The Effect of Supplemental Irrigation on Canopy Temperature Depression, Chlorophyll Content, and Water Use Efficiency in Three Wheat (Triticum aestivum L. and T. durum Desf.) Varieties Grown in Dry Regions of Jordan
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Materials and Cultivar Information
2.2. Site Description
2.3. Cultural Practices and Experimental Design
2.4. Soil Water Monitoring
2.5. Crop Phenology
2.6. Canopy Temperature Depression, Chlorophyll Content, Yield Analysis, and Water Use Efficiency
2.7. Statistical Analysis
3. Results
3.1. Climatic Conditions
3.2. Analysis of Variance
3.3. Selected Agronomic Characteristics and Yield Components
3.4. Thermal Time to Heading and Physiological Maturity (Base Temperature = 5 °C)
3.5. Grain Yield, Above-Ground Biomass (AGBM), and Harvest Index (HI)
3.6. Water Use Efficiency (WUE) (kg m−3)
3.7. Total Chlorophyll Content (TCC)
3.8. Canopy Temperature Depression (CTD)
3.9. Correlation among Characteristics
4. Discussion
4.1. Climatic Conditions
4.2. Effect of Supplemental Irrigation on Yield Components
4.3. Effect on Grain Yield, Above-Ground Biomass, and Harvest Index
4.4. Water Use Efficiency (WUE) (kg m−3)
4.5. Total Chlorophyll Content (TCC) and Canopy Temperature Depression (CTD)
4.6. Correlation among Characteristics
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Edwards, M.A. Morphological Features of Wheat Grain and Genotype Affecting Flour Yield. Ph.D. Thesis, Southern Cross University, Lismore, NSW, Australia, 2010. [Google Scholar]
- Mirbahar, A.A.; Markhand, G.S.; Mahar, A.R.; Abro, S.A.; Kanhar, N.A. Effect of water stress on yield and yield components of wheat (Triticum aestivum L.) varieties. Pak. J. Bot. 2009, 41, 1303–1310. [Google Scholar]
- Tadesse, W.; Solh, M.; Braun, H.J.; Oweis, T.; Baum, M. Approaches and Strategies for Sustainable Wheat Production: Tools and Guidelines; ICARDA: Beirut, Lebanon, 2016; ISBN 92-9127-490-9. [Google Scholar]
- Lucas, H. Wheat Initiative: An International Vision for Wheat Improvement. 2013. Available online: www.wheatinitiative.org (accessed on 31 March 2014).
- Gautam, A.; Sai Prasad, S.V.; Jajoo, A.; Ambati, D. Canopy temperature as a selection parameter for grain yield and its components in durum wheat under terminal heat stress in late sown conditions. Agric. Res. 2015, 4, 238–244. [Google Scholar] [CrossRef]
- GCARD. Breakout session P1.1. National Food Security—The Wheat Initiative—An International Research Initiative for Wheat Improvement. In Proceedings of the 2nd Global Conference on Agricultural Research for Development, Punta del Este, Uruguay, 29 October–1 November 2012. [Google Scholar]
- Loggini, B.; Scartazza, A.; Brugnoli, E.; Navari-Izzo, F. Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol. 1999, 1091–1099. [Google Scholar] [CrossRef]
- Varga, B.; Vida, G.; Varga-La’szlo’, E.; Bencze, S.; Veisz, O. Effect of simulating drought in various phenophases on the water use efficiency of winter wheat. J. Agro Crop Sci. 2015, 201, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Jordan Department of Statistics. Plant Production Report. Available online: http://www.dos.gov.jo/sdb/sdb_pop/sdb_pop_a/index_o.htm2015 (accessed on 15 April 2016).
