Relay Intercropping with Cover Crops Improved Autumn Forage Potential of Sweet Maize Stover
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Weather
2.3. Crop Establishment and Management
2.4. Forage Sample Collection
2.5. Grazing Management
2.6. Cattle Measurements
2.7. Statistical Analyses
3. Results and Discussion
3.1. Sweet Maize Stover Biomass
3.2. Overseeded Forage Biomass
3.3. Sweet Maize Stover CP Concentration
3.4. Overseeded Forage CP Concentration
3.5. Sweet Maize Stover 48-h IVDMD
3.6. Overseeded Forage 48-h IVDMD
3.7. Post-Grazing Sweet Maize Stover Biomass and % Disappearance
3.8. Post-Grazing Overseeded Forage Biomass and % Disappearance
3.9. Animal Performance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Borghi, E.; Cursciol, C.A.C.; Mateus, G.P.; Nascente, A.S.; Martins, P.O. Intercropping time of corn and palisadegrass or guineagrass affecting grain yield and forage production. Crop Sci. 2013, 53, 629–636. [Google Scholar] [CrossRef]
- Hellin, J.; Erenstein, O.; Beuchelt, T.; Camacho, C.; Flores, D. Maize stover use and sustainable crop production in mixed crop-livestock systems in Mexico. Field Crops Res. 2013, 153, 12–21. [Google Scholar] [CrossRef]
- Darapuneni, M.K.; Angadi, S.V.; Begna, S.; Lauriault, L.M.; Umesh, M.R.; Kirksey, R.; Marsalis, M. Grain sorghum water use efficiency and yield are impacted by tillage management systems, stubble height, and crop rotation. Crop Forage Turfgrass Manag. 2017, 3. [Google Scholar] [CrossRef]
- Gutierrez-Ornelas, E.; Klopfenstein, T.J. Changes in availability and nutritive value of different corn residue parts as affected by early and late grazing seasons. J. Anim. Sci. 1991, 69, 1741–1750. [Google Scholar] [CrossRef] [PubMed]
- Cox, W.J.; Kalonge, S.; Cherney, D.J.R.; Reid, W.S. Growth, yield, and quality for forage maize under different nitrogen management practices. Agron. J. 1993, 385, 341–347. [Google Scholar] [CrossRef]
- Li, H.; Li, L.; Wegenast, T.; Longin, C.F.; Xu, X.; Melchinger, A.E.; Chen, S. Effect of N supply on stalk quality in maize hybrids. Field Crops Res. 2010, 118, 208–214. [Google Scholar] [CrossRef]
- Klopfenstein, T.J.; Roth, L.; Fernandez-Rivera, S.; Lewis, M. Corn residues in beef production systems. J. Anim. Sci. 1987, 65, 1139–1148. [Google Scholar] [CrossRef]
- Franzlubbers, A.J. Integrated crop-livestock systems in the southeastern USA. Agron. J. 2007, 99, 361–372. [Google Scholar] [CrossRef]
- McKenzie, S.C.; Goosey, H.B.; O’Neill, K.M.; Menalled, F.D. Impact of integrated sheep grazing for cover crop termination on weed and ground beetle (Coleoptera: Carabidae) communities. Agric. Ecosyst. Environ. 2016, 218, 141–149. [Google Scholar] [CrossRef]
- Franzlubbers, A.J.; Stuedemann, J.A. Soil-profile distribution of organic C and N after 6 years of tillage and grazing management. Eur. J. Soil Sci. 2013, 64, 558–566. [Google Scholar] [CrossRef]
- Costa, S.E.V.G.A.; Slouza, E.D.; Anghinoni, I.; Caralho, P.C.F.; Martins, A.P. Impact of an integrated no-till crop-livestock system on phosphorus distribution, availability and stock. Agric. Ecosyst. Environ. 2014, 190, 43–51. [Google Scholar] [CrossRef]
- Andrews, D.J.; Kassam, A.H. The Importance of Multiple Cropping in Increasing World Food Supplies. In Multiple Cropping; Papendick, R.I., Sanchez, P.A., Triplett, G.B., Eds.; ASA: Madison, WI, USA, 1976; pp. 1–10. [Google Scholar]
