Growth, Phenolics, Photosynthetic Pigments, and Antioxidant Response of Two New Genotypes of Sea Asparagus (Salicornia neei Lag.) to Salinity under Greenhouse and Field Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Greenhouse Experiment
2.3. Field Experiment
2.4. Plant Metabolites and Free-Radical Scavenging Capacity of Shoot Extracts
2.4.1. Photosynthetic Pigments
2.4.2. Phenolic Compounds and Antioxidant Capacity
2.5. Statistical Analysis
3. Results
3.1. Responses of S. neei Genotypes to Different Salinity Levels (Greenhouse Experiment)
3.1.1. Growth Responses
3.1.2. Pigments and Photooxidative Stress Indices
3.1.3. Phenolic Compounds and Antioxidant Activity
3.2. Growth, Biomass Production and Shoot Composition of S. neei Genotypes under Saline Effluent Irrigation in Field Conditions
4. Discussion
4.1. Responses of S. neei Genotypes to Different Salinity Levels
4.2. Responses of S. neei Genotypes under Saline Effluent Irrigation at Field Conditions
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Rozema, J.; Schat, H. Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture. Environ. Exp. Bot. 2013, 92, 83–95. [Google Scholar] [CrossRef] [Green Version]
- Patel, S. Salicornia: Evaluating the halophytic extremophile as a food and a pharmaceutical candidate. 3 Biotech 2016, 6, 104. [Google Scholar] [CrossRef] [PubMed]
- Piirainen, M.; Liebisch, O.; Kadereit, G. Phylogeny, biogeography, systematics and taxonomy of Salicornioideae (Amaranthaceae/Chenopodiaceae)—A cosmopolitan, highly specialized hygrohalophyte lineage dating back to the Oligocene. Taxon 2017, 66, 109–132. [Google Scholar] [CrossRef]
- Ventura, Y.; Eshel, A.; Pasternak, D.; Sagi, M. The development of halophyte-based agriculture: Past and present. Ann. Bot. 2015, 115, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Doncato, K.B.; Costa, C.S.B. Growth and mineral composition of two lineages of the sea asparagus Sarcocornia ambigua irrigated with shrimp farm saline effluent. Exp. Agric. 2017, 54, 399–416. [Google Scholar] [CrossRef]
- Ventura, Y.; Wuddineh, W.A.; Myrzabayeva, M.; Alikulov, Z.; Khozin-Goldberg, I.; Shpigel, M.; Samocha, T.M.; Sagi, M. Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy vegetable crops. Sci. Hortic. 2011, 128, 189–196. [Google Scholar] [CrossRef]
- Bresdin, C.; Glenn, E.P.; Brown, J.J. Comparison of Seed Production and Agronomic Traits of 20 Wild Accessions of Salicornia bigelovii Torr. Grown Under Greenhouse Conditions. In Halophytes for Food Security in Dry Lands; Khan, M.A., Ozturk, M., Gul, B., Ahmed, M.Z., Eds.; Elsevier: New York, NY, USA, 2016; pp. 67–82. [Google Scholar]
- Bertin, R.L.; Gonzaga, L.V.; Borges, G.S.C.; Azevedo, M.S.; Maltez, H.F.; Heller, M.; Micke, G.A.; Tavares, L.B.B.; Fett, R. Nutrient composition and, identification/quantification of major phenolic compounds in Sarcocornia ambigua (Amaranthaceae) using HPLC-ESI-MS/MS. Food Res. Int. 2014, 55, 404–411. [Google Scholar] [CrossRef]
