Sulfur-Enriched Bone Char as Alternative P Fertilizer: Spectroscopic, Wet Chemical, and Yield Response Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origin of Bone Chars and Experimental Setup
2.2. Wet Chemical Analyses of Fertilizers, Soil- and Plant Samples
2.3. Electron Microscopic Analyses of Bone Chars
2.4. Statistics
3. Results
3.1. Analyses of Fertilizers
3.1.1. Total Element Concentrations, pH-Values and P Solubility of Fertilizers
3.1.2. Spatial Distribution of Elements at the Surface of the Bone Chars
3.2. Results of the Pot Experiment
3.2.1. Soil pH and Soil Pwater Concentrations at Seeding and Harvest
3.2.2. Yield, P Uptake, Apparent Nutrient Recovery Efficiency (ANR) and P Budget
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cordell, D.; Rosemarin, A.; Schröder, J.J.; Smit, A.L. Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere 2011, 84, 747–758. Available online: https://www.sciencedirect.com/science/article/pii/S0045653511001652 (accessed on 7 October 2018). [CrossRef]
- Kleinman, P.J.A.; Sharpley, A.N.; McDowell, R.W.; Flaten, D.N.; Buda, A.R.; Tao, L.; Bergstrom, L.; Zhu, Q. Managing agricultural phosphorus for water quality protection: Principles for progress. Plant Soil 2011, 349, 169–182. Available online: https://link.springer.com/article/10.1007/s11104-011-0832-9 (accessed on 9 October 2018). [CrossRef]
- EU. Consultative Communication on the Sustainable Use of Phosphorus. 2013. Available online: http://ec.europa.eu/environment/consultations/pdf/phosphorus/EN.pdf (accessed on 9 October 2018).
- Buckwell, A.; Nadeu, E. Nutrient Recovery and Reuse (NRR) in European Agriculture. A Review of the Issues, Opportunities, and Actions. RISE Foundation: Brussels, 2016. Available online: http://www.risefoundation.eu/publications (accessed on 7 October 2018).
- Van Dijk, K.C.; Lesschen, J.P.; Oenema, O. Phosphorus flows and balances of the European Union Member States. Sci. Total Environ. 2016, 542, 1078–1093. Available online: https://www.sciencedirect.com/science/article/pii/S0048969715305519 (accessed on 9 October 2018). [CrossRef]
- Kabbe, C.; Remy, C.; Kraus, F. Review of promising methods for phosphorus recovery and recycling from wastewater. In Proceedings/International Fertiliser Society; International Fertiliser Society: London, UK, 2015; Volume 763, pp. 1–32. ISBN 978-0-85310-400-1. Available online: https://fertiliser-society.org/proceedings/uk/Prc763.HTM (accessed on 9 October 2018).
- Mehta, C.M.; Khunjar, W.O.; Nguyen, V.; Tait, S.; Batstone, D.J. Technologies to recover nutrients from waste water streams: A critical review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 385–427. Available online: https://www.tandfonline.com/doi/abs/10.1080/10643389.2013.866621 (accessed on 9 October 2018). [CrossRef]
- Ohtake, H.; Tsuneda, S. (Eds.) Phosphorus Recovery and Recycling; Springer: Heidelberg, Germany, 2019; Volume 526, ISBN 978-981-10-8031-9. Available online: https://www.springer.com/de/book/9789811080302 (accessed on 7 October 2018).
- Siebers, N.; Kruse, J.; Leinweber, P. Speciation of phosphorus and cadmium in a contaminated soil amended with bone char: Sequential fractionations and XANES spectroscopy. Water Air Soil Pollut. 2013, 224, 1564–1576. Available online: https://link.springer.com/article/10.1007/s11270-013-1564-7 (accessed on 9 October 2018). [CrossRef]
- Zwetsloot, M.J.; Lehmann, J.; Solomon, D. Recycling slaughterhouse waste into fertilizer: How do pyrolysis temperature and biomass additions affect phosphorus availability and chemistry? J. Sci. Food Agric. 2015, 95, 281–288. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/jsfa.6716 (accessed on 9 October 2018). [CrossRef] [PubMed]
- Wopenka, B.; Pasteris, J.D. A mineralogical perspective on the apatite in bone. Mater. Sci. Eng. C 2005, 25, 131–143. Available online: https://www.sciencedirect.com/science/article/pii/S0928493105000135 (accessed on 9 October 2018). [CrossRef]
- Siebers, N.; Godlinski, F.; Leinweber, P. The phosphorus fertilizer value of bone char for potatoes, wheat, and onions: First results. Landbauforsch. vTI Agric. For. Res. 2012, 62, 59–64. Available online: https://d-nb.info/1023890631/34 (accessed on 9 October 2018).