- Dixit, P.; Telleria, R.; Al Khatib, A.N.; Allouzi, S.F. Decadal analysis of impact of future climate on wheat production in dry Mediterranean environment: A case of Jordan. Sci. Total Environ. 2018, 610–611, 219–233. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Impacts, Adaptation and Vulnerability: Contribution of Working Group II to Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Schiermeier, Q. Water: A long dry summer. Nature 2008, 452, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Al-Ajlouni, Z.I.; Al-Abdallat, A.; Al-Ghzawi, A.; Ayad, J.; Abu Elenein, J.; Al Quraan, N.; Baenziger, P.S. Impact of pre-anthesis water deficit on yield and yield components in barley (Hordeum vulgare L.) plants grown under controlled conditions. Agronomy 2016, 6, 33. [Google Scholar] [CrossRef]
- Trethowan, R.M.; Maarten, V.G.; Rajaram, S. Progress in breeding wheat for yield and adaptation in global drought affected environments. Crop Sci. 2002, 42, 1441–1446. [Google Scholar] [CrossRef]
- Peltonen-Sainio, P.; Kangas, A.; Salo, Y.; Jauhiainen, L. Grain number dominates grain weight in temperate cereal yield determination: Evidence based on30 years of multi-location trials. Field Crop. Res. 2007, 100, 179–188. [Google Scholar] [CrossRef]
- Abou El-Kheir, M.S.A.; Kandil, S.A.; El-Zeiny, H.A. Response of some wheat cultivars to water stress imposed at certain growth stages. Egy. J. App. Sci. 2001, 16, 82–98. [Google Scholar]
- Sharaan, A.N.; Abd El-Samie, F.S.; Abd El-Gawad, I.A. Effect of planting date and drought at different plant stages on yield and its components. In Response of Wheat Varieties (Triticum aetivum L.) to Some Environmental Influences, Proceedings of the 9th Conference of Agronomy, 1–2 September 2000; Minuofiya University: Minuofiya, Egypt, 2000. [Google Scholar]
- Kumar, A.; Azam-Ali, S.N.; Snape, J.W.; Weightman, R.; Foulkes, M.J. Relationships between carbon-isotope discrimination and grain yield in wheat under well-watered and drought conditions. J. Agric. Sci. Camb. 2011, 149, 257–272. [Google Scholar] [CrossRef]
- Mirza, M.M.Q. Climate change, flooding in South Asia and implications. Reg. Environ. Chang. 2011, 11, 95–107. [Google Scholar] [CrossRef]
- Calderini, D.F.; Reynolds, M.P.; Slafer, G.A. Genetic gains in wheat yield and main physiological changes associated with them during the 20th century. In Wheat: Ecology and Physiology of Yield Determination; Satorre, E.H., Slafer, G.A., Eds.; Food Products Press: New York, NY, USA, 1999; pp. 351–377. [Google Scholar]
- Kilic, H.; Yağbasanlar, T. The effect of drought stress on grain yield, yield components and some quality traits of durum wheat (Triticum turgidum ssp. durum) cultivars. Not. Bot. Horti Agrobo. 2010, 38, 164–170. [Google Scholar]
- Shpiler, L.; Blum, A. Heat tolerance to yield and its components in different wheat cultivars. Euphytica 1991, 51, 257–263. [Google Scholar] [CrossRef]
- Garcia Del Moral, L.F.; Ramos, J.M.; Garcia Del Moral, M.B.; Jimenez-Tejada, P. Ontogenetic approach to grain production in spring barley based on path-coefficient analysis. Crop Sci. 1991, 31, 1179–1185. [Google Scholar] [CrossRef]
- Maqbool, M.M.; Ali, A.; Haq, T.; Majeed, M.N.; Lee, D.J. Response of spring wheat (Triticum aestivum L.) to induced water stress at critical growth stages. Sarhad J. Agric. 2015, 31, 53–58. [Google Scholar]
- Richards, R.A.; Condon, A.G.; Rebetzke, G.J. Traits to improve yield in dry environments. In Application of Physiology in Wheat Breeding; Reynolds, M.P., Ortiz-Monasterio, J.I., McNab, A., Eds.; CIMMYT: Mexico, 2001; pp. 88–100. ISBN 970-648-077-3. [Google Scholar]
- Wang, Z.; Li, S.; Vera, C.L.; Malhi, S.S. Effects of water deficit and supplemental irrigation on winter wheat growth, grain yield and quality, nutrient uptake, and residual mineral nitrogen in soil. Commun. Soil Sci. Plant Anal. 2005, 36, 1405–1419. [Google Scholar] [CrossRef]
- Chahbar, S.; Belkhodja, M. Water deficit effects on morpho-physiological parameters in durum wheat. J. Fundam. Appl. Sci. 2016, 8, 1166–1181. [Google Scholar] [CrossRef]
