Inhibitory Effects of Bamboo Leaf on the Growth of Pyricularia grisea Fungus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Preparation of Bamboo Leaf Extract
2.2. GC-MS Analysis
2.3. Mycelia Growth Inhibition Test
2.4. Statistical Analysis
3. Results
3.1. Chemical Profiles Identified by GC-MS
3.2. Inhibitory Activity on Mycelia Growth of P. grisea
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Darma, R.; Purnamasari, I.M.; Agustina, D.; Pramudito, T.E.; Sugiharti, M.; Suwanto, A. A strong antifungal—Producing bacteria from bamboo powder for biocontrol of Sclerotium rolfsii in melon (Cucumis melo var. amanta). J. Plant Pathol. Microbiol. 2016, 7, 334. [Google Scholar] [CrossRef]
- Khush, G.S.; Jena, K. Current status and future prospects for research on blast resistance in rice (Oryza sativa L.). In Advances in Genetics, Genomics and Control of Rice Blast Disease; Wang, G.L., Valent, B., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 1–10. [Google Scholar]
- Michelmore, R.W.; Meyers, B.C. Cluster of resistance genes in plants evolve by divergent selection and a birth- and -death process. Genome Res. 1998, 8, 1113–1130. [Google Scholar] [CrossRef] [PubMed]
- Mundt, C.C. Durable resistance: A key to sustainable management of pathogens and pests. Infect. Genet. Evol. 2014, 27, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Kamalakannan, A.; Shanmugan, V.; Suhendran, S.; Srinivasan, R. Antifungal properties of plant extracts against Pyriclaria oryzae, rice blast pathogen. Indian Phytopathol. 2001, 54, 490–492. [Google Scholar]
- Sena, A.P.A.; Chaibub, A.A.; Côrtes, M.V.C.B.; Silva, G.B.; Silva-Lobo, V.L.; Prabhu, A.S.; Filippi, M.C.C.; Araújo, L.G. Increased enzymatic activity in rice leaf blast suppression by crude extract of Epicoccum sp. Trop. Plant Pathol. 2013, 38, 387–397. [Google Scholar] [CrossRef]
- Olufolaji, D.B.; Adeosun, B.O.; Onasanya, R.O. In vitro investigation on antifungal activity of some plant extracts against Pyricularia oryzae. Niger. J. Biotechnol. 2015, 29, 38–43. [Google Scholar] [CrossRef]
- Hubert, J.; Mabagala, R.B.; Mamiro, D.P. Efficacy of selected plant extracts against Pyricularia grisea, causal agent of rice blast disease. Am. J. Plant Sci. 2015, 6, 602–611. [Google Scholar] [CrossRef]
- Netam, R.S.; Bahadur, N.S.; Tiwari, U.; Tiwari, R.K.S. Efficacy of plant extracts for the control of (Pyricularia grisea) blast of rice under field condition of Bastar, Chhattisgarh. Res. J. Agric. Sci. 2011, 2, 269–271. [Google Scholar]
- Tanaka, A.; Zhu, Q.; Tan, H.; Horiba, H.; Ohnuki, K.; Mori, Y.; Yamauchi, R.; Ishikawa, H.; Iwamoto, A.; Kawahara, H.; et al. Biological activities and phytochemical profiles of extracts from different parts of bamboo (Phyllostachys pubescens). Molecules 2014, 19, 8238–8260. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Xia, D.; Li, L.; Sun, L.; Yang, K. Diversity of culturable bacteria isolated from root domains of moso bamboo (Phyllostachys edulis). Microb. Ecol. 2009, 58, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Huang, J.; Xiao, G.; Chen, F.; Lee, B.; Ge, Q.; You, Y.; Liu, S.; Zhang, Y. Antioxidant Capacities of Fractions of Bamboo Shaving Extract and Their Antioxidant Components. Molecules 2016, 21, 996. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Shiozawa, R.; Takeda, S.; Ito, S.; Matsuda, K. Structural investigation of a β-d-glucan and a xyloglucan from bamboo-shoot cell-walls. Carbohydr. Res. 1982, 109, 233–248. [Google Scholar] [CrossRef]
- Mao, J.W.; Yin, J.; Ge, Q.; Jiang, Z.L.; Gong, J.Y. In vitro antioxidant activities of polysaccharides extracted from Moso bamboo-leaf. Int. J. Biol. Macromol. 2013, 55, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Eyini, M.; Jayakumar, M.; Pannirselvam, S. Allelopathic effect of bamboo leaf extract on the seedling of groundnut. Trop. Ecol. 1989, 30, 138–141. [Google Scholar]