- Xia, H.-Y.; Wang, Z.-G.; Zhao, J.-H.; Sun, J.-H.; Bao, X.-G.; Christie, P.; Zhang, F.-S.; Li, L. Contribution of interspecific interactions and phosphorus application to sustainable and productive intercropping systems. Field Crops Res. 2013, 154, 53–64. [Google Scholar] [CrossRef]
- Brooker, R.W.; Bennett, A.E.; Cong, W.-F.; Daniell, T.J.; George, T.S.; Hallett, P.D.; Hawes, C.; Iannetta, P.P.M.; Jones, H.G.; Karley, A.J.; et al. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytol. 2015, 206, 107–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moss, J.W.; Tubbs, R.S.; Grey, T.L.; Smith, N.B.; Johnson, J.W. Assessment of double crop and relay intercropping systems of peanut and soft red winter wheat and residual herbicides. Crop Forage Turfgrass Manag. 2017, 3. [Google Scholar] [CrossRef]
- Guldan, S.J.; Martin, C.A.; Daniel, D.L. Interseeding forage brassicas into sweet corn: Forage productivity and effect on sweet corn yield. J. Sustain. Agric. 1998, 11, 51–58. [Google Scholar] [CrossRef]
- Guldan, S.J.; Martin, C.A.; Steiner, R.L. Interseeding forage brassicas into chile: Forage productivity and effect on chile yield. J. Sustain. Agric. 1998, 11, 41–49. [Google Scholar] [CrossRef]
- Lauriault, L.M.; Guldan, S.J.; Martin, C.A.; VanLeeuwen, D.M. Using forage brassicas under irrigation in mid-latitude, high-elevation steppe/desert biomes. Forage Grazinglands 2009, 7. [Google Scholar] [CrossRef]
- Coblentz, W.K.; Walgenbach, R.P. Fall growth, nutritive value, and estimation of total digestible nutrients for cereal-grain forages in the north-central United States. J. Anim. Sci. 2010, 88, 383–399. [Google Scholar] [CrossRef] [PubMed]
- Darapuneni, M.K.; Morgan, G.D.; Shaffer, O.J. Effect of planting date on distribution of seasonal forage yield in dual-purpose wheat, oats, and ryegrass crops. Crop Forage Turfgrass Manag. 2016, 2. [Google Scholar] [CrossRef]
- Roozeboom, K.; Sindelar, A. Corn Growth and Development; Kansas State University Cooperative Extension Service: Manhattan, KS, USA, 2008; Available online: http://www.agronomy.k-state.edu/extension/crop-production/corn/corn-growth-and-development.html (accessed on 19 December 2017).
- Wallis De Vries, M.F. Estimating forage intake and quality of grazing cattle: A reconsideration of the hand-plucking method. J. Range Manag. 1995, 48, 370–375. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis, 15th ed.; AOAC: Washington, DC, USA, 1990. [Google Scholar]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for in vitro digestion of forage crops. J. Br. Grassl. Soc. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- SAS Institute. The SAS 9.3 for Windows; SAS Institute Inc.: Cary, NC, USA, 2010. [Google Scholar]
- Littell, R.C.; Milliken, G.A.; Stroup, W.W.; Wolfinger, R.D. SAS System for Mixed Models; SAS Institute Inc.: Cary, NC, USA, 1996. [Google Scholar]
- Samarappuli, D.P.; Johnson, B.L.; Kandel, H.; Berti, M.T. Biomass yield and nitrogen content of annual energy/forage crops preceded by cover crops. Field Crops Res. 2014, 167, 31–39. [Google Scholar] [CrossRef]
- Grubinger, V. Sweet Corn Genotypes; University of Vermont Cooperative Extension Service: Burlington, VT, USA, 2004; Available online: http://www.uvm.edu/vtvegandberry/factsheets/corngenotypes.html (accessed on 20 December 2017).