- Saxena, D.C.; Sai Prasad, V.; Chatrath, R.; Mishra, S.C.; Watt, M.; Prashar, R.; Wason, A.; Gautam, A.; Malviya, P. Evaluation of root characteristics, canopy temperature depression and stay green trait in relation to grain yield in wheat under early and late sown conditions. Indian J. Plant Physiol. 2014, 19, 43–47. [Google Scholar] [CrossRef]
- Shefazadeh, M.; Karimizadeh, R.; Mohammadi, M.; Suq, H.S. Using flag leaf chlorophyll content and canopy temperature depression for determining drought resistant durum wheat genotypes. Food Agric. Environ. 2012, 10, 509–515. [Google Scholar]
- Reynolds, M.P.; Mujeeb-Kazi, A.; Sawkins, M. Prospects for utilizing plant-adaptive mechanisms to improve wheat and other crops in drought- and salinity-prone environments. Ann. Appl. Biol. 2005, 146, 239–259. [Google Scholar] [CrossRef]
- Davies, K.F.P.; Chesson, S.; Harrison, B.D.; Inouye, B.; Melbourne, A.; Rice, K.J. Spatial heterogeneity explains the scale dependence of the native–exotic diversity relationship. Ecology 2005, 86, 1602–1610. [Google Scholar] [CrossRef]
- Othmani, A.; Rezgui, M.; Cherif, S.; Mouelhi, M.; Melki, M. Effects of water regimes on root and shoot growth parameters and agronomic traits of Tunisian durum wheat (Triticum durum Desf.). J. New Sci. Agric. Biotechnol. 2015, 18, 695–702. [Google Scholar]
- Man, J.; Shi, Y.; Yu, Z.; Zhang, Y. Root growth, soil water variation, and grain yield response of winter wheat to supplemental irrigation. Plant Prod. Sci. 2016, 19, 193–205. [Google Scholar] [CrossRef]
- Olivares-Villegas, J.J.; Reynolds, M.P.; McDonald, G.K. Drought-adaptive attributes in the Seri Babax hexaploid wheat population. Funct. Plant Biol. 2007, 34, 189–203. [Google Scholar] [CrossRef]
- Fokar, M.; Nguyen, H.; Blum, A. Heat tolerance in spring wheat I. Estimating cellular thermo-tolerance and its heritability. Euphytica 1998, 104, 1–8. [Google Scholar] [CrossRef]
- Fotovat, R.; Valizadeh, M.; Toorchi, M. Association between water-use-efficiency components and total chlorophyll content (SPAD) in wheat (Triticum aestivum L.) under well-watered and drought stress conditions. J. Food Agric. Environ. 2007, 5, 225–227. [Google Scholar]
- Condon, A.G.; Richards, R.A.; Rebetzke, G.J.; Farquhar, G.D. Improving intrinsic water-use efficiency and crop yield. Crop Sci. 2002, 42, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Kirigwi, F.M.; Van Ginkel, M.; Trethowa, R.; Sears, R.G.; Rajaram, S.; Paulsen, G.M. Evaluation of selection strategies for wheat adaptation across water regimes. Euphytica 2004, 135, 361–371. [Google Scholar] [CrossRef]
- Saadi, S.; Todorovic, M.; Tanasijevic, L.; Pereira, L.S.; Pizzigalli, C.; Lionello, P. Climate change and Mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield. Agric. Water Manag. 2015, 147, 103–115. [Google Scholar] [CrossRef]
- Heng, L.K.; Asseng, S.; Mejahed, K.; Rusan, M. Optimizing wheat productivity in two rain-fed environments of the West Asia-North Africa region using a simulation model. Eur. J. Agron. 2007, 26, 121–129. [Google Scholar] [CrossRef]
- Oweis, T.Y.; Hachum, A.Y. Improving water productivity in the dry areas of west Asia and North Africa. In Water Productivity in Agriculture: Limits and Opportunities for Improvement; Kijne, J.W., Barker, R., Molden, D., Eds.; CABI Publishing and International Water Management Institute: Wallingford, UK, 2003. [Google Scholar]
- Semcheddine, N.; Hafsi, M. Effect of supplementary irrigation on agronomical and physiological traits in durum wheat (Triticum durum desf.) genotypes. J. Agric. Sci. 2014, 6, 184–198. [Google Scholar] [CrossRef]
- Allouzi, S.; Al-Karadsheh, I.; Al-Hoyan, M.; Rawashdeh, I.; Al-Kaabenah, A. Phenotypic Variation and Genetic Variation of Certified Wheat Varieties in Jordan; Project of NCARE 2007–2010; National Center for Agricultural Research and Extension (NCARE): Amman, Jordan, 2010.
- Allouzi, S.; Al Rawashdeh, I.M. Screening of Jordan Certified Wheat Seedlings for Drought Tolerance. Jordan J. Agric. Sci. 2014, 10, 484–492. [Google Scholar]
- Dubey, R.P.; Kalubarme, M.H.; Jhorar, O.P.; Cheema, S.S. Wheat Yield Models and Production Estimates for Patiala and Ludhiana Districts Based on Lands at-MSS and Agro Meteorological Data; Scientific Note: IRS-UP/SAC/CPF/SN/08/87; Space Applications Centre: Ahmedabad, India, 1987; pp. 1–34.
