Advancing Intercropping Research and Practices in Industrialized Agricultural Landscapes
Abstract
:1. Introduction
2. Fundamentals of Intercropping
2.1. Types of Intercropping
2.2. Mechanisms
2.3. Benefits of Intercropping
2.3.1. Productivity and Yield Stability
2.3.2. Pest Reduction
2.3.3. Soil Health
3. Examples of Successful Intercropping Systems
3.1. Grass-Legume Hay
3.2. Winter Wheat and Red Clover
3.3. Cover Crop Mixtures
4. Considerations for Research and Practice
4.1. Fundamental Measurements
4.1.1. Species Selection and Seeding Rates
4.1.2. Evenness and Crop Growth Rate
4.1.3. Stability
4.2. Quantifying Complementarity
4.2.1. Replacement and Additive Experimental Designs
4.2.2. Comparing Intercrops to Monocultures
4.2.3. Response Surface Experimental Designs
4.2.4. Parsing out Intra- and Interspecific Competition
4.3. Standardizing Data Collection
4.4. Temporal and Spatial Aspects of Complementarity and Multifunctionality
4.5. Balancing Multifunctionality and Management Complexity
5. Understanding the Socio-Political Context of Adoption through Cover Crop Mixtures
5.1. Government
5.2. Advocacy
5.3. Private Sector
5.4. Cultural Change with Technological Tools.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Loos, J.; Abson, D.J.; Chappell, M.J.; Hanspach, J.; Mikulcak, F.; Tichit, M.; Fischer, J. Putting meaning back into “sustainable intensification”. Front. Ecol. Environ. 2014, 12, 356–361. [Google Scholar] [CrossRef]
- Struik, P.C.; Kuyper, T.W. Sustainable intensification in agriculture: The richer shade of green. A review. Agron. Sustain. Dev. 2017, 37, 39. [Google Scholar] [CrossRef]
- Litrico, I.; Violle, C. Diversity in plant breeding: A new conceptual framework. Trends Plant Sci. 2015, 20, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Mt. Pleasant, J.; Burt, R.F. Estimating productivity of traditional Iroquoian cropping systems from field experiments and historical literature. J. Ethnobiol. 2010, 30, 52–79. [Google Scholar] [CrossRef]
- Duchene, O.; Vian, J-F.; Celette, F. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms: A review. Agric. Ecosyst. Environ. 2017, 240, 148–161. [Google Scholar] [CrossRef]
- Brooker, R.W.; Bennett, A.E.; Cong, W-F.; Daniell, T.J.; George, T.S.; Hallett, P.D.; Hawes, C.; Iannetta, P.P.M.; Jones, H.G.; Karley, A.J.; et al. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytol. 2015, 206, 107–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadotte, M.W.; Cavender-Bares, J.; Tilman, D.; Oakley, T.H. Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE 2009, 4, e5695. [Google Scholar] [CrossRef] [PubMed]
- Borg, J.; Kiær, L.P.; Lecarpentier, C.; Goldringer, I.; Gauffreteau, A.; Saint-Jean, S.; Barot, S.; Enjalbert, J. Unfolding the potential of wheat cultivar mixtures: A meta-analysis perspective and identification of knowledge gaps. Field Crops Res. 2017, 221, 298–313. [Google Scholar] [CrossRef]
- Chateil, C.; Goldringer, I.; Tarallo, L.; Kerbiriou, C.; Le Viol, I.; Ponge, J.-F.; Salmon, S.; Gachet, S.; Porcher, E. Crop genetic diversity benefits farmland biodiversity in cultivated fields. Agric. Ecosyst. Environ. 2013, 171, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Smithson, J.B.; Lenné, J.M. Varietal mixtures: A viable strategy for sustainable productivity in subsistence agriculture. Ann. Appl. Biol. 1996, 128, 127–158. [Google Scholar] [CrossRef]
- Tooker, J.F.; Frank, S.D. Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. J. Appl. Ecol. 2012, 49, 974–985. [Google Scholar] [CrossRef] [Green Version]
- Reiss, E.R.; Drinkwater, L.E. Cultivar mixtures: A meta-analysis of the effect of intraspecific diversity on crop yield. Ecol. Appl. 2018, 28, 62–77. [Google Scholar] [CrossRef] [PubMed]
- Bybee-Finley, K.A.; Mirsky, S.B.; Ryan, M.R. Functional diversity in summer annual grass and legume intercrops in the northeastern United States. Crop Sci. 2016, 56, 2775. [Google Scholar] [CrossRef]
- Raseduzzaman, M.; Jensen, E.S. Does intercropping enhance yield stability in arable crop production? A meta-analysis. Eur. J. Agron. 2017, 91, 25–33. [Google Scholar] [CrossRef]
- Williamson, J. Extending the Grazing Season—Preparing for the Summer Slump. Available online: https://extension.psu.edu/extending-the-grazing-season-preparing-for-the-summer-slump (accessed on 8 March 2018).