- Costa, C.S.B.; Vicenti, J.R.M.; Morón-Villareyes, J.A.; Caldas, S.; Cardoso, L.V.; Freitas, R.F.; D’Oca, M.G.M. Extraction and characterization of lipids from Sarcocornia ambigua meal: A halophyte biomass produced with shrimp farm effluent irrigation. An. Acad. Bras. Cienc. 2014, 86, 935–943. [Google Scholar] [CrossRef]
- Barreira, L.; Resek, E.; Rodrigues, M.J.; Rocha, M.I.; Pereira, H.; Bandarra, N.; da Silva, M.M.; Varela, J.; Custódio, L. Halophytes: Gourmet food with nutritional health benefits? J. Food Compos. Anal. 2017, 59, 35–42. [Google Scholar] [CrossRef]
- Oh, J.H.; Kim, E.O.; Lee, S.K.; Woo, M.H.; Choi, S.W. Antioxidant activities of the ethanol extract of Hamcho (Salicornia herbacea L.) cake prepared by enzymatic treatment. Food Sci. Biotechnol. 2007, 16, 90–98. [Google Scholar]
- Costa, C.S.B.; Chaves, F.C.; Rombaldi, C.V.; Souza, C.R. Bioactive compounds and antioxidant activity of three biotypes of the sea asparagus Sarcocornia ambigua (Michx.) M.A.Alonso & M.B.Crespo: A halophytic crop for cultivation with shrimp farm effluent. S. Afr. J. Bot. 2018, 117, 95–100. [Google Scholar] [CrossRef]
- Costa, C.S.B.; Armstrong, R.; Detrés, Y.; Koch, E.W.; Bertiller, M.; Beeskow, A.; Neves, L.S.; Tourn, G.M.; Bianciotto, O.A.; Pinedo, L.B.; et al. Effect of ultraviolet-B radiation on salt marsh vegetation: Trends of the genus Salicornia along the Americas. Photochem. Photobiol. 2006, 82, 878–886. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Kim, M.J.; Kim, J.H.; Kim, S.H.; Go, H.K.; Kweon, M.H.; Kim, D.H. Desalted Salicornia europaea powder and its active constituent, trans-ferulic acid, exert anti-obesity effects by suppressing adipogenic-related factors. Pharm. Biol. 2018, 56, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, P.; Bressan, R. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 463–499. [Google Scholar] [CrossRef] [PubMed]
- Flowers, T.J.; Colmer, T.D. Plant salt tolerance: Adaptations in halophytes. Ann. Bot. 2015, 115, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Redondo-Gómez, S.; Wharmby, C.; Castillo, J.M.; Mateos-Naranjo, E.; Luque, C.J.; de Cires, A.; Luque, T.; Davy, A.J.; Enrique Figueroa, M. Growth and photosynthetic responses to salinity in an extreme halophyte, Sarcocornia fruticosa. Physiol. Plant. 2006, 128, 116–124. [Google Scholar] [CrossRef]
- Duarte, B.; Santos, D.; Marques, J.C.; Caçador, I. Ecophysiological adaptations of two halophytes to salt stress: Photosynthesis, PS II photochemistry and anti-oxidant feedback—Implications for resilience in climate change. Plant Physiol. Biochem. 2013, 67, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Dubey, R. Photosynthesis in plants under stressful conditions. In Handbook of Photosynthesis; Pessarakli, M., Ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2005; pp. 710–730. [Google Scholar]