- Sharma, A.; Sood, R.K.; Kalubarme, M.H. Agro meteorological wheat yield forecast in Himachal Pradesh. J. Agrometeorol. 2004, 6, 153–160. [Google Scholar]
- Tottman, D.R.; Broad, H. Thedecimal code for the growth stages of cereals with illustrations. Ann. Appl. Biol. 1987, 93, 221–234. [Google Scholar] [CrossRef]
- Marquard, R.D.; Tipton, J.L. Relationship between extractable chlorophyll and an in situ method to estimate leaf greenness. Hort. Sci. 1987, 22, 1327. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H. Principle and Procedure of Statistics: A Biometrical Approach, 2nd ed.; McGraw-Hill: New York, NY, USA, 1980; p. 633. ISBN 0070609268. [Google Scholar]
- Karam, F.; Kabalan, R.; Breidi, J.; Rouphael, Y.; Oweis, T. Yield and water production functions of two durum wheat cultivars grown under different irrigation and nitrogen regimes. Agric. Water Manag. 2009, 96, 603–615. [Google Scholar] [CrossRef]
- Slafer, G.A.; Araus, J.L.; Royo, C.; Garcia Del Moral, L.F. Promising eco-physiological traits for genetic improvement of cereal yields in Mediterranean environments. Ann. Appl. Biol. 2005, 146, 61–70. [Google Scholar] [CrossRef]
- Loss, S.P.; Siddique, K.H.M. Morphological and physiological traits associated with wheat yield increases in Mediterranean environments. Adv. Agron. 1994, 52, 229–276. [Google Scholar]
- Miranzadeh, H.; Emam, Y.; Seyyed, H.; Zare, S. Productivity and radiation use efficiency of four dryland wheat cultivars under different levels of nitrogen and chlormequat chloride. J. Agric. Sci. Technol. 2011, 13, 339–351. [Google Scholar]
- Mwadzingeni, L.; Shimelis, H.; Dube, E.; Laing, M.D.; Tsilo, T.J. Breeding wheat for drought tolerance: Progress and technologies. J. Integr. Agric. 2016, 15, 935–943. [Google Scholar] [CrossRef]
- Ciadir, G.; Saeed, M.; Cheema, M.A. Effect of water stress on growth and yield performance of four wheat cultivars. Pak. J. Biol. Sci. 1999, 2, 236–239. [Google Scholar]
- Campbell, C.A.; Read, D.W.L.; Zentner, R.P.; Leyshon, A.J.; Ferguson, W.S. First 12 years of a long-term crop rotation study in southwestern Saskatchewan-yield and quality of grain. Can. J. Plant Sci. 1983, 63, 91–108. [Google Scholar]
- Oweis, T.; Pala, M.; Ryan, J. Management alternatives for improved durum wheat production under supplemental irrigation in Syria. Euro. J. Agron. 1999, 11, 225–266. [Google Scholar] [CrossRef]
- Oweis, T. Supplemental Irrigation: A Highly Water-Efficient Practice; ICARDA: Alleppo, Syria, 1997; ISBN 92-9127-070-9. [Google Scholar]
- Blum, A.; Pnuel, Y. Physiological attributes associated with drought resistance of wheat cultivars in a Mediterranean environment. Aust. J. Agric. Res. 1990, 41, 799–810. [Google Scholar] [CrossRef]
- Donaldson, E. Crop traits for water stress tolerance. Am. J. Altern. Agric. 1996, 11, 89–94. [Google Scholar] [CrossRef]
- Nazeri, M. Study on Response of Triticale Genotypes at Water Limited Conditions at Different Developmental Stages. Ph.D. Thesis, University of Tehran, Tehran, Iran, 2005. [Google Scholar]
- Zhang, H.; Oweis, T. Water-yield relations and optimal irrigation scheduling of wheat in the Mediterranean region. Agric. Water Manag. 1999, 38, 195–211. [Google Scholar] [CrossRef]
- Hu, C.; Ding, M.; Qu, C.; Sadras, V.; Yang, X.; Zhang, S. Yield and water use efficiency of wheat in the Loess Plateau: Responses to root pruning and defoliation. Field Crops Res. 2015, 179, 6–11. [Google Scholar] [CrossRef]