- Liebman, M.; Dyck, E. Crop rotation and intercropping strategies for weed management. Ecol. Appl. 1993, 3, 92. [Google Scholar] [CrossRef] [PubMed]
- Verret, V.; Gardarin, A.; Pelzer, E.; Médiène, S.; Makowski, D.; Valantin-Morison, M. Can legume companion plants control weeds without decreasing crop yield? A meta-analysis. Field Crops Res. 2017, 204, 158–168. [Google Scholar] [CrossRef]
- Tonhasca, A.; Byrne, D.N. The effects of crop diversification on herbivorous insects: A meta-analysis approach. Ecol. Entomol. 1994, 19, 239–244. [Google Scholar] [CrossRef]
- Langellotto, G.A.; Denno, R.F. Responses of invertebrate natural enemies to complex-structured habitats: A meta-analytical synthesis. Oecologia 2004, 139, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Boudreau, M.A. Diseases in intercropping fystems. Annu. Rev. Phytopathol. 2013, 51, 499–519. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.; Midega, C.; Pittchar, J.; Pickett, J.; Bruce, T. Push-pull technology: A conservation agriculture approach for integrated management of insect pests, weeds and soil health in Africa. Int. J. Agric. Sustain. 2011, 9, 162–170. [Google Scholar] [CrossRef]
- Eigenbrode, S.D.; Birch, A.N.E.; Lindzey, S.; Meadow, R.; Snyder, W.E. Review: A mechanistic framework to improve understanding and applications of push-pull systems in pest management. J. Appl. Ecol. 2016, 53, 202–212. [Google Scholar] [CrossRef]
- How Push-Pull Works: A Platform Technology for Improving Livelihoods of Resource Poor Farmers. Available online: http://www.push-pull.net/how_it_works.shtml (accessed on 17 March 2018).
- Sanderson, M.A.; Archer, D.; Hendrickson, J.; Kronberg, S.; Liebig, M.; Nichols, K.; Schmer, M.; Tanaka, D.; Aguilar, J. Diversification and ecosystem services for conservation agriculture: Outcomes from pastures and integrated crop–livestock systems. Renew. Agric. Food Syst. 2013, 28, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Lemaire, G.; Franzluebbers, A.; de Faccio Carvalho, P.C.; Dedieu, B. Integrated crop–livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agric. Ecosyst. Environ. 2014, 190, 4–8. [Google Scholar] [CrossRef]
- Cong, W.-F.; Hoffland, E.; Li, L.; Six, J.; Sun, J.-H.; Bao, X.-G.; Zhang, F.-S.; Van Der Werf, W. Intercropping enhances soil carbon and nitrogen. Glob. Chang. Biol. 2015, 21, 1715–1726. [Google Scholar] [CrossRef] [PubMed]
- Vukicevich, E.; Lowery, T.; Bowen, P.; Urbez-Torres, J.R.; Hart, M. Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agron. Sustain. Dev. 2016, 36, 48. [Google Scholar] [CrossRef]
- Chapman, D.F.; Parsons, A.J.; Schwinning, S. Management of clover in grazed pastures: Expectations, limitations and opportunities. Spec. Publ.-Agron. Soc. N. Z. 1996, 11, 55–64. [Google Scholar]
- Tang, Y.; Yu, L.; Guan, A.; Zhou, X.; Wang, Z.; Gou, Y.; Wang, J. Soil mineral nitrogen and yield-scaled soil N2O emissions lowered by reducing nitrogen application and intercropping with soybean for sweet maize production in southern China. J. Integr. Agric. 2017, 16, 2586–2596. [Google Scholar] [CrossRef]
- Tilman, D.; Reich, P.B.; Knops, J.; Wedin, D.; Mielke, T.; Lehman, C. Diversity and productivity in a long-term grassland experiment. Science 2001, 294, 843–845. [Google Scholar] [CrossRef] [PubMed]
- Picasso, V.D.; Brummer, E.C.; Liebman, M.; Dixon, P.M.; Wilsey, B.J. Crop species diversity affects productivity and weed suppression in perennial polycultures under two management strategies. Crop Sci. 2008, 48, 331. [Google Scholar] [CrossRef]
- Barnes, R.F.; Nelson, C.J.; Collins, M.; Moore, K.J. (Eds.) Forages, Volume 1: An Introduction to Grassland Agriculture, 6th ed.; Wiley-Blackwell: Ames, IA, USA, 2003; ISBN 978-0-8138-0421-7. [Google Scholar]
- Alfalfa-Grass Mixtures Are Complex. Available online: https://hayandforage.com/article-permalink-1578.html (accessed on 28 December 2017).