- Morshedizad, M.; Zimmer, D.; Leinweber, P. Effect of bone chars on phosphorus-cadmium-interactions as evaluated by three extraction procedures. J. Plant Nutr. Soil Sci. 2016, 179, 388–398. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/jpln.201500604 (accessed on 9 October 2018). [CrossRef]
- Morshedizad, M.; Leinweber, P. Mobilization and leaching of phosphorus and cadmium in soils amended with different biochars. Clean Soil Air Water 2017, 45, 1–7. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/clen.201600635 (accessed on 9 October 2018). [CrossRef]
- Ashby, D.L.; Fenster, W.E.; Attoe, O.J. Effect of partial acidulation and elemental sulfur on availability of phosphorus in rock phosphate 1. Agron. J. 1966, 58, 621–625. Available online: https://dl.sciencesocieties.org/publications/aj/abstracts/58/6/AJ0580060621?access=0&view=pdf (accessed on 7 October 2018). [CrossRef]
- Brahim, S.; Nies, A.; Flipsen, M.; Neuhoff, D.; Scherer, H. Effect of combined fertilization with rock phosphate and elemental sulphur on yield and nutrient uptake of soybean. Plant Soil Environ. 2017, 63, 89–95. Available online: https://www.agriculturejournals.cz/publicFiles/208904.pdf (accessed on 7 October 2018). [CrossRef] [Green Version]
- Bustamante, M.A.; Ceglie, F.G.; Aly, A.; Mihreteab, H.T.; Ciaccia, C.; Tittarelli, F. Phosphorus availability from rock phosphate: Combined effect of green waste composting and sulfur addition. J. Environ. Manag. 2016, 182, 557–563. Available online: https://www.ncbi.nlm.nih.gov/pubmed/27543750 (accessed on 7 October 2018). [CrossRef]
- Fan, X.; Habib, L.; Fleckenstein, J.; Haneklaus, S.; Schnug, E. In situ digestion: A concept to manage soil phosphate in organic farming. In Proceedings of the 13th International Fertilizer Symposium, Fertilizers in Context with Resource Management in Agriculture, Tokat, Turkey, 10–13 June 2002; pp. 219–228. [Google Scholar]
- Powers, W.L. Sulfur in Relation to Soil Fertility; Station Bulletin 199, 45 pages; Oregon Agricultural College: Corvallis, OR, USA, 1923; Available online: https://pdfs.semanticscholar.org/b3e0/e9deb2ac4ad2727e5ad1e1c54afb5a229fb2.pdf (accessed on 9 October 2018).
- Rajan, S.S.S. Phosphate rock and phosphate rock/sulphur granules as phosphate fertilizers and their dissolution in soil. Fertil. Res. 1987, 11, 43–60. Available online: https://link.springer.com/article/10.1007/BF01049563 (accessed on 9 October 2018). [CrossRef]
- Germida, J.J.; Janzen, H.H. Factors affecting the oxidation of elemental sulfur in soils. Fertil. Res. 1993, 35, 101–114. Available online: https://link.springer.com/article/10.1007/BF00750224 (accessed on 7 October 2018). [CrossRef]
- Graystone, S.J.; Wainwright, M. Sulphur oxidation by soil fungi including some species of mycorrhizae and wood-rotting Basidiomycetes. FEMS Microbiol. Ecol. 1988, 53, 1–8. Available online: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1574-6968.1988.tb02641.x (accessed on 7 October 2018). [CrossRef]
- Zhi-Hui, Y.; Stöven, K.; Haneklaus, S.; Singh, B.R.; Schnug, E. Elemental sulfur oxidation by Thiobacillus spp. and aerobic heterotrophic sulfur-oxidizing bacteria. Pedosphere 2010, 20, 71–79. Available online: https://www.sciencedirect.com/science/article/pii/S1002016009602848 (accessed on 9 October 2018). [CrossRef]
- Zimmer, D.; Kruse, J.; Siebers, N.; Panten, K.; Oelschlager, C.; Warkentin, M.; Hu, Y.; Zuin, L.; Leinweber, P. Bone char vs. S-enriched bone char: Multi-method characterization of bone chars and their transformation in soil. Sci. Total Environ. 2018, 643, 145–156. Available online: https://www.sciencedirect.com/science/article/pii/S0048969718321478?via%3Dihub (accessed on 9 October 2018). [CrossRef]
- Kratz, S.; Haneklaus, S.; Schnug, E. Chemical solubility and agricultural performance of P-containing recycling fertilizers. Landbauforsch. vTI Agric. For. Res. 2010, 60, 227–240. Available online: https://d-nb.info/1009077988/34 (accessed on 9 October 2018).
- EU. Regulation (EC) No 2003/2003 of the European Parliament and of the Council of the 13 October 2003 Relating to Fertilizers. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:304:0001:0194:EN:PDF (accessed on 9 October 2018).