- Taiz, L.; Zeiger, E. Plant Physiology; Sinauer Associates Inc.: Sunderland, UK, 2012. [Google Scholar]
- Latowski, D.; Kuczyńska, P.; Strzałka, K. Xanthophyll cycle—A mechanism protecting plants against oxidative stress. Redox Rep. 2011, 16, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.; Nie, L.; Jiang, P.; Feng, J.; Lv, S.; Chen, X.; Bao, H.; Guo, J.; Tai, F.; Wang, J.; et al. Transcriptome analysis of Salicornia europaea under saline conditions revealed the adaptive primary metabolic pathways as early events to facilitate salt adaptation. PLoS ONE 2013, 8, e80595. [Google Scholar] [CrossRef] [PubMed]
- Freitas, R.F.; Costa, C.S.B. Germination responses to salt stress of two intertidal populations of the perennial glasswort Sarcocornia ambigua. Aquat. Bot. 2014, 117, 12–17. [Google Scholar] [CrossRef]
- Costa, C.S.B.; Kadereit, G.; Freitas, G.P.M. Molecular markers indicate the phylogenetic identity of southern Brazilian sea asparagus: First record of Salicornia neei Lag. in Brazil. Rodriguésia 2018, in press. [Google Scholar]
- Mendes, C.R.; Cartaxana, P.; Brotas, V. HPLC determination of phytoplankton and microphytobenthos pigments: Comparing resolution and sensitivity of a C18 and a C8 method. Limnol. Oceanogr. Methods 2007, 5, 363–370. [Google Scholar] [CrossRef]
- Souza, M.M.; da Silva, B.; Costa, C.S.B.; Badiale-Furlong, E. Free phenolic compounds extraction from Brazilian halophytes, soybean and rice bran by ultrasound-assisted and orbital shaker methods. An. Acad. Bras. Cienc. 2018. Accepted. [Google Scholar]
- Gajula, D.; Verghese, M.; Boateng, J.; Walker, L.T.; Shackelfor, L.; Mentreddy, S.R.; Cedric, S. Determination of total phenolics, flavonoids and antioxidant and chemopreventive potential of Basil (Ocimum basilicum L. and Ocimum tenuiflorum L.). Int. J. Cancer Res. 2009, 5, 130–143. [Google Scholar] [CrossRef]
- Scaglioni, P.T.; de Souza, T.D.; Schmidt, C.G.; Badiale-Furlong, E. Availability of free and bound phenolic compounds in rice after hydrothermal treatment. J. Cereal Sci. 2014, 60, 526–532. [Google Scholar] [CrossRef]
- Nicklisch, S.C.T.; Waite, J.H. Optimized DPPH assay in a detergent-based buffer system for measuring antioxidant activity of proteins. MethodsX 2014, 1, 233–238. [Google Scholar] [CrossRef] [PubMed]
- García-Caparrós, P.; Llanderal, A.; Pestana, M.; Correia, P.J.; Lao, M.T. Nutritional and physiological responses of the dicotyledonous halophyte Sarcocornia fruticosa to salinity. Aust. J. Bot. 2017, 65, 573–581. [Google Scholar] [CrossRef]
- Moura, J.C.M.S.; Bonine, C.A.V.; de Oliveira Fernandes Viana, J.; Dornelas, M.C.; Mazzafera, P. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J. Integr. Plant Biol. 2010, 52, 360–376. [Google Scholar] [CrossRef] [PubMed]
- Fache, M.; Boutevin, B.; Caillol, S. Vanillin production from lignin and its use as a renewable chemical. ACS Sustain. Chem. Eng. 2016, 4, 35–46. [Google Scholar] [CrossRef]