- Cherney, J.J. Cornell University: Ithaca, NY, Unpublished work. 2018.
- Gaudin, A.C.M.; Westra, S.; Loucks, C.E.S.; Janovicek, K.; Martin, R.C.; Deen, W. Improving resilience of northern field crop systems using inter-seeded red clover: A review. Agronomy 2013, 3, 148–180. [Google Scholar] [CrossRef]
- Schipanski, M.E.; Drinkwater, L.E. Nitrogen fixation of red clover interseeded with winter cereals across a management-induced fertility gradient. Nutr. Cycl. Agroecosyst. 2011, 90, 105–119. [Google Scholar] [CrossRef]
- Schipanski, M.E.; Barbercheck, M.; Douglas, M.R.; Finney, D.M.; Haider, K.; Kaye, J.P.; Kemanian, A.R.; Mortensen, D.A.; Ryan, M.R.; Tooker, J.; et al. A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric. Syst. 2014, 125, 12–22. [Google Scholar] [CrossRef]
- CTIC. Report of the 2016-17 National Cover Crop Survey. Joint publication of the Conservation Technology Information Center, the North Central Region Sustainable Agriculture Research and Education Program, and the American Seed Trade Association. West Lafayette, IN, USA, 2017. Available online: https://www.sare.org/Learning-Center/From-the-Field/North-Central-SARE-From-the-Field/2017-Cover-Crop-Survey-Analysis (accessed on 28 December 2017).
- Kuykendall, M.B. Biomass Production and Changes in Soil Water with Cover Crop Species and Mixtures Following no-Till Winter Wheat. Master’s Thesis, Kansas State University, Manhattan, KS, USA, 2015. [Google Scholar]
- Groff, S. Mixtures and cocktails: Soil is meant to be covered. J. Soil Water Conserv. 2008, 63, 110A–111A. [Google Scholar] [CrossRef]
- USDA NRCS East National Technology Support Center Under Cover Farmers—Feature Length. Available online: https://www.youtube.com/watch?v=nWXCLVCJWTU&t=3s (accessed on 28 December 2017).
- Finney, D.M.; White, C.M.; Kaye, J.P. Biomass production and carbon/nitrogen ratio influence ecosystem services from cover crop mixtures. Agron. J. 2016, 108, 39. [Google Scholar] [CrossRef]
- Berglund, D.R. Buckwheat Production. Available online: https://www.ag.ndsu.edu/pubs/plantsci/crops/a687.pdf (accessed on 28 December 2017).
