240 | 68.6% | 28.0% | −11.4% |
Al Mahal | 550 | 852 | 667 | 493 | 54.9% | 21.3% | −10.4% |
Al Magbariah | 382 | 634 | 420 | 295 | 66.0% | 9.9% | −22.8% |
Falaj Al Maraga | 338 | 578 | 397 | 275 | 71.0% | 17.5% | −18.6% |
Biaq | 376 | 786 | 567 | 365 | 109.0% | 50.8% | −2.9% |
Manal | 249 | 342 | 248 | 178 | 37.3% | −0.4% | −28.5% |
Sayja | 354 | 591 | 370 | 273 | 66.9% | 4.5% | −22.9% |
WadiQurai | 582 | 760 | 591 | 458 | 30.6% | 1.5% | −21.3% |
Wusad | 474 | 842 | 577 | 450 | 77.6% | 21.7% | −5.1% |
Total | 4637 | 8327 | 5957 | 4091% | 79.6% | 28.5% | −11.8% |
Seasons | Variable | Coefficient | Standard Error | t-Value | p-Value |
---|---|---|---|---|---|
Spring in 15 m radius | Intercept | 0.243 | 0.329 | 0.740 | 0.460 |
Density | 0.072 * | 0.022 | 3.329 | 0.001 | |
Autumn in 15 m radius | Intercept | 0.272 | 0.219 | 1.244 | 0.215 |
Density | 0.023 | 0.015 | 1.527 | 0.128 |
Variables | Spring Season | Autumn Season |
---|---|---|
Neighbours | 41 | 60 |
Residual Squares | 459.34 | 140.15 |
Effective Number | 40.67 | 19.30 |
Sigma | 1.062 | 0.80 |
AIC | 1362.615 | 590.54 |
R2 | 0.59 | 0.30 |
R2 Adjusted | 0.55 | 0.24 |
Degree of Freedom (df) | 447 | 239 |
Village | Area (m2) | Local Maxima Estimation | Total Date Palm in the Village Tree/Hectare | Average Number of Droplets per cm2 | |
---|---|---|---|---|---|
Spring | Autumn | ||||
Sayja | 290,734 | 5457 | 188 | 4.19 | 0.02 |
Falaj Al Marage | 103,415 | 1508 | 146 | 0.35 | 0.07 |
Manal | 148,106 | 2388 | 161 | 0.67 | 0.02 |
Biaq | 62,758 | 795 | 127 | 0.28 | 0.23 |
Al Ghobrah | 38,240 | 487 | 127 | 0.8 | 0.64 |
Wusad | 65,099 | 992 | 152 | 1.09 | No Reading |
Wadi Qurai | 48,045 | 940 | 196 | 0.95 | 1.90 |
Al Jinah | 355,458 | 5805 | 163 | 0.63 | 0.57 |
Al Ayn | 355,458 | 5805 | 163 | 0.69 | 0.35 |
Ar Rusah | 18,258 | 335 | 183 | 1.6 | 2.58 |
Al Mahal | 34,603 | 537 | 155 | 0.73 | 0.84 |
Al Magbariah | 47,580 | 833 | 175 | 0.59 | 0.44 |
Al Falajain | 13,476 | 229 | 170 | 2.08 | 2.36 |
Al’Afiah | 6308 | 86 | 136 | No Reading | 0.50 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Shidi, R.H.; Kumar, L.; Al-Khatri, S.A.H.; Albahri, M.M.; Alaufi, M.S. Relationship of Date Palm Tree Density to Dubas Bug Ommatissus lybicus Infestation in Omani Orchards. Agriculture 2018, 8, 64. https://doi.org/10.3390/agriculture8050064
Al Shidi RH, Kumar L, Al-Khatri SAH, Albahri MM, Alaufi MS. Relationship of Date Palm Tree Density to Dubas Bug Ommatissus lybicus Infestation in Omani Orchards. Agriculture. 2018; 8(5):64. https://doi.org/10.3390/agriculture8050064
Chicago/Turabian StyleAl Shidi, Rashid H., Lalit Kumar, Salim A. H. Al-Khatri, Malik M. Albahri, and Mohammed S. Alaufi. 2018. "Relationship of Date Palm Tree Density to Dubas Bug Ommatissus lybicus Infestation in Omani Orchards" Agriculture 8, no. 5: 64. https://doi.org/10.3390/agriculture8050064
APA StyleAl Shidi, R. H., Kumar, L., Al-Khatri, S. A. H., Albahri, M. M., & Alaufi, M. S. (2018). Relationship of Date Palm Tree Density to Dubas Bug Ommatissus lybicus Infestation in Omani Orchards. Agriculture, 8(5), 64. https://doi.org/10.3390/agriculture8050064