- Contreras-Govea, F.E.; Albrecht, K.A. Forage production and nutritive value of oat in autumn and early summer. Crop Sci. 2006, 46, 2382–2386. [Google Scholar] [CrossRef]
- Rich, S.M.; Watt, M. Soil conditions and cereal root system architecture: Review and considerations for linking Darwin and Weaver. J. Exp. Bot. 2013, 64, 1193–1208. [Google Scholar] [CrossRef] [PubMed]
- Rose, T.J.; Rengel, Z.; Ma, Q.; Bowden, J.W. Hydraulic lift by canola plants aids P and K uptake from dry topsoil. Aust. J. Agric. Res. 2008, 59, 38–45. [Google Scholar] [CrossRef]
- Idris, A.B.; Yusoff, S.M.; Sharif, A. Poster 6.4: Sweet Corn Stover Silage Production. Available online: http://www.fao.org/docrep/005/x8486e/x8486e0p.htm (accessed on 19 December 2017).
- Jaster, E.H.; Bell, D.F.; McCoy, G.C. Evaluation of sweet corn residue as roughage for dairy heifers. J. Dairy Sci. 1982, 66, 2349–2355. [Google Scholar] [CrossRef]
- Kraiprom, T.; Tumwasorn, S. Optimum proportion of sweet corn by-product silage (SCW) and rice straw in total mixed ration using in vitro gas production. Agric. Nat. Resour. 2017, 51, 79–83. [Google Scholar] [CrossRef]
- Ball, D.M.; Hoveland, C.S.; Lacefield, G.D. Southern Forages; Potash and Phosphate Institute and Foundation for Agronomic Research: Norcross, GA, USA, 1991. [Google Scholar]
- Miller, M.H. Arbuscular mycorrhizae and the phosphorus nutrition of maize: A review of Guelph studies. Can. J. Plant Sci. 2000, 80, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Auge, R.M. Arbuscular mycorrhizae and soil/plant water relations. Can. J. Soil Sci. 2004, 84, 373–381. [Google Scholar] [CrossRef] [Green Version]
- Turk, M.; Albayrak, S.; Yuksel, O. Effects of phosphorus fertilisation and harvesting stages on forage yield and quality of narbon vetch. N. Z. J. Agric. Res. 2007, 50, 457–462. [Google Scholar] [CrossRef] [Green Version]
- Choat, W.T.; Krehbiel, C.R.; Duff, G.C.; Kirksey, R.E.; Lauriault, L.M.; Rivera, J.D.; Capitan, B.M.; Walker, D.A.; Donart, G.B.; Goad, C.L. Influence of grazing dormant native range or winter wheat pasture on subsequent finishing cattle performance, carcass characteristics, and ruminal metabolism. J. Anim. Sci. 2003, 81, 3191–3201. [Google Scholar] [CrossRef] [PubMed]
- Lauriault, L.M.; Guldan, S.J.; Martin, C.A. Performance of irrigated tall fescue-legume communities under two grazing frequencies in the southern Rocky Mountains, USA. Crop Sci. 2006, 46, 330–336. [Google Scholar] [CrossRef]
- Capitan, B.M.; Krehbiel, C.R.; Kirksey, R.E.; Lauriault, L.M.; Duff, G.C.; Donart, G.B. Effects of winter and summer forage type on feedlot performance and carcass characteristics by beef steers. Prof. Anim. Sci. 2004, 20, 225–236. [Google Scholar]
Month | Temperature, °C | Precipitation, mm | ||||
---|---|---|---|---|---|---|
Year 1 | Year 2 | Long-Term Mean | Year 1 | Year 2 | Long-Term Mean | |
January | −1.6 | 0.0 | −0.9 | 3 | 2 | 10 |
February | 4.5 | 1.3 | 2.1 | 15 | 11 | 9 |
March | 5.4 | 5.1 | 5.8 | 4 | 22 | 13 |
