Biomass-Derived Carbonaceous Adsorbents for Trapping Ammonia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Acid Treatment
2.2.2. KOH Treatment
2.2.3. Agronomical Analysis
2.2.4. Ammonium Sorption Tests
2.2.5. Ammonia Sorption Test
2.2.6. Assessment of Error and Statistical Analysis
3. Results
3.1. Physicochemical Properties of Untreated Hydrochars and Biochars
3.2. NH3/NH4+ Sorption by Untreated Hydrochar and Biochars
3.3. Physicochemical Properties of Modified Hydrochars and Biochars
3.4. NH3/NH4+ Sorption by Treated Hydrochar and Biochars
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arogo, J.; Westerman, P.W.; Heber, A.J. A review of ammonia emissions from confined swine feeding operations. Trans. Am. Soc. Agric. Eng. 2003, 46, 805. [Google Scholar] [CrossRef]
- Kastner, J.R.; Miller, J.; Das, K.C. Pyrolysis conditions and ozone oxidation effects on ammonia adsorption in biomass generated chars. J. Hazard. Mater. 2009, 164, 1420–1427. [Google Scholar] [CrossRef] [PubMed]
- Pollard, S.J.T.; Fowler, G.D.; Sollars, C.J.; Perry, R. Low-cost adsorbents for waste and wastewater treatment: A review. Sci. Total Environ. 1992, 116, 31–52. [Google Scholar] [CrossRef]
- Steiner, C.; Das, K.C.; Melear, N.; Lakly, D. Reducing Nitrogen Loss during Poultry Litter Composting Using Biochar. J. Environ. Qual. 2010, 39, 1236–1242. [Google Scholar] [CrossRef] [PubMed]
- Corre, Y.; Seredych, M.; Bandosz, T.J. Analysis of the chemical and physical factors affecting reactive adsorption of ammonia on graphene/nanoporous carbon composites. Carbon N. Y. 2013, 55, 176–184. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.J.; Hosseini-Bandegharaei, A.; Chao, H.P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef] [PubMed]
- Liang, P.; Yu, H.; Huang, J.; Zhang, Y.; Cao, H. The review on adsorption and removing ammonia nitrogen with biochar on its mechanism. MATEC Web Conf. 2016, 67, 07006. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, X.; Liu, L.; Ju, M.; Zheng, K. Adsorption behavior of selective recognition functionalized biochar to Cd(II) in wastewater. Materials (Basel) 2018, 11, 299. [Google Scholar] [CrossRef] [PubMed]
- Le Leuch, L.M.; Bandosz, T.J. The role of water and surface acidity on the reactive adsorption of ammonia on modified activated carbons. Carbon N. Y. 2007, 45, 568–578. [Google Scholar] [CrossRef]
- Petit, C.; Bandosz, T.J. Role of surface heterogeneity in the removal of ammonia from air on micro/mesoporous activated carbons modified with molybdenum and tungtsen oxides. Microporous Mesoporous Mater. 2009, 118, 61–67. [Google Scholar] [CrossRef]
- Taghizadeh-Toosi, A.; Clough, T.J.; Sherlock, R.R.; Condron, L.M. Biochar adsorbed ammonia is bioavailable. Plant Soil 2012, 350, 57–69. [Google Scholar] [CrossRef]
- Canals-Batlle, C.; Ros, A.; Lillo-Ródenas, M.A.; Fuente, E.; Montes-Morán, M.A.; Martin, M.J.; Linares-Solano, A. Carbonaceous adsorbents for NH3 removal at room temperature. Carbon N. Y. 2008, 46, 176–178. [Google Scholar] [CrossRef]
- Yin, X.; Han, H.; Gunji, I.; Endou, A.; Cheettu Ammal, S.S.; Kubo, M.; Miyamoto, A. NH3 Adsorption on the Brönsted and Lewis Acid Sites of V2O5 (010): A Periodic Density Functional Study. J. Phys. Chem. B 1999, 103, 4701–4706. [Google Scholar] [CrossRef]
- Taghizadeh-Toosi, A.; Clough, T.J.; Sherlock, R.R.; Condron, L.M. A wood based low-temperature biochar captures NH3-N generated from ruminant urine-N, retaining its bioavailability. Plant Soil 2012, 353, 73–84. [Google Scholar] [CrossRef]
- Ro, K.; Lima, I.; Reddy, G.; Jackson, M.; Gao, B. Removing Gaseous NH3 Using Biochar as an Adsorbent. Agriculture 2015, 5, 991–1002. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, H.; Shen, F.; Yang, G.; Zhang, Y.; Zeng, Y.; Wang, L.; Xiao, H.; Deng, S. Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3-), and phosphate (PO43−). Chemosphere 2015, 119, 646–653. [Google Scholar] [CrossRef]
- Zheng, W.; Sharma, B.K.; Rajagopalan, N. Using Biochar as a Soil Amendment for Sustainable Agriculture. 2010. Available online: http://hdl.handle.net/2142/25503 (accessed on 10 September 2018).