- Oweis, T. On-farm water management: From efficiency to productivity. In Proceedings of the Training Course on Improving Water Productivity in Agricultural Systems, Amman, Jordan, 6–24 May 2012. [Google Scholar]
- Hussain, A.; Ghaudhry, M.R.; Wajad, A.; Rafiq, M.; Ibrahim, M.; Goheer, A.R. Influence of water stress on growth, yield and radiation use efficiency of various wheat cultivars. Int. J. Agric. Biol. 2004, 6, 1074–1079. [Google Scholar]
- Wajid, A.; Hussain, A.; Ahmed, A.; Rafiq, M.; Goheer, A.R.; Ibrahim, M. Effect of sowing date and plant density on growth, light interception and yield of wheat under semi-arid condition. Int. J. Agric. Biol. 2004, 6, 1119–1123. [Google Scholar]
- Li, Q.S.; Willardson, L.S.; Deng, W.; Li, X.J.; Liu, C.J. Crop water deficit estimation and irrigation scheduling in western Jilin province, Northeast China. Agric. Water Manag. 2004, 71, 47–60. [Google Scholar] [CrossRef]
- Kang, S.; Zhang, L.; Liang, Y.; Hu, X.; Cai, H.; Gu, B. Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China. Agric. Water Manag. 2002, 55, 203–216. [Google Scholar] [CrossRef]
- Wajid, A.; Hussain, A.; Maqsood, M.; Ahmad, A.; Awais, M. Influence of sowing date and irrigation levels on growth and grain yield of wheat. Pak. J. Agric. Sci. 2002, 39, 22–24. [Google Scholar]
- Saidi, Y.; Peter, P.; Finka, A.; Cicekli, C.; Vígh, L.; Goloubinoff, P. Membrane lipid composition affects plant heat sensing and modulates Ca2+-dependent heat shock response. Plant Signal. Behav. 2010, 5, 1530–1533. [Google Scholar] [CrossRef] [PubMed]
- Tadayon, M.R.; Ebrahimi, R.; Tadayon, A. Increased water productivity of wheat under supplemental irrigation and nitrogen application in a semi-arid region. J. Agric. Sci. Technol. 2012, 14, 995–1003. [Google Scholar]
- Van den Boogaard, R.; Veneklaas, E.J.; Lambers, H. The association of biomass allocation with growth and water use efficiency of two Triticum aestivum cultivars. Aust. J. Plant Physiol. 1996, 23, 751–761. [Google Scholar] [CrossRef]
- Bijanzadeh, E.; Emam, Y. Effect of defoliation and drought stress on yield components and chlorophyll content of wheat. Pak. J. Biol. Sci. 2010, 13, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.K.; Ajay, K.K.; Bandyopadhyay, M.C.; Manna, K.G.; Mandal, A.K.; Hati, K.M. Comparative effectiveness of cattle manure, poultry manure, phosphor-compost and fertilizer-NPK on three cropping system in vertisols of semi-arid tropics: Dry matter yield, nodulation, chlorophyll content and enzyme activity. Biores. Technol. J. 2004, 95, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Nezhadahmadi, A.; Prodhan, Z.H.; Faruq, F. Drought tolerance in wheat. Sci. World J. 2013, 2013, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Guendouz, A.; Maamari, K. Grain filling, chlorophyll content in relation with grain yield component of durum wheat in a Mediterranean environment. Afr. Crop Sci. J. 2012, 20, 31–37. [Google Scholar]
- Siddique, R.B.; Hamid, A.; Islam, M.S. Drought stress effects on water relations of wheat. Bot. Bull. Acad. Sin. 2000, 41, 35–39. [Google Scholar]
- Shamsuddin, A.K.M. Path analysis in bread wheat. Indian J. Agric. Sci. 1987, 1, 237–240. [Google Scholar]
- Koocheki, A.R.; Yazdansepas, A.; Nikkhah, H.R. Effects of terminal drought on grain yield and some morphological traits in wheat (Triticum aestivum L.) genotypes. Iran J. Agric. Sci. 2006, 8, 14–29. [Google Scholar]
- Farnia, A.; Tork, A. Changes in Yield and yield components of wheat cultivars under water stress condition. Int. J. Life Sci. 2015, 9, 103–107. [Google Scholar] [CrossRef]