- Jayakumar, M.; Eyini, M.; Pannirselvam, S. Allelopathic effect of bamboo root extract on the seedling of groundnut and corn. Geobios 1987, 14, 221–224. [Google Scholar]
- Ying, C.; Mao, Y.; Chen, L.; Wang, S.; Ling, H.; Li, W.; Zhou, X. Bamboo leaf extract ameliorates diabetic nephropathy through activating the AKT signaling pathway in rats. Int. J. Biol. Macromol. 2017, 105, 1587–1594. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, N.; Kobayashi, N.; Cruz, C.M.V.; Fukuta, Y. Protocols for the sampling of diseased specimens and evaluation of blast disease in rice. JIRCAS Work. Rep. 2009, 63, 17–33. [Google Scholar]
- Kartal, S.N.; Terzi, E.; Kose, C.; Hofmeyr, J.; Imamura, Y. Efficacy of tar oil recovered during slow pyrolysis of macadamia nut shells. Int. Biodeterior. Biodegrad. 2011, 65, 369–373. [Google Scholar] [CrossRef]
- Ishii, H. Rice pathogens in Japan. In Fungicide Resistance in Plant Pathogens; Ishii, H., Hollomon, D., Eds.; Springer: Tokyo, Japan, 2015; pp. 341–354. [Google Scholar]
- Gangawane, L.V. Fungicide resistance in plant pathogens in India. Indian Phytopathol. 1990, 40, 551–553. [Google Scholar]
- Kumar, R.S.; Sivakumar, T.; Sunderam, R.S.; Gupta, M.; Mazumdar, V.K.; Gomathi, P.; Rajeshwar, Y.; Sarawanan, S.; Kumar, M.S.; Murugesh, K.; et al. Antioxidant ad antimicrobial activity of Bauhinia racemosa L. stem bark. Braz. J. Med. Biol. Res. 2005, 38, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Suriani, N.L.; Suprapta, D.N.; Sudana, I.M.; Temaja, R.M. Antifungal activity of Piper canium against Pyricularia oryzae Cav. the cause of rice blast disease on rice. J. Biol. Agric. Healthc. 2015, 5, 72–78. [Google Scholar]
- Wu, D.; Chen, J.; Lu, B.; Xiong, L.; He, Y.; Zhang, Y. Application of near infrared spectroscopy for the rapid determination of antioxidant activity of bamboo leaf extract. Food Chem. 2012, 135, 2147–2156. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.A.; Bora, T.C.; Singh, N.R. Preliminary phytochemical analysis and antimicrobial potential of fermented Bambusa balcooa shoots. Bioscan 2012, 7, 391–394. [Google Scholar]
- Gohel, N.M.; Chauhan, H.L.; Mehta, A.N. Bio-efficacy of fungicides against Pyricularia oryzae the incitant of rice blast. J. Plant Dis. Sci. 2008, 3, 18–192. [Google Scholar]
- Ghanerian, M.T.; Ehrampoush, M.H.; Jebali, A.; Hekmati Moghadam, S.H.; Mahmoudi, M. Antimicrobial activity, toxicity and stability of phytol as novel surface disinfectant. Environ. Health Eng. Manag. J. 2015, 2, 13–16. [Google Scholar]
- Rajab, M.S.; Cantell, C.L.; Franzblau, S.G.; Fischer, N.H. Antimycobacterial activity of (E)-phytol and derivatives: A preliminary structure-activity study. Planta Med. 1998, 64, 2–4. [Google Scholar] [CrossRef] [PubMed]
- Ryu, K.R.; Choi, J.Y.; Chung, S.; Kim, D.K. Anti-scratching behavioural effect of the essential oil and phytol isolated from Artemisia princeps Pamp. in mice. Planta Med. 2011, 77, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.; Qwivedi, S.K. Antifungal approach of phenolic compounds against Fusarium udum and Fusarium oxysporum f.sp.ciceri. Afr. J. Agric. Res. 2013, 8, 596–600. [Google Scholar]
- Salehan, N.M.; Meon, S.; Ismail, I.S. Antifungal activity plant pathogens. Int. J. Agric. Biol. 2013, 15, 864–870. [Google Scholar]
- Amadioha, A.C. Controlling rice blast in vitro and in vivo with extracts of Azadirachta indica. Crop Prot. 2000, 19, 287–290. [Google Scholar] [CrossRef]
- Shelke, S.; Mhaske, G.; Gadakh, S.; Gill, C. Green synthesis and biological evaluation of some novel azoles as antimicrobial agents. Bioorg. Med. Chem. Lett. 2010, 20, 7200–7204. [Google Scholar] [CrossRef] [PubMed]