- Gao, F.; Xue, Y.; Deng, P.; Cheng, X.; Yang, K. Removal of aqueous ammonium by biochars derived from agricultural residuals at different pyrolysis temperatures. Chem. Speciat. Bioavailab. 2015, 27, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Yang, Z.; Xu, X.; Dai, M.; Guo, R. Characterization and ammonia adsorption of biochar prepared from distillers’ grains anaerobic digestion residue with different pyrolysis temperatures. J. Chem. Technol. Biotechnol. 2018, 93, 198–206. [Google Scholar] [CrossRef]
- Ismadji, S.; Tong, D.S.; Soetaredjo, F.E.; Ayucitra, A.; Yu, W.H.; Zhou, C.H. Bentonite hydrochar composite for removal of ammonium from Koi fish tank. Appl. Clay Sci. 2016, 119, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Schimmelpfennig, S.; Müller, C.; Grünhage, L.; Koch, C.; Kammann, C. Biochar, hydrochar and uncarbonized feedstock application to permanent grassland-Effects on greenhouse gas emissions and plant growth. Agric. Ecosyst. Environ. 2014, 191, 39–52. [Google Scholar] [CrossRef]
- Subedi, R.; Kammann, C.; Pelissetti, S.; Taupe, N.; Bertora, C.; Monaco, S.; Grignani, C. Does soil amended with biochar and hydrochar reduce ammonia emissions following the application of pig slurry? Eur. J. Soil Sci. 2015, 66, 1044–1053. [Google Scholar] [CrossRef]
- Takaya, C.A.; Fletcher, L.A.; Singh, S.; Okwuosa, U.C.; Ross, A.B. Recovery of phosphate with chemically modified biochars. J. Environ. Chem. Eng. 2016, 4, 1156–1165. [Google Scholar] [CrossRef] [Green Version]
- Takaya, C.A.; Fletcher, L.A.; Singh, S.; Anyikude, K.U.; Ross, A.B. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes. Chemosphere 2016, 145, 518–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, X.; Liu, Y.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 2015, 125, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.H.; Xu, R.K.; Zhang, H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 2011, 102, 3488–3497. [Google Scholar] [CrossRef] [PubMed]
- Jassal, R.S.; Johnson, M.S.; Molodovskaya, M.; Black, T.A.; Jollymore, A.; Sveinson, K. Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality. J. Environ. Manag. 2015, 152, 140–144. [Google Scholar] [CrossRef]
- Houba, V.J.G.; Novozamsky, I.; Huybregts, A.W.M.; van der Lee, J.J. Comparison of soil extractions by 0.01 M CaCl2, by EUF and by some conventional extraction procedures. Plant Soil 1986, 96, 433–437. [Google Scholar] [CrossRef]
- Lazányi, J.; Loch, J. Evaluation of 0.01 M CaCl2 Extractable Nitrogen Forms in a Long-term Experiment. Agrokémia és Talajt. 2006, 55, 135–144. [Google Scholar] [CrossRef]
- Wang, B.; Lehmann, J.; Hanley, K.; Hestrin, R.; Enders, A. Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH. Chemosphere 2015, 138, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Petit, C.; Kante, K.; Bandosz, T.J. The role of sulfur-containing groups in ammonia retention on activated carbons. Carbon N. Y. 2010, 48, 654–667. [Google Scholar] [CrossRef]