- Pourali, O.; Asghari, F.S.; Yoshida, H. Production of phenolic compounds from rice bran biomass under subcritical water conditions. Chem. Eng. J. 2010, 160, 259–266. [Google Scholar] [CrossRef]
- Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci. 2012, 196, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Tiku, B.L. Effect of salinity on the photosynthesis of the halophyte Salicornia rubra and Distichlis stricta. Physiol. Plant. 1976, 37, 23–28. [Google Scholar] [CrossRef]
- FAO FAOSTAT. Available online: http://www.fao.org/faostat/en/#home (accessed on 1 April 2018).
- Gargouri, M.; Magné, C.; Dauvergne, X.; Ksouri, R.; El Feki, A.; Metges, M.A.G.; Talarmin, H. Cytoprotective and antioxidant effects of the edible halophyte Sarcocornia perennis L. (swampfire) against lead-induced toxicity in renal cells. Ecotoxicol. Environ. Saf. 2013, 95, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Aumeeruddy-Elalfi, Z.; Mollica, A.; Yilmaz, M.A.; Mahomoodally, M.F. In vitro and in silico perspectives on biological and phytochemical profile of three halophyte species—A source of innovative phytopharmaceuticals from nature. Phytomedicine 2018, 38, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Ku, Y.G.; Bae, J.H.; Namiesnik, J.; Barasch, D.; Nemirovski, A.; Katrich, E.; Gorinstein, S. Detection of bioactive compounds in organically and conventionally grown asparagus spears. Food Anal. Methods 2018, 11, 309–318. [Google Scholar] [CrossRef]
- Alarcón-Flores, M.I.; Romero-González, R.; Martínez Vidal, J.L.; Garrido Frenich, A. Determination of phenolic compounds in artichoke, garlic and spinach by ultra-high-performance liquid chromatography coupled to tandem mass spectrometry. Food Anal. Methods 2014, 7, 2095–2106. [Google Scholar] [CrossRef]
- Dos Reis, L.C.R.; de Oliveira, V.R.; Hagen, M.E.K.; Jablonski, A.; Flôres, S.H.; de Oliveira Rios, A. Carotenoids, flavonoids, chlorophylls, phenolic compounds and antioxidant activity in fresh and cooked broccoli (Brassica oleracea var. Avenger) and cauliflower (Brassica oleracea var. Alphina F1). LWT Food Sci. Technol. 2015, 63, 177–183. [Google Scholar] [CrossRef]
- Aires, A.; Fernandes, C.; Carvalho, R.; Bennett, R.N.; Saavedra, M.J.; Rosa, E.A.S. Seasonal effects on bioactive compounds and antioxidant capacity of six economically important brassica vegetables. Molecules 2011, 16, 6816–6832. [Google Scholar] [CrossRef] [PubMed]
- Sheperd, K.A.; Macfarlane, T.D.; Colmer, T.D. Morphology, anatomy and histochemistry of Salicornioideae (Chenopodiaceae) fruits and seeds. Ann. Bot. 2005, 95, 917–933. [Google Scholar] [CrossRef] [PubMed]
Effluent and Environment Parameters | |
---|---|
Salinity (mM NaCl) | 213 ± 17.0 |
pH | 8.65 ± 0.19 |
DO (mg L−1) | 7.59 ± 0.58 |
Nitrate (mg L−1) | <0.03 |
TAN (mg L−1) | 0.15 ± 0.62 |
Phosphate (mg L−1) | 0.30 ± 0.24 |
Soil | |