April | 12.0 | 8.7 | 10.2 | 0 | 6 | 15 |
May | 19.3 | 15.0 | 14.8 | 0 | 0 | 19 |
June | 21.1 | 18.7 | 19.6 | 54 | 7 | 20 |
July | 22.2 | 22.8 | 22.4 | 20 | 57 | 35 |
August | 21.4 | 21.8 | 21.2 | 42 | 58 | 48 |
September | 15.6 | 19.4 | 17 | 21 | 16 | 32 |
October | 9.4 | 11.0 | 10.9 | 58 | 104 | 26 |
November | 4.2 | 5.7 | 4.4 | 4 | 19 | 16 |
December | −1.5 | 1.9 | −0.5 | 10 | 0 | 12 |
Mean | 11.0 | 11.0 | 10.6 | 232 | 300 | 254 |
Intercropping Treatment Effect (I) | Aboveground Biomass, mg DM ha−1 | Aboveground Crude Protein, g kg−1 | Aboveground 48-h IVDMD, g kg−1 | |||
---|---|---|---|---|---|---|
Whole Plant Sweet Maize Stover | Over-Seeded Forage | Whole Plant Sweet Maize Stover | Over-Seeded Forage | Whole Plant Sweet Maize Stover | Over-Seeded Forage | |
Maize alone | 3.06 | - | 122 | - | 466 b | - |
Maize-oat | 2.58 | 1.99 | 115 | 119 2,b | 474 b | 422 b |
Maize-turnip | 2.68 | 2.89 | 122 | 186 a | 541 a | 623 a |
SEM 3 | 0.20 | 0.39 | 4 | 5 | 15 | 17 |
p-Values | ||||||
Year (Y) | 0.7844 | 0.0119 | 0.0266 | 0.1455 | 0.0763 | 0.2092 |
I | 0.2332 | 0.1408 | 0.4248 | 0.0006 | 0.0012 | 0.0001 |
Y × I | 0.6121 | 0.2069 | 0.8355 | 0.3218 | 0.4167 | 0.5874 |
Intercropping Treatment (I) | Whole Plant Sweet Maize Stover | Overseeded Forage | ||
---|---|---|---|---|
Aboveground Biomass, Mg DM ha−1 | Disappearance, % | Aboveground Biomass, Mg DM ha−1 | Disappearance, % | |
Maize alone | 0.25 | 92 | - | - |
Maize-oat | 0.23 | 90 | 0.42 | 78 |
Maize-turnip | 0.55 | 81 | 0.40 | 92 |
SEM | 0.011 | 4 | 0.22 | 5 |
p-Values | ||||
Year (Y) | 0.9108 | 0.7864 | 0.1381 | 0.2188 |
I | 0.0713 | 0.0735 | 0.9600 | 0.0716 |
Y × I | 0.3025 | 0.2628 | 0.4148 | 0.3432 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauriault, L.M.; Guldan, S.J.; Popiel-Powers, F.G.; Steiner, R.L.; Martin, C.A.; Heyduck, R.F.; Falk, C.L.; Petersen, M.K.; May, T. Relay Intercropping with Cover Crops Improved Autumn Forage Potential of Sweet Maize Stover. Agriculture 2018, 8, 103. https://doi.org/10.3390/agriculture8070103
Lauriault LM, Guldan SJ, Popiel-Powers FG, Steiner RL, Martin CA, Heyduck RF, Falk CL, Petersen MK, May T. Relay Intercropping with Cover Crops Improved Autumn Forage Potential of Sweet Maize Stover. Agriculture. 2018; 8(7):103. https://doi.org/10.3390/agriculture8070103
Chicago/Turabian StyleLauriault, Leonard M., Steven J. Guldan, Fernanda G. Popiel-Powers, Robert L. Steiner, Charles A. Martin, Robert F. Heyduck, Constance L. Falk, Mark K. Petersen, and Tammy May. 2018. "Relay Intercropping with Cover Crops Improved Autumn Forage Potential of Sweet Maize Stover" Agriculture 8, no. 7: 103. https://doi.org/10.3390/agriculture8070103
APA StyleLauriault, L. M., Guldan, S. J., Popiel-Powers, F. G., Steiner, R. L., Martin, C. A., Heyduck, R. F., Falk, C. L., Petersen, M. K., & May, T. (2018). Relay Intercropping with Cover Crops Improved Autumn Forage Potential of Sweet Maize Stover. Agriculture, 8(7), 103. https://doi.org/10.3390/agriculture8070103