- Simane, B.; Struik, P.C.; Nachit, M.M.; Peacock, J.M. Onto-genic analysis of field components and yield stability of durum wheat in water-limited environments. Euphytica 1993, 71, 211–219. [Google Scholar] [CrossRef]
- Erchidi, A.E.; Benbella, M.; Talouizte, A. Grain growth in nine durum cultivars: Options Mediterranean’s Serie A. Semin. Mediterr. 2003, 40, 137–140. [Google Scholar]
- Zaharieva, M.; Gaulin, E.; Havaux, M.; Acevedo, E.; Monnevaux, P. Drought and heat responses in the wild wheat relative Aegilopsgeniculata Roth. Crop Sci. 2001, 41, 1321–1329. [Google Scholar] [CrossRef]
- Karimizadeh, R.; Mohammadi, M.; Ghaffaripour, S.; Karimpour, F.; Shefazadeh, M.K. Evaluation of physiological screening techniques for drought resistant breeding of durum wheat Genotypes in Iran. Afr. J. Biotechnol. 2011, 10, 12107–12117. [Google Scholar]
- Khakwani, A.; Dennett, M.D.; Munir, M.; Abid, M. Growth and yield response of wheat varieties to water stress at booting and anthesis stages of development. Pak. J. Bot. 2012, 44, 879–886. [Google Scholar]
- Fischer, R.A.; Maurer, R. Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust. J. Agric. Res. 1978, 29, 897–912. [Google Scholar] [CrossRef]
- Fan, T.; Wang, S.; Xiaoming, T.; Luo, J.; Stewart, B.A.; Gao, Y. Grain yield and water use in a long-term fertilization trail in Northwest China. Agric. Water Manag. 2005, 76, 36–52. [Google Scholar] [CrossRef]
- Abdipur, M.; Ramezani, H.R.; Bavei, V.; Talaee, S.; Branch, G. Effectiveness of canopy temperature and chlorophyll content measurements at different plant growth stages for screening of drought tolerant wheat genotypes. Am. Eurasian J. Agric. Environ. Sci. 2013, 13, 1325–1338. [Google Scholar]
- Passioura, J.B. Roots and drought resistance. Agric. Water Manag. 1983, 7, 265–280. [Google Scholar] [CrossRef]
- Del Pozo, A.; Yáñez, A.; Matus, I.A.; Tapia, G.; Castillo, D.; Sanchez-Jardón, L.; Araus, J.L. Physiological traits associated with wheat yield potential and performance under water-stress in a Mediterranean environment. Front. Plant Sci. 2016, 7, 987. [Google Scholar] [CrossRef] [PubMed]
- Dixon, L.; Karsai, I.; Allard, V.; Griffiths, S.; Boden, S. A genetic mechanism for adaptation of wheat to variable growth temperatures. In Proceedings of the 13th International Wheat Genetics Symposium, Tulln, Austria, 23–28 April 2017; Buerstmayr, H., Lang-Mladek, C., Steiner, B., Michel, S., Buerstmayr, M., Lemmens, M., Vollmann, J., Grausgruber, H., Eds.; BOKU-University of Natural Resources and Life Sciences, Vienna: Wien, Austria, 2017. ISBN 978-3-900932-48-0. [Google Scholar]
- Yang, J.C.; Zhang, J.H.; Wang, Z.Q.; Liu, L.J.; Zhu, Q.S. Post-anthesis water deficits enhance grain filling in two line hybrid rice. Crop Sci. 2003, 43, 2099–2108. [Google Scholar] [CrossRef]
Variety Name | Type | Pedigree | Source | Released |
---|---|---|---|---|
Cham1 | Durum | ‘Waha = plc’s’-ruff’s’X gta’s’-rtte | ICARDA 1 | 1988 |
Acsad65 | Durum | Stork’s’. CM470-1M-2Y-OM//Gdavz-469-AA’S’/STORK’S | CIMMYT 2 | 1988 |
Ammon | Bread | Tsi/Vee’S’ | ICARDA | 2004 |
Chemical and Physical Properties | |
---|---|
P% | 1.16 |
K% | 194.0 |
CaCO3% | 1.90 |
N% | 0.1 |
PH | 7.75 |
E.C ds/m | 0.42 |
Clay | 56.2 |
Silt | 33.8 |
Sand | 10.00 |
Water Regime | 2014 Growing Season | 2015 Growing Season | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Number of Spikes m−2 | Number of Grains spike−1 | 1000 Grain Weight (g) | Thermal Time to Heading (GDD 2) | Thermal Time to Physiological Maturity (GDD) | Number of Spikes m−2 | Number of Grains spike−1 | 1000 Grain Weight (g) | Thermal Time to Heading (GDD) | Thermal Time to Physiological Maturity (GDD) | |