Moisture (%) * | 12.4 ± 5.4 |
EC (dS m−1) * | 14.3 ± 5.6 |
Meteorological ** | |
T max. (°C) | 24.5 ± 2.6 |
T min. (°C) | 23.3 ± 2.7 |
Radiation (MJ m−2 day−1) | 19.8 ± 6.97 |
Rainfall (mm) | 340 |
Genotype | Salinity | Height | Branch Number | Fresh Weight | Dry Weight | RDW | Succulence | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BTH1 | 0.1 | 15.3 ± 1.7 a | 8.2 ± 5.6 ab | 0.60 ± 0.22 abc | 0.15 ± 0.05 a | 100 | 75.2 ± 3.3 ab | |||||
34 | 13.6 ± 2.6 a | 5.6 ± 4.3 abc | 0.52 ± 0.11 abc | 0.11 ± 0.03 a | 75.7 | 78.3 ± 4.2 a | ||||||
86 | 15.4 ± 3.6 a | 8.8 ± 5.6 a | 0.85 ± 0.29 a | 0.19 ± 0.07 a | 129 | 77.8 ± 4.7 ab | ||||||
171 | 14.8 ± 2.2 a | 5.5 ± 3.6 abc | 0.43 ± 0.15 bc | 0.11 ± 0.03 a | 76.5 | 73.1 ± 6.0 abc | ||||||
513 | 13.8 ± 2.4 a | 5.8 ± 2.5 abc | 0.32 ± 0.14 bc | 0.13 ± 0.05 a | 88.1 | 59.1 ± 5.7 c | ||||||
769 | 14.3 ± 2.7 a | 6.9 ± 4.5 ab | 0.28 ± 0.18 c | 0.12 ± 0.04 a | 79.2 | 52.5 ± 15.1 c | ||||||
BTH2 | 0.1 | 15.0 ± 3.6 a | 1.3 ± 1.7 c | 0.55 ± 0.23 abc | 0.11 ± 0.05 a | 100 | 79.5 ± 2.1 a | |||||
34 | 15.6 ± 2.6 a | 3.2 ± 4.6 bc | 0.66 ± 0.29 ab | 0.13 ± 0.07 a | 119 | 80.2 ± 1.9 a | ||||||
86 | 16.1 ± 2.8 a | 2.7 ± 3.8 bc | 0.60 ± 0.20 abc | 0.13 ± 0.04 a | 116 | 78.1 ± 4.1 ab | ||||||
171 | 15.2 ± 2.5 a | 3.0 ± 3.6 abc | 0.50 ± 0.22 bc | 0.12 ± 0.03 a | 105 | 75.5 ± 5.1 ab | ||||||
513 | 15.3 ± 3.5 a | 3.8 ± 4.8 abc | 0.41 ± 0.30 bc | 0.11 ± 0.04 a | 103 | 66.9 ± 9.1 bc | ||||||
769 | 15.3 ± 2.7 a | 4.7 ± 4.0 abc | 0.55 ± 0.21 abc | 0.12 ± 0.03 a | 111 | 75.2 ± 8.6 ab | ||||||
F | p | F | p | F | p | F | p | F | p | |||
Genotype (G) | 3.21 | 0.757 | 35.0 | <0.001 | 2.88 | 0.335 | 2.17 | 0.143 | - | 17.2 | <0.001 | |
Salinity (S) | 0.46 | 0.500 | 1.76 | 0.187 | 36.2 | <0.001 | 0.61 | 0.437 | - | 49.1 | <0.001 | |
Interaction (G × S) | 0.18 | 0.676 | 2.42 | 0.122 | 12.3 | 0.016 | 1.68 | 0.197 | - | 7.84 | 0.006 |
Genotype | Salinity | Chlorophyll a | Chlorophyll b | β-Carotene § | Lutein | Neoxanthin | Violaxanthin | Zeaxanthin § | Σcar:Σchl | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BTH1 | 0.1 | 190 ± 6.02 a | 103 ± 11.9 a | 1.98 ± 0.43 a | 28.6 ± 6.02 a | 7.20 ± 2.33 a | 4.46 ± 0.97 a | 0.44 ± 0.09 a | 0.14 ± 0.02 a | ||||||||
34 | 85.0 ± 8.26 abc | 46.7 ± 2.95 bc | 0.47 ± 0.05 a | 13.3 ± 0.49 abc | 2.98 ± 0.88 abc | 1.56 ± 0.13 b | 0.39 ± 0.10 a | 0.14 ± 0.01 a | |||||||||
86 | 155 ± 27.9 ab | 78.3 ± 14.6 ab | 0.99 ± 0.41 a | 20.0 ± 4.55 ab | 4.55 ± 1.65 ab | 2.29 ± 0.41 ab | 0.88 ± 0.51 a | 0.12 ± 0.01 a | |||||||||
171 | 103 ± 34.7 abc | 57.7 ± 20.7 abc | 0.76 ± 0.29 a | 14.4 ± 4.74 abc | 3.98 ± 1.13 abc | 1.76 ± 0.41 b | 0.57 ± 0.03 a | 0.14 ± 0.01 a | |||||||||
513 | 78.0 ± 33.1 bc | 40.4 ± 16.7 bc | 0.53 ± 0.17 a | 9.00 ± 2.74 bc | 2.13 ± 0.51 bc | 1.14 ± 0.35 bc | 0.82 ± 0.09 a | 0.12 ± 0.02 a | |||||||||
769 | 86.0 ± 22.5 abc | 45.6 ± 9.32 bc | 0.76 ± 0.15 a | 11.4 ± 2.14 abc | 2.54 ± 0.43 abc | 1.43 ± 0.72 c | 0.86 ± 0.24 a | 0.13 ± 0.02 a | |||||||||