- Thorn, K.A.; Mikita, M.A. Ammonia fixation by humic substances: A nitrogen-15 and carbon-13 NMR study. Sci. Total Environ. 1992, 113, 67–87. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Q. Sustainable mechanisms of biochar derived from brewers’ spent grain and sewage sludge for ammonia-nitrogen capture. J. Clean. Prod. 2016, 112, 3927–3934. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhang, S.; Li, T.; Zhao, F.; He, Z.; Zhao, H.; Yang, X.; Wang, H.; Zhao, J.; Rafiq, M.T. Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants. J. Zhejiang Univ. Sci. B 2013, 14, 1152–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gai, X.; Wang, H.; Liu, J.; Zhai, L.; Liu, S.; Ren, T.; Liu, H. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS ONE 2014, 9, e113888. [Google Scholar] [CrossRef]
- Bolan, N.S.; Saggar, S.; Luo, J.; Bhandral, R.; Singh, J. Gaseous Emissions of Nitrogen from Grazed Pastures: Processes, Measurements and Modelling, Environmental Implications, and Mitigation. Adv. Agron. 2004, 84, 120. [Google Scholar]
- Nguyen, M.L.; Tanner, C.C. Ammonium removal from wastewaters using natural New Zealand zeolites. N. Z. J. Agric. Res. 1998, 41, 427–446. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Wang, Z.; Zhao, J.; Herbert, S.; Xing, B. Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures. Environ. Pollut. 2013, 181, 60–67. [Google Scholar] [CrossRef]
- Latham, K.G.; Jambu, G.; Joseph, S.D.; Donne, S.W. Nitrogen doping of hydrochars produced hydrothermal treatment of sucrose in H2O, H2SO4, and NaOH. ACS Sustain. Chem. Eng. 2014, 2, 755–764. [Google Scholar] [CrossRef]
- Huff, M.D.; Lee, J.W. Biochar-surface oxygenation with hydrogen peroxide. J. Environ. Manag. 2016, 165, 17–21. [Google Scholar] [CrossRef]
- Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’Neill, B.; Skjemstad, J.O.; Thies, J.; Luizão, F.J.; Petersen, J.; et al. Black Carbon Increases Cation Exchange Capacity in Soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730. [Google Scholar] [CrossRef]
- Chou, L.H.; Tsai, R.I.; Chang, J.R.; Lee, M.T. Regenerable adsorbent for removing ammonia evolved from anaerobic reaction of animal urine. J. Environ. Sci. (China) 2006, 18, 1176–1181. [Google Scholar] [CrossRef]
- Ritz, C.W.; Tasistro, A.S.; Kissel, D.E.; Fairchild, B.D. Evaluation of surface-applied char on the reduction of ammonia volatilization from broiler litter. J. Appl. Poult. Res. 2011, 20, 240–245. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Munroe, P.; Joseph, S.; Henderson, R.; Ziolkowski, A. Water extractable organic carbon in untreated and chemical treated biochars. Chemosphere 2012, 87, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Marsh, H.; Rodríguez-Reinoso, F. Chapter 5—Activation Processes (Thermal or Physical). Activated Carbon; Elsevier Science Ltd.: Oxford, UK, 2006; pp. 243–321. [Google Scholar]