- Connolly, J.; Wayne, P.; Bazzaz, F.A.; Gaines, A.E.S.D. Interspecific competition in plants: How well do current methods answer fundamental questions? Am. Nat. 2001, 157, 107–125. [Google Scholar] [CrossRef] [PubMed]
- Grace, J.B.; Keough, J.; Guntenspergen, G.R. Size bias in traditional analyses of substitutive competition experiments. Oecologia 1992, 90, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Poffenbarger, H.J.; Mirsky, S.B.; Teasdale, J.R.; Spargo, J.T.; Cavigelli, M.A.; Kramer, M. Nitrogen competition between corn and weeds in soils under organic and conventional management. Weed Sci. 2015, 63, 461–476. [Google Scholar] [CrossRef]
- Berzsenyi, Z.; Gy-Horffy, B.; Lap, D. Effect of crop rotation and fertilisation on maize and wheat yields and yield stability in a long-term experiment. Eur. J. Agron. 2000, 13, 225–244. [Google Scholar] [CrossRef]
- Finlay, K.W.; Wilkinson, G.N. The analysis of adaptation in a plant-breeding programme. Crop Pasture Sci. 1963, 14, 742–754. [Google Scholar] [CrossRef] [Green Version]
- Grover, K.K.; Karsten, H.D.; Roth, G.W. Corn grain yields and yield stability in four long-term cropping systems. Agron. J. 2009, 101, 940. [Google Scholar] [CrossRef]
- Weigelt, A.; Jolliffe, P. Indices of plant competition. J. Ecol. 2003, 91, 707–720. [Google Scholar] [CrossRef] [Green Version]
- Bedoussac, L.; Justes, E. A comparison of commonly used indices for evaluating species interactions and intercrop efficiency: Application to durum wheat–winter pea intercrops. Field Crops Res. 2011, 124, 25–36. [Google Scholar] [CrossRef]
- Cousens, R. Design and interpretation of interference studies: Are some methods totally unacceptable? N. Z. J. For. Sci. 1996, 26, 5–18. [Google Scholar]
- Mead, R.; Willey, R.W. The concept of a “land equivalent ratio” and advantages in yields from intercropping. Exp. Agric. 1980, 16, 217–228. [Google Scholar] [CrossRef]
- De Wit, T.C. On Competition; Pudoc: Wageningen, The Netherlands, 1960; p. 82. [Google Scholar]
- Inouye, B.D. Response surface experimental designs for investigating interspecific competition. Ecology 2001, 82, 2696–2706. [Google Scholar] [CrossRef]
- Willey, R.W.; Heath, S.B. The quantitative relationships between plant population and crop yield. In Advances in Agronomy; Brady, N.C., Ed.; Academic Press: New York, NY, USA, 1969; Volume 21, pp. 281–321. [Google Scholar]
- Spitters, C.J.T. An alternative approach to the analysis of mixed cropping experiments. Estimation of competition effects. Neth. J. Agric. Sci. 1983, 31, 1–11. [Google Scholar]
- Helenius, J.; Jokinen, K. Yield advantage and competition in intercropped oats (Avena sativa L.) and faba bean (Vicia faba L.): Application of the hyperbolic yield-density model. Field Crops Res. 1994, 37, 85–94. [Google Scholar] [CrossRef]
- Connolly, J. On the use of response models in mixture experiments. Oecologia 1987, 72, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Tow, P.G.; Lazenby, A. Competition and Succession in Pastures; CABI: New York, NY, USA, 2000; ISBN 978-0-85199-703-2. [Google Scholar]
- Federer, W.T. Statistical Design and Analysis for Intercropping Experiments: Volume 1: Two Crops; Springer: Berlin, Germany, 2012; ISBN 978-1-4613-9305-4. [Google Scholar]
- Piwowar, H.A.; Day, R.S.; Fridsma, D.B. Sharing detailed research data is associated with increased citation rate. PLoS ONE 2007, 2, e308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Search|re3data.org. Available online: https://www.re3data.org/search?query=agriculture (accessed on 17 March 2018).
- Data Management Planning|Research Data Management Service Group. Available online: https://data.research.cornell.edu/content/data-management-planning (accessed on 17 March 2018).
- The Organization—Dryad. Available online: https://datadryad.org/pages/organization (accessed on 17 March 2018).
- KNB. Available online: https://knb.ecoinformatics.org/#about (accessed on 17 March 2018).
- Data Publisher for Earth & Environmental Science. Available online: https://www.pangaea.de/ (accessed on 17 March 2018).
- Home|National Agricultural Library. Available online: https://data.nal.usda.gov/ (accessed on 17 March 2018).