T0 | 188 d | 34.68 c | 33.97 c | 680 b | 1070 a | 269 b | 38.46 ab | 37.95 ab | 766 c | 1241 a |
T1 | 251 c | 40.07 b | 37.62 b | 719 a | 1121 a | 291 ab | 38.25 ab | 37.48 b | 774 b | 1261 b |
T2 | 267 b | 39.98 b | 38.47 b | 718 a | 1119 a | 306 a | 37.33 b | 38.34 ab | 773 b | 1256 b |
T3 | 283 a | 40.77 a | 42.18 a | 720 a | 1157 a | 287 ab | 38.78 a | 39.00 a | 805 a | 1297 c |
LSD | 8.61 | 0.67 | 2.53 | 13.5 | 62.8 | 23.70 | 1.44 | 1.21 | 6.5 | 11.05 |
Variety | ||||||||||
Cham1 | 250 a | 38.98 b | 37.16 b | 713 a | 1160 a | 292 a | 37.45 b | 37.56 b | 792 a | 1275 a |
Acsad65 | 230 b | 34.65 c | 41.10 a | 699 b | 1099 a | 276 b | 35.62 b | 41.95 a | 755 b | 1274 a |
Ammon | 263 a | 42.99 a | 35.91 b | 716 a | 1090 a | 298 a | 41.54 a | 35.07 c | 792 a | 1243 b |
Mean | 247 | 38.87 | 38.06 | 709 | 1116 | 288 | 38.20 | 38.19 | 779 | 1264 |
LSD | 14.81 | 1.19 | 1.54 | 8.73 | 82.05 | 15.00 | 2.19 | 1.22 | 6.45 | 9.49 |
Water Regime | 2014 Growing Season | 2015 Growing Season | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Grain Yield (t ha−1) | Above-Ground Biomass (t ha−1) | Harvest Index (HI) | WUE of Grain Yield (kg m−3) | WUE for above-Ground Biomass (kg m−3) | Grain Yield (t ha−1) | Above-Ground Biomass (t ha−1) | Harvest Index (HI) | WUE of Grain Yield (kg m−3) | WUE for above-Ground Biomass (kg m−3) | |
T0 | 2.24 d | 9.1 c | 0.249 d | 0.82 c | 3.31 a | 3.89 b | 10.9 c | 0.356 b | 0.97 a | 2.51 b |
T1 | 3.81 c | 12.3 b | 0.308 c | 1.07 b | 3.47 a | 4.17 a | 11.6 ab | 0.360 b | 0.95 ab | 2.63 a |
T2 | 4.10 b | 11.6 b | 0.350 a | 1.07 b | 3.03 b | 4.32 a | 11.8 a | 0.365 b | 0.97 a | 2.66 a |
T3 | 4.79 a | 14.2 a | 0.338 b | 1.13 a | 3.35 a | 4.28 a | 11.3 bc | 0.377 a | 0.93 ab | 2.47 b |
LSD | 0.22 | 0.90 | 0.012 | 0.06 | 0.246 | 0.25 | 0.47 | 0.011 | 0.06 | 0.107 |
Variety | ||||||||||
Cham1 | 3.74 b | 12.1 a | 0.302 b | 1.02 b | 3.40 a | 4.24 a | 11.6 a | 0.364 ab | 0.95 a | 2.62 a |
Acsad65 | 3.33 b | 11.1 b | 0.294 c | 0.91 c | 3.10 b | 3.92 b | 10.9 b | 0.360 b | 0.88 b | 2.45 b |
Ammon | 4.15 a | 12.1 b | 0.337 a | 1.14 a | 3.37 a | 4.34 a | 11.7 a | 0.371 a | 0.95 a | 2.63 a |
Mean | 3.74 | 11.8 | 0.311 | 1.02 | 3.29 | 4.17 | 11.4 | 0.365 | 0.94 | 2.566 |
LSD | 0.23 | 0.68 | 0.006 | 0.07 | 0.187 | 0.17 | 0.42 | 0.008 | 0.05 | 0.095 |
Water Regime | 2014 Growing Season | 2015 Growing Season | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SPAD | CTD | SPAD | CTD | |||||||||
GS39 | GS69 | GS75 | GS39 | GS69 | GS75 | GS39 | GS69 | GS75 | GS39 | GS69 | GS75 | |
T0 | 48 b | 50 b | 44 c | 1.31 c | 3.37 c | 2.62 c | 53 ab | 52 a | 49 b | 4.67 b | 7.45 c | 3.29 b |
T1 | 49 a | 52 ab | 45 bc | 2.57 b | 3.78 b | 4.45 b | 53 ab | 52 a | 49 b | 5.15 b | 7.86 b | 3.52 b |
T2 | 50 ab | 53 a | 47 ab | 3.72 a | 4.19 a | 4.75 ab | 52 b | 52 a | 48 b | 5.69 a | 7.45 c | 3.55 b |
T3 | 50 a | 53 a | 48 a | 3.31 a | 4.27 a | 5.20 a | 53 a | 54 a | 52 a | 5.70 a | 8.74 a | 4.09 a |
LSD | 1.5 | 1.8 | 1.4 | 0.58 | 0.36 | 0.55 | 0.8 | 2.0 | 1.2 | 0.50 | 0.32 | 0.37 |
Variety | ||||||||||||
Cham1 | 49 a | 52 a | 46 b | 2.71 ab | 4.02 a | 4.16 b | 53 a | 52 a | 49 b | 5.26 b | 8.22 a | 3.53 b |
Acsad65 | 49 a | 52 a | 44 c | 2.51 b | 3.72 b | 3.51 c | 53 a | 53 a | 48 b | 4.92 b | 7.35 b | 3.02 c |
Ammon | 49 a | 52 a | 48 a | 2.95 a | 3.97 ab | 5.09 a | 53 a | 53 a | 51 a | 5.74 a | 8.11 a | 4.29 a |