- VDLUFA. Phosphat. In Methodenbuch Band II.1 Die Untersuchung von Düngemitteln, 4th ed.; VDLUFA: Darmstadt, Germany, 1995; ISBN 978-3-941273-15-3. [Google Scholar]
- Neyrud, J.-A.; Lischer, P. Do different methods used to estimate soil phosphorus availability across Europe give comparable results. J. Plant Nutr. Soil Sci. 2003, 166, 422–431. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/jpln.200321152 (accessed on 9 October 2018). [CrossRef]
- Wuenscher, R.; Unterfrauner, H.; Peticzka, R.; Zehetner, F. A comparison of 14 soil phosphorus extraction methods applied to 50 agricultural soils from Central Europe. Plant Soil Environ. 2015, 61, 86–96. Available online: https://www.agriculturejournals.cz/publicFiles/144700.pdf (accessed on 9 October 2018). [CrossRef]
- Huang, L.; Mao, X.-Y.; Wang, J.; Wang, G.-H.; Liao, Z.-W. The effect and mechanism of improved efficiency of physicochemical pro-release treatment for low grade phosphate rock. J. Soil Sci. Plant Nutr. 2014, 14, 316–331. Available online: https://scielo.conicyt.cl/pdf/jsspn/v14n2/aop2614.pdf (accessed on 7 October 2018). [CrossRef] [Green Version]
- Mackay, A.D.; Syers, J.K.; Gregg, P.E.H. Ability of chemical extraction procedures to assess the agronomic effectiveness of phosphate rock materials. N. Z. J. Agric. Res. 1984, 27, 219–230. Available online: https://www.tandfonline.com/doi/abs/10.1080/00288233.1984.10430424 (accessed on 9 October 2018). [CrossRef]
- Prochnow, L.I.; Kiehl, J.C.; van Raij, B. Plant availability of phosphorus in the neutral ammonium citrate fraction of Brazilian acidulated phosphates. Nutr. Cycl. Agroecosyst. 1998, 52, 61–65. Available online: https://link.springer.com/article/10.1023/A:1016335612914 (accessed on 9 October 2018). [CrossRef]
- Kratz, S.; Schnug, E. Zur Frage der Löslichkeit und Pflanzenverfügbarkeit von Phosphor in Düngemitteln. J. Kulturpflanz. 2009, 61, 2–8. Available online: https://www.journal-kulturpflanzen.de (accessed on 9 October 2018).
- Dinkelaker, B.; Romheld, V.; Marschner, H. Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ. 1989, 3, 285–292. Available online: https://eurekamag.com/pdf/001/001777538.pdf (accessed on 7 October 2018). [CrossRef]
- Drouillon, M.; Merckx, R. The role of citric acid as a phosphorus mobilization mechanism in highly P-fixing soils. Gayana Bot 2003, 60, 55–62. Available online: https://scielo.conicyt.cl/pdf/gbot/v60n1/art09.pdf (accessed on 7 October 2018). [CrossRef]
- Ghosal, P.K.; Chakraborty, T. Comparative solubility study of four phosphatic fertilizers in different solvents and the effect of soil. Resour. Environ. 2012, 2, 175–179. Available online: http://article.sapub.org/10.5923.j.re.20120204.07.html (accessed on 7 October 2018). [CrossRef]
- DüMV. Düngemittelverordnung vom 5. Dezember 2012 (BGBl. I S. 2482), die Zuletzt Durch Artikel 3 der Verordnung vom 26. Mai 2017 (BGBl. I S. 1305) Geändert Worden Ist. 2012. Available online: https://www.gesetze-im-internet.de/d_mv_2012/D%C3%BCMV.pdf (accessed on 4 January 2019).
- Arsenault, A.L.; Ottensmeyer, F.P. Visualization of early intramembranous ossification by electron microscopic and spectroscopic imaging. J. Cell Biol. 1984, 98, 911–921. Available online: http://jcb.rupress.org/content/98/3/911.long (accessed on 9 October 2018). [CrossRef] [Green Version]
- Isik-Gulsac, I. Investigation of impregnated activated carbon properties used in hydrogen sulfide fine removal. Braz. J. Chem. Eng. 2016, 33, 1021–1030. Available online: http://www.scielo.br/pdf/bjce/v33n4/0104-6632-bjce-33-04-1021.pdf (accessed on 7 October 2018). [CrossRef]
- Jones, K.; Ramakrishnan, G.; Uchimiya, M.; Orlov, A. New applications of X-ray tomography in pyrolysis of biomass: Biochar imaging. Energy Fuels 2015, 29, 1628–1634. Available online: https://pubs.acs.org/doi/abs/10.1021/ef5027604?journalCode=enfuem (accessed on 9 October 2018). [CrossRef]
- Landis, W.J.; Hodgens, K.J. Visualization of sulfur-containing components associated with proliferating chondrocytes from rat epiphyseal growth plate cartilage: Possible proteoglycan and collagen co-