- Sriram, D.; Yogeeswari, P.; Priya, D.Y. Antimycobacterial activity of novel N-(substituted)-2-isonicotionoylhydrazinocarbothioaide endowed with high activity towards isoniazid resistant tuberculosis. Biomed. Pharmacother. 2009, 63, 36–39. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, S.; Abbasi, S.; Bahraminejad, S.; Harighi, B. Inhibitory effect of some plant crude extracts against cucumber damping-off agents. Aust. Plant Pathol. 2012, 41, 331–338. [Google Scholar] [CrossRef]
- Jantason, A.; Moungsrimuangdee, B.; Dethoup, T. In vitro antifungal activity evaluation of five plant extracts against five plant pathogenic fungi causing rice and economic crop disease. J. Biopestic. 2016, 9, 1–7. [Google Scholar]
Zone of Inhibition (mm) | Inhibitory Activity Level |
---|---|
>17 | +++, strong |
12–16 | ++, moderate |
7–11 | +, weak |
6–0 | −, negative |
Peaks Number | Extracting Solvents | Chemical Class | ||||
---|---|---|---|---|---|---|
Methanol | Hexane | Ethyl Acetate | 1-Butanol | Water | ||
1 | Propanoic acid, 2-oxo-, methyl ester | - | - | + | + | Long chain fatty acid |
2 | Glycerin | - | + | + | - | Polyol |
3 | Coumaran | + | + | + | - | Colorless oil |
4 | Phytol | - | - | - | - | Acyclic diterpene alcohol |
5 | n-Hexadecanoic acid | - | + | - | - | Long chain fatty acid |
6 | Phytol | + | + | - | - | Diterpene alcohol |
7 | cis, cis, cis-7,10,13-Hexadecatrienal | - | - | - | - | Volatile oil |
8 | Allene | - | - | - | - | Polyene |
9 | Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester | - | - | - | - | Long chain fatty acid |
10 | Cis, cis, cis-7,10,13-Hexadecatrienal | - | - | - | - | Volatile oil |
11 | 1-Tridecyn-4-ol | - | - | - | - | Volatile oil |
12 | Campesterol | - | - | - | - | Sterol |
13 | Stigmasterol | - | - | - | Sterol | |
14 | γ-Sitosterol | + | + | - | - | Sterol |
15 | β-Amyrin | + | + | - | - | Triterpene |
16 | Urs-12-en-24-oic acid, 3-oxo-, methyl ester, (+)- | + | - | - | - | Triterpene |
17 | Phytol, acetate | - | - | - | - | Acyclic diterpene |
18 | - | Hydrazinecarboxamide | - | Amino urea | ||
19 | - | Hexadecanoic acid, methyl ester | - | - | - | Long chain fatty acid |
20 | - | Methylamine | - | - | - | Amine |
21 | - | - | Phenol | - | - | Phenol |
22 | - | - | Benzaldehyde, 4-hydroxy- | - | - | Phenolic acid |
23 | - | - | - | Pentane, 3-methyl- | - | |
24 | - | - | - | 4H-Pyran-4-one, 5-hydroxy-2-methyl- | - | Phenol |
25 | - | - | - | - | Ketene | Simple ketene |
Extracts | Concentrations (mg/mL) | |||||
---|---|---|---|---|---|---|
0.1 | Level | 0.5 | Level | 1.0 | Level | |
M | −0.967 g | − | 0.367 g | − | 0.33 g | − |
H | 16.70 de | ++ | 19.70 d | +++ | 38.70 ab | +++ |
E | 9.033 f | + | 38.033 abc | +++ | 31.367 c | +++ |
B | 1.700 g | − | 23.033 d | +++ | 34.367 bc | +++ |
W | 6.367 fg | − | 12.367 ef | ++ | 44.367 a | +++ |
Extracting Solvents | IC50 (mg/mL) |
---|---|
Methanol | 9.71 a |
Hexane | 0.62 d |
Ethyl acetate | 0.72 c |
1-butanol | 0.81 b |
Water | 0.70 c |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toan, N.P.; Xuan, T.D.; Thu Ha, P.T.; Tu Anh, T.T.; Khanh, T.D. Inhibitory Effects of Bamboo Leaf on the Growth of Pyricularia grisea Fungus. Agriculture 2018, 8, 92. https://doi.org/10.3390/agriculture8070092
Toan NP, Xuan TD, Thu Ha PT, Tu Anh TT, Khanh TD. Inhibitory Effects of Bamboo Leaf on the Growth of Pyricularia grisea Fungus. Agriculture. 2018; 8(7):92. https://doi.org/10.3390/agriculture8070092
Chicago/Turabian StyleToan, Nguyen Phu, Tran Dang Xuan, Pham Thi Thu Ha, Truong Thi Tu Anh, and Tran Dang Khanh. 2018. "Inhibitory Effects of Bamboo Leaf on the Growth of Pyricularia grisea Fungus" Agriculture 8, no. 7: 92. https://doi.org/10.3390/agriculture8070092
APA StyleToan, N. P., Xuan, T. D., Thu Ha, P. T., Tu Anh, T. T., & Khanh, T. D. (2018). Inhibitory Effects of Bamboo Leaf on the Growth of Pyricularia grisea Fungus. Agriculture, 8(7), 92. https://doi.org/10.3390/agriculture8070092