- Smith, R.G.; Atwood, L.W.; Warren, N.D. Increased productivity of a cover crop mixture is not associated with enhanced agroecosystem services. PLoS ONE 2014, 9, e97351. [Google Scholar] [CrossRef] [PubMed]
- Bybee-Finley, K.A.; Mirsky, S.B.; Ryan, M.R. Crop biomass not species richness drives weed suppression in warm-season annual grass–legume intercrops in the northeast. Weed Sci. 2017, 65, 669–680. [Google Scholar] [CrossRef]
- Finney, D.M.; Kaye, J.P. Functional diversity in cover crop polycultures increases multifunctionality of an agricultural system. J. Appl. Ecol. 2017, 54, 509–517. [Google Scholar] [CrossRef]
- Murrell, E.G.; Schipanski, M.E.; Finney, D.M.; Hunter, M.C.; Burgess, M.; LaChance, J.C.; Baraibar, B.; White, C.M.; Mortensen, D.A.; Kaye, J.P. Achieving diverse cover crop mixtures: Effects of planting date and seeding rate. Agron. J. 2017, 109, 259–271. [Google Scholar] [CrossRef]
- Tilman, D. The ecological consequences of changes in biodiversity: A search for general principles 101. Ecology 1999, 80, 1455–1474. [Google Scholar]
- Hector, A.; Bagchi, R. Biodiversity and ecosystem multifunctionality. Nature 2007, 448, 188–190. [Google Scholar] [CrossRef] [PubMed]
- Naeem, S.; Duffy, J.E.; Zavaleta, E. The Functions of Biological Diversity in an Age of Extinction. Science 2012, 336, 1401–1406. [Google Scholar] [CrossRef] [PubMed]
- Schipanski, M.E.; Drinkwater, L.E. Nitrogen fixation in annual and perennial legume-grass mixtures across a fertility gradient. Plant Soil 2012, 357, 147–159. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations, 5th ed.; Free Press: New York, NY, USA, 2003; ISBN 978-0-7432-2209-9. [Google Scholar]
- Exner, D.N.; Davidson, D.G.; Ghaffarzadeh, M.; Cruse, R.M. Yields and returns from strip intercropping on six Iowa farms. Am. J. Altern. Agric. 1999, 14, 69–77. [Google Scholar] [CrossRef]
- Ledgard, S.F.; Steele, K.W. Biological nitrogen fixation in mixed legume/grass pastures. Plant Soil 1992, 141, 137–153. [Google Scholar] [CrossRef]
- Ledgard, S.F.; Freney, J.R.; Simpson, J.R. Assessing nitrogen transfer from legumes to associated grasses. Soil Biol. Biochem. 1985, 17, 575–577. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Matulich, K.L.; Hooper, D.U.; Byrnes, J.E.; Duffy, E.; Gamfeldt, L.; Balvanera, P.; O’Connor, M.I.; Gonzalez, A. The functional role of producer diversity in ecosystems. Am. J. Bot. 2011, 98, 572–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trenbath, B.R. Biomass productivity of mixtures. In Advances in Agronomy; Academic Press: New York, NY, USA, 1974; Volume 26, pp. 177–210. ISBN 978-0-08-056339-8. [Google Scholar]
- Cadotte, M.W.; Cardinale, B.J.; Oakley, T.H. Evolutionary history and the effect of biodiversity on plant productivity. Proc. Natl. Acad. Sci. USA 2008, 105, 17012–17017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Stomph, T.-J.; Makowski, D.; van der Werf, W. Temporal niche differentiation increases the land equivalent ratio of annual intercrops: A meta-analysis. Field Crops Res. 2015, 184, 133–144. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Wright, J.P.; Cadotte, M.W.; Carroll, I.T.; Hector, A.; Srivastava, D.S.; Loreau, M.; Weis, J.J. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl. Acad. Sci. USA 2007, 104, 18123–18128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Therond, O.; Duru, M.; Roger-Estrade, J.; Richard, G. A new analytical framework of farming system and agriculture model diversities. A review. Agron. Sustain. Dev. 2017, 37. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, M.A.; Brink, G.; Stout, R.; Ruth, L. Grass–legume proportions in forage seed mixtures and effects on herbage yield and weed abundance. Agron. J. 2013, 105, 1289. [Google Scholar] [CrossRef]
- Szumigalski, A.R.; Van Acker, R.C. The agronomic value of annual plant diversity in crop-weed systems. Can. J. Plant Sci. 2006, 86, 865–874. [Google Scholar] [CrossRef] [Green Version]
- Ryan, M.R.; Crews, T.E.; Culman, S.W.; DeHaan, L.R.; Hayes, R.C.; Jungers, J.M.; Bakker, M.G. Managing for multifunctionality in perennial grain crops. BioScience 2018. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Ramirez, J.; Kling, C.; Arbuckle, J.G., Jr.; Wright-Morton, L.; McGuire, J.; Ingels, C.; Benning, J. Cover Crop Adoption Decisions in Iowa: Insights from an in-Person Survey CARD Agricultural Policy Review. Available online: https://www.card.iastate.edu/ag_policy_review/article/?a=67 (accessed on 23 April 2018).