BTH2 | 0.1 | 87.3 ± 21.3 abc | 42.9 ± 12.5 bc | 0.13 ± 0.22 | 12.6 ± 3.92 abc | 2.93 ± 1.08 abc | 1.25 ± 0.25 b | nd | 0.13 ± 0.01 a | ||||||||
34 | 152 ± 5.70 ab | 67.1 ± 6.49 abc | 0.43 ± 0.37 | 17.2 ± 2.60 abc | 3.52 ± 1.51 abc | 1.28 ± 0.21 b | nd | 0.10 ± 0.02 a | |||||||||
86 | 66.5 ± 12.0 bc | 31.5 ± 4.46 bc | nd | 8.56 ± 1.01 bc | 2.13 ± 0.22 bc | 0.77 ± 0.22 bc | nd | 0.12 ± 0.01 a | |||||||||
171 | 61.8 ± 3.53 bc | 29.9 ± 0.62 bc | nd | 8.22 ± 0.58 bc | 1.94 ± 0.33 bc | 0.76 ± 0.19 bc | nd | 0.12 ± 0.01 a | |||||||||
513 | 41.9 ± 12.7 c | 23.2 ± 7.48 c | nd | 6.80 ± 3.21 c | 1.58 ± 0.99 c | 0.25 ± 0.22 cd | nd | 0.13 ± 0.03 a | |||||||||
769 | 41.6 ± 6.01 c | 22.2 ± 3.60 c | nd | 6.13 ± 1.00 bc | 1.54 ± 0.27 bc | nd d | nd | 0.12 ± 0.01 a | |||||||||
F | p | F | p | F | p | F | p | F | p | F | p | F | p | F | p | ||
Genotype (G) | 11.0 | 0.002 | 18.0 | <0.001 | - | - | 18.3 | <0.001 | 16.9 | <0.001 | 60.8 | <0.001 | - | - | 6.46 | 0.016 | |
Salinity (S) | 16.8 | <0.001 | 15.6 | <0.001 | 2.61 | 0.126 | 25.1 | <0.001 | 18.6 | <0.001 | 50.8 | <0.001 | 8.94 | 0.009 | 0.16 | 0.694 | |
Interaction (G × S) | 0.01 | 0.936 | 0.25 | 0.624 | - | - | 0.04 | 0.840 | 0.03 | 0.854 | 4.49 | 0.042 | - | - | 1.91 | 0.177 |
Genotype | Salinity | FPC (mg GAE g−1) | FFC (mg QE g−1) | Quercetin (μg g−1) | Syringic Acid (μg g−1) § | Vanillin (μg g−1) | IC50 (mg mL−1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BTH1 | 0.1 | 14.8 ± 1.80 a | 0.67 ± 0.20 a | 3.82 ± 0.48 bcd | 1.44 ± 0.58 a | 5.87 ± 1.39 a | 4.78 ± 0.82 a | ||||||
34 | 14.3 ± 1.04 a | 0.76 ± 0.06 a | 1.07 ± 1.81 cd | 1.48 ± 0.79 a | 5.22 ± 0.68 ab | 5.10 ± 1.32 a | |||||||
86 | 15.7 ± 0.65 a | 0.82 ± 0.16 a | nd d | 1.11 ± 0.27 ab | 5.39 ± 0.94 ab | 4.37 ± 1.79 a | |||||||
171 | 11.5 ± 2.64 a | 0.63 ± 0.15 a | 3.62 ± 3.11 bcd | 0.88 ± 0.39 ab | 4.78 ± 0.82 ab | 6.00 ± 0.59 a | |||||||
513 | 11.7 ± 1.05 a | 0.50 ± 0.01 a | 4.36 ± 0.52 bcd | 0.35 ± 0.29 b | 4.09 ± 0.37 ab | 5.66 ± 0.30 a | |||||||
769 | 14.3 ± 0.14 a | 0.59 ± 0.15 a | 4.56 ± 0.34 bcd | 0.23 ± 0.20 b | 4.15 ± 0.27 ab | 4.75 ± 0.54 a | |||||||
BTH2 | 0.1 | 13.7 ± 1.00 a | 0.43 ± 0.12 a | 6.43 ± 0.28 abcd | 0.23 ± 0.24 | 4.96 ± 0.70 ab | 5.88 ± 1.13 a | ||||||
34 | 13.9 ± 0.96 a | 0.51 ± 0.08 a | 5.84 ± 0.83 abcd | 0.14 ± 0.14 | 4.33 ± 0.22 ab | 5.86 ± 1.17 a | |||||||
86 | 12.4 ± 1.61 a | 0.40 ± 0.01 a | 5.45 ± 0.62 abcd | nd | 4.29 ± 0.10 ab | 6.65 ± 1.16 a | |||||||
171 | 13.9 ± 0.94 a | 0.64 ± 0.23 a | 7.32 ± 4.85 abc | nd | 4.60 ± 1.16 ab | 5.31 ± 1.06 a | |||||||
513 | 12.3 ± 1.04 a | 0.44 ± 0.19 a | 9.54 ± 2.73 ab | nd | 4.33 ± 0.27 ab | 6.50 ± 0.57 a | |||||||
769 | 12.7 ± 1.20 a | 0.47 ± 0.12 a | 11.6 ± 5.19 a | nd | 3.54 ± 0.35 b | 5.51 ± 0.67 a | |||||||
F | p value | F | p value | F | p value | F | p value | F | p value | F | p value | ||