Mean | 49 | 52 | 46 | 2.72 | 3.9 | 4.25 | 53 | 53 | 49 | 5.30 | 7.89 | 3.61 |
LSD | 1.1 | 1.1 | 1.2 | 0.04 | 0.29 | 3.94 | 1.5 | 0.7 | 1.4 | 0.39 | 0.39 | 0.30 |
Variable | TTH | TTM | PLH | AGBM | GYLD | HI | SPM | GNPS | TGW | SPAD39 | SPAD69 | SPAD75 | CTD39 | CTD69 | CTD75 | WUEOGBM |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TTH | ||||||||||||||||
TTM | 0.68 ** | |||||||||||||||
PLH | 0.68 ** | 0.64 ** | ||||||||||||||
AGBM | 0.36 ** | 0.24 * | 0.23 * | |||||||||||||
GYLD | 0.56 ** | 0.37 ** | 0.50 ** | 0.69 ** | ||||||||||||
HI | 0.79 ** | 0.55 ** | 0.67 ** | 0.39 ** | 0.79 ** | |||||||||||
SPM | 0.64 ** | 0.47 ** | 0.62 ** | 0.50 ** | 0.82 ** | 0.75 ** | ||||||||||
GNPS | 0.21 * | −0.01 | −0.06 | 0.40 ** | 0.55 ** | 0.40 ** | 0.23 * | |||||||||
TGW | −0.01 | 0.15 | 0.39 ** | 0.18 | 0.26 * | 0.19 | 0.06 | −0.23 * | ||||||||
SPAD39 | 0.75 ** | 0.64 ** | 0.70 ** | 0.15 | 0.40 ** | 0.66 ** | 0.54 ** | 0.01 | 0.14 | |||||||
SPAD69 | 0.38 ** | 0.31 ** | 0.36 ** | 0.34 ** | 0.37 ** | 0.40 ** | 0.35 ** | 0.08 | 0.27 ** | 0.38 ** | ||||||
SPAD75 | 0.68 ** | 0.49 ** | 0.48 ** | 0.38 ** | 0.55 ** | 0.67 ** | 0.51 ** | 0.36 ** | 0.00 | 0.57 ** | 0.35 ** | |||||
CTD39 | 0.87 ** | 0.68 ** | 0.76 ** | 0.33 ** | 0.62 ** | 0.83 ** | 0.72 ** | 0.18 | 0.09 | 0.72 ** | 0.38 ** | 0.66 ** | ||||
CTD69 | 0.90 ** | 0.73 ** | 0.75 ** | 0.18 | 0.41 ** | 0.70 ** | 0.56 ** | 0.07 | 0.02 | 0.78 | 0.26 ** | 0.62 ** | 0.87 ** | |||
CTD75 | 0.11 | −0.12 | −0.03 | 0.63 ** | 0.69 ** | 0.37 ** | 0.39 ** | 0.67 ** | 0.02 | −0.06 | 0.15 | 0.34 ** | 0.12 | −0.11 ** | ||
WUEAGBM | 0.62− ** | −0.55 ** | −0.63 ** | 0.21 ** | −0.03 | −0.56 ** | −0.22 ** | 0.23 * | −0.17 | −0.68 ** | −0.22 ** | −0.38 ** | −0.64 ** | −0.73 ** | 0.40 ** | |
WUEGYLD | 0.06 | −0.11 | −0.04 | 0.60 ** | 0.77 ** | 0.36 ** | 0.50 ** | 0.66 ** | 0.02 | −0.12 | 0.15 | 0.22 * | 0.09 | −0.16 | 0.83 ** | 0.55 ** |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Ghzawi, A.L.A.; Khalaf, Y.B.; Al-Ajlouni, Z.I.; AL-Quraan, N.A.; Musallam, I.; Hani, N.B. The Effect of Supplemental Irrigation on Canopy Temperature Depression, Chlorophyll Content, and Water Use Efficiency in Three Wheat (Triticum aestivum L. and T. durum Desf.) Varieties Grown in Dry Regions of Jordan. Agriculture 2018, 8, 67. https://doi.org/10.3390/agriculture8050067
Al-Ghzawi ALA, Khalaf YB, Al-Ajlouni ZI, AL-Quraan NA, Musallam I, Hani NB. The Effect of Supplemental Irrigation on Canopy Temperature Depression, Chlorophyll Content, and Water Use Efficiency in Three Wheat (Triticum aestivum L. and T. durum Desf.) Varieties Grown in Dry Regions of Jordan. Agriculture. 2018; 8(5):67. https://doi.org/10.3390/agriculture8050067
Chicago/Turabian StyleAl-Ghzawi, Abdul Latief A., Yahya Bani Khalaf, Zakaria I. Al-Ajlouni, Nisreen A. AL-Quraan, Iyad Musallam, and Nabeel Bani Hani. 2018. "The Effect of Supplemental Irrigation on Canopy Temperature Depression, Chlorophyll Content, and Water Use Efficiency in Three Wheat (Triticum aestivum L. and T. durum Desf.) Varieties Grown in Dry Regions of Jordan" Agriculture 8, no. 5: 67. https://doi.org/10.3390/agriculture8050067
APA StyleAl-Ghzawi, A. L. A., Khalaf, Y. B., Al-Ajlouni, Z. I., AL-Quraan, N. A., Musallam, I., & Hani, N. B. (2018). The Effect of Supplemental Irrigation on Canopy Temperature Depression, Chlorophyll Content, and Water Use Efficiency in Three Wheat (Triticum aestivum L. and T. durum Desf.) Varieties Grown in Dry Regions of Jordan. Agriculture, 8(5), 67. https://doi.org/10.3390/agriculture8050067