- Roesch-McNally, G.; Basche, A.; Arbuckle, J.G.; Tyndall, J.; Miguez, F.; Bowman, T.; Clay, R. The trouble with cover crops: Farmers’ experiences with overcoming barriers to adoption. Renew. Agric. Food Syst. 2017. [Google Scholar] [CrossRef]
- Dunn, M.; Ulrich-Schad, J.D.; Prokopy, L.S.; Myers, R.L.; Watts, C.R.; Scanlon, K. Perceptions and use of cover crops among early adopters: Findings from a national survey. J. Soil Water Conserv. 2016, 71, 29–40. [Google Scholar] [CrossRef]
- Plastina, A.; Liu, F.; Miguez, F.; Carlson, S. Cover crops use in midwestern US agriculture: Perceived benefits and net returns. Renew. Agric. Food Syst. 2018, 1–11. [Google Scholar] [CrossRef]
- Wade, T.; Claassen, R.L.; Wallander, S. Conservation-Practice Adoption Rates Vary Widely by Crop and Region; United States Department of Agriculture, Economic Research Service: Washington, DC, USA, 2015.
- Cover Crop Program. Available online: http://mda.maryland.gov/resource_conservation/pages/cover_crop.aspx (accessed on 28 December 2017).
- Bryant, L. Iowa Breaks New Ground with Innovative Cover Crop Incentive. Available online: https://www.nrdc.org/experts/lara-bryant/iowa-breaks-new-ground-innovative-cover-crop-incentive (accessed on 28 December 2017).
- MCCC—The Goal of the Midwest Cover Crops Council (MCCC) Is to Facilitate Widespread Adoption of Cover Crops throughout the Midwest, to Improve Ecological, Economic, and Social Sustainability. Available online: http://mccc.msu.edu/ (accessed on 28 December 2017).
- Mission, Vision, Values. Practical Farmers of Iowa. Available online: https://www.practicalfarmers.org/about/mission-vision-values/ (accessed on 14 February 2018).
- SARE, The Northeast Cover Crops Council: Building the Network and Online Decision Support Tools. Available online: https://projects.sare.org/sare_project/ene16-144/ (accessed on 14 February 2018).
- About CTIC. Available online: http://www.ctic.purdue.edu/CTIC%20HOME/ABOUT%20CTIC/ (accessed on 11 March 2018).
- Cover Crops. Available online: http://www.ctic.purdue.edu/Cover%20Crops/ (accessed on 11 March 2018).
- Roadmap-to-Increased-Cover-Crop-Production_Print.pdf. Available online: http://mccc.msu.edu/wp-content/uploads/2016/10/Roadmap-to-Increased-Cover-Crop-Production_Print.pdf (accessed on 28 December 2017).
- About Us. Available online: http://soilhealthpartnership.org/about-us.html (accessed on 5 June 2018).
- Agriculture—Walmart Sustainability. Available online: https://www.walmartsustainabilityhub.com/project-gigaton/agriculture (accessed on 11 March 2018).
- Cover Crop Interseeder and Spplicator. Available online: https://extension.psu.edu/cover-crop-interseeder-and-applicator (accessed on 2 April 2018).