Genotype (G) | 1.09 | 0.305 | 13.8 | <0.001 | 36.5 | <0.001 | - | - | 6.26 | 0.018 | 5.95 | 0.021 | |
Salinity (S) | 2.60 | 0.117 | 2.61 | 0.116 | 16.8 | <0.001 | 28.1 | <0.001 | 16.0 | <0.001 | 0.00 | 0.974 | |
Interaction (G × S) | 0.01 | 0.929 | 2.02 | 0.164 | 1.78 | 0.192 | - | - | 1.05 | 0.313 | 0.12 | 0.730 |
Student’s t-Test | ||||
---|---|---|---|---|
BTH1 | BTH2 | t | p | |
Growth parameters | ||||
Height (cm) | 40.6 ± 6.81 | 51.6 ± 9.12 | −2.16 | 0.065 |
Branch number | 52.4 ± 11.8 | 52.8 ± 6.53 | −0.07 | 0.949 |
Fresh Weight (g) | 56.4 ± 10.2 | 158 ± 31.2 | −6.92 | 0.001 |
Dry Weight (g) | 14.9 ± 1.92 | 25.4 ± 5.40 | −4.10 | 0.009 |
Succulence (%) | 72.9 ± 5.97 | 84.0 ± 0.48 | −4.30 | 0.008 |
Shoot yield (ton fw ha−1) | 2.05 | 5.74 | ||
Phenolic compounds | ||||
FPC (mg GAE g−1 dw) | 13.1 ± 1.84 | 22.2 ± 2.38 | −5.27 | 0.007 |
FFC (mg QE g−1 dw) | 0.54 ± 0.12 | 5.06 ± 1.83 | −4.26 | 0.005 |
Quercetin (μg g−1 dw) ‡ | nd | 14.8 † | ||
Protocatechuic acid (μg g−1 dw) | 4.91 ± 0.06 | 10.0 ± 0.64 | −11.2 | 0.007 |
Chlorogenic acid (μg g−1 dw) | 1.67 ± 1.01 | 3.46 ± 3.93 | −0.75 | 0.519 |
Gallic acid (μg g−1 dw) | 0.38 ± 0.10 | 0.64 ± 0.24 | −1.41 | 0.263 |
Caffeic acid (μg g−1 dw) ‡ | nd | 1.21 ± 0.43 | ||
Syringic acid (μg g−1 dw) | 6.82 ± 2.28 | 1.51 ± 0.37 | 3.25 | 0.031 |
Vanillin (μg g−1 dw) | 5.24 ± 0.78 | 2.73 ± 0.87 | 3.03 | 0.039 |
Ferulic acid (μg g−1 dw) ‡ | 0.39 ± 0.02 | nd | ||
Antioxidant capacity | ||||
IC50 (mg dw mL−1) | 14.3 ± 7.11 | 5.41 ± 2.28 | 2.05 | 0.154 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Souza, M.M.; Mendes, C.R.; Doncato, K.B.; Badiale-Furlong, E.; Costa, C.S.B. Growth, Phenolics, Photosynthetic Pigments, and Antioxidant Response of Two New Genotypes of Sea Asparagus (Salicornia neei Lag.) to Salinity under Greenhouse and Field Conditions. Agriculture 2018, 8, 115. https://doi.org/10.3390/agriculture8070115
De Souza MM, Mendes CR, Doncato KB, Badiale-Furlong E, Costa CSB. Growth, Phenolics, Photosynthetic Pigments, and Antioxidant Response of Two New Genotypes of Sea Asparagus (Salicornia neei Lag.) to Salinity under Greenhouse and Field Conditions. Agriculture. 2018; 8(7):115. https://doi.org/10.3390/agriculture8070115
Chicago/Turabian StyleDe Souza, Manuel M, Carlos Rafael Mendes, Kennia B. Doncato, Eliana Badiale-Furlong, and César S. B. Costa. 2018. "Growth, Phenolics, Photosynthetic Pigments, and Antioxidant Response of Two New Genotypes of Sea Asparagus (Salicornia neei Lag.) to Salinity under Greenhouse and Field Conditions" Agriculture 8, no. 7: 115. https://doi.org/10.3390/agriculture8070115
APA StyleDe Souza, M. M., Mendes, C. R., Doncato, K. B., Badiale-Furlong, E., & Costa, C. S. B. (2018). Growth, Phenolics, Photosynthetic Pigments, and Antioxidant Response of Two New Genotypes of Sea Asparagus (Salicornia neei Lag.) to Salinity under Greenhouse and Field Conditions. Agriculture, 8(7), 115. https://doi.org/10.3390/agriculture8070115