- Oya, A.; Iu, W.G. Deodorization performance of charcoal particles loaded with orthophosphoric acid against ammonia and trimethylamine. Carbon N. Y. 2002, 40, 1391–1399. [Google Scholar] [CrossRef]
- Gómez-Serrano, V.; Acedo-Ramos, M.; López-Peinado, A.J.; Valenzuela-Calahorro, C. Oxidation of activated carbon by hydrogen peroxide. Study of surface functional groups by FT-ir. Fuel 1994, 73, 387–395. [Google Scholar] [CrossRef]
Char | NH3 Sorption (mg g−1) | CaCl2-Extractable NH4+ (mg g−1) | NH4+ Sorption (mg g−1) | NH4+ Desorbed (mg g−1) |
---|---|---|---|---|
a 43 mg NH3 | 43 mg NH4+ L−1 | |||
OAK 250 | 18.8 ± 1.6 | 7.2 ± 0.3 | 6.0 ± 0.5 | 0.0 ± 0.0 |
OAK 450 | 2.9 ± 1.4 | 1 b | 9.2 ± 0.2 | 1.1 ± 1.6 |
OAK 650 | 0.7 ± 0.9 | 1 b | 8.9 ± 0.8 | 0.0 ± 0.0 |
a 450 mg NH3 | 450 mg NH4+ L−1 | |||
OAK 250 | 28.5 ± 0.3 | 6.1 ± 0.8 | 45.1 ± 1.7 | 9 a |
OAK 450 | 4.3 ± 1.2 | 2.68 ± 0.04 | 29.9 ± 1.8 | 12 a |
OAK 650 | 8.1 ± 2.2 | 2.1 ± 0.1 | 32.7 ± 6.7 | 11 a |
Char | CEC | b NH4+eq | C | H | N | S | a O |
---|---|---|---|---|---|---|---|
(cmolc kg−1) | (mg g−1) | (%) | (%) | (%) | (%) | (%) | |
OAK 250 | 88.3 ± 9.7 | 15.9 | 67.9 | 6.5 | 1.4 | 0.1 | 24.1 |
OAK250-H2SO4 | 81.1 ± 4.7 | 14.6 | 61.3 | 4.9 | 0.4 | 0.04 | 33.4 |
OAK 250-H3PO4 | 86.8 ± 4.7 | 15.6 | 60.2 | 4.8 | 0.3 | 0 | 34.6 |
OAK 250-H2O2 | 102.4 ± 7.3 | 18.4 | 56.1 | 4.5 | 0.3 | 0 | 39.1 |
OAK 250-KOH | 102.0 ± 8.2 | 18.4 | 62 | 4.9 | 0.4 | 0 | 32.7 |
OAK 450 | 59.4 ± 8.1 | 10.7 | 65.7 | 2.7 | 0.6 | 0 | 31 |
OAK 450-H2SO4 | 66.3 ± 15.6 | 11.9 | 73.6 | 4.8 | 0.5 | 0 | 21.1 |
OAK 450-H3PO4 | 103.5 ± 33.0 | 18.6 | 70 | 4.1 | 0.4 | 0 | 25.5 |
OAK 450-H2O2 | 147.2 ± 6.9 | 26.5 | 71.3 | 3.9 | 0.5 | 0 | 24.3 |
OAK 450-KOH | 141.0 ± 13.2 | 25.4 | 77.7 | 2.8 | 0.6 | 0 | 19 |
OAK 650 | 76.6 ± 0.7 | 13.8 | 76.5 | 1.4 | 0.8 | 0 | 21.3 |
OAK 650-H2SO4 | 106.8 ± 18.7 | 19.2 | 62.9 | 2.4 | 0.6 | 0 | 34.2 |
OAK 650-H3PO4 | 126.3 ± 63.9 | 22.7 | 50.5 | 3.6 | 0.5 | 0 | 45.4 |
OAK 650-H2O2 | 71.2 ± 7.4 | 12.8 | 63.7 | 2.3 | 0.5 | 0 | 33.5 |
OAK 650-KOH | 132.3 ± 11.2 | 23.8 | 68.3 | 1.9 | 0.7 | 0 | 29.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takaya, C.A.; Parmar, K.R.; Fletcher, L.A.; Ross, A.B. Biomass-Derived Carbonaceous Adsorbents for Trapping Ammonia. Agriculture 2019, 9, 16. https://doi.org/10.3390/agriculture9010016
Takaya CA, Parmar KR, Fletcher LA, Ross AB. Biomass-Derived Carbonaceous Adsorbents for Trapping Ammonia. Agriculture. 2019; 9(1):16. https://doi.org/10.3390/agriculture9010016
Chicago/Turabian StyleTakaya, Chibi A., Kiran R. Parmar, Louise A. Fletcher, and Andrew B. Ross. 2019. "Biomass-Derived Carbonaceous Adsorbents for Trapping Ammonia" Agriculture 9, no. 1: 16. https://doi.org/10.3390/agriculture9010016
APA StyleTakaya, C. A., Parmar, K. R., Fletcher, L. A., & Ross, A. B. (2019). Biomass-Derived Carbonaceous Adsorbents for Trapping Ammonia. Agriculture, 9(1), 16. https://doi.org/10.3390/agriculture9010016