- Hagie Manufacturing Company. Available online: http://www.hagie.com/hagie_manuals.aspx?bd=Virtual|Manuals|Cover%20Crop%20Interseeder (accessed on 2 April 2018).
- Canadian Monster Drill Clean Seed Offers New Level of Seed Accuracy. Available online: https://www.futurefarming.com/Machinery/Articles/2018/2/Canadian-monster-drill-Clean-Seed-offers-new-level-of-seed-accuracy-3663WP/ (accessed on 2 April 2018).
- The CX-6 SMART Seeder—The New Benchmark in Precision Seeding. Available online: http://www.cx6smartseeder.com/home (accessed on 2 April 2018).
- Cover Crop Seeding Results on Earth Day. Available online: http://rowbot.com/blog-posts/2016/4/22/cover-crop-seeding-results-on-earth-day (accessed on 2 April 2018).
- Featured Articles—eXtension. Available online: http://articles.extension.org/ (accessed on 18 March 2018).
Topic | Criteria | Units | Frequency |
---|---|---|---|
Environment | Locations | GPS coordinates, name of site of experiment, town state/province | |
Years | Years | Annually | |
Heat units | Temperature in degrees Celsius, growing days with base unit specified | Monthly or daily | |
Precipitation | mm | Monthly or daily | |
Soil | Type | Name and taxonomic class | |
Organic matter content | Percentage of distribution of regional soils with similar texture | Before experiment starts | |
pH | 1–14 scale | Before experiment starts | |
Nutrient status | Field-level, report N-P-K in ppm | Before experiment starts | |
Hypothesis testing | Purpose(s) of intercrop | e.g., for forage and water quality | |
Experimental design | e.g., additive, replacement, response surface | ||
Seeding rate approach | Constant density, recommended seeding rates, or functional equivalent | ||
Intercrop treatments | Species | Scientific name | |
Cultivars | Name | ||
Seeding rate(s) | kg ha−1 | ||
Duration of planting | Days | ||
Management | Seeding date | Day-month-year | |
Seeding depth | cm, specify if varied by species | Every planting | |
Fertilizer application | Type, equipment used, concentration and rate of practice | Every application | |
Water management | Rainfed or irrigated, specify details in mm | Daily | |
Pest control | Type, equipment used, product and rate | ||
Tillage practices | Type, equipment used, depth in cm | Every tillage event | |
Termination practices | Type, equipment used, product and rate | ||
Results | Sampling date(s) | Day-month-year | |
Biomass | Total and by species, kg ha−1 | Every sampling | |
Crop growth rate | kg ha−1 day−1 | Every sampling | |
Pest pressure | Abundance, species | ||
Meta-data | Data repository | Description of where data are stored | |
Data license | Description of how you want to be acknowledged for your data | ||
Persistent identifier | Unique code for identification (e.g., digital object identifier (DOI)) |
Name | Description | Requirements |
---|---|---|
Dryad | Not agriculture-specific | Affiliation with publication |
KNB | Ecological and environmental sciences | Ecological metadata language (EML) |
Panagaea | Earth and environmental sciences | |
Ag Data Commons | US National Agricultural Libraries | United States Department of Agriculture-funded research |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bybee-Finley, K.A.; Ryan, M.R. Advancing Intercropping Research and Practices in Industrialized Agricultural Landscapes. Agriculture 2018, 8, 80. https://doi.org/10.3390/agriculture8060080
Bybee-Finley KA, Ryan MR. Advancing Intercropping Research and Practices in Industrialized Agricultural Landscapes. Agriculture. 2018; 8(6):80. https://doi.org/10.3390/agriculture8060080
Chicago/Turabian StyleBybee-Finley, K. Ann, and Matthew R. Ryan. 2018. "Advancing Intercropping Research and Practices in Industrialized Agricultural Landscapes" Agriculture 8, no. 6: 80. https://doi.org/10.3390/agriculture8060080
APA StyleBybee-Finley, K. A., & Ryan, M. R. (2018). Advancing Intercropping Research and Practices in Industrialized Agricultural Landscapes. Agriculture, 8(6), 80. https://doi.org/10.3390/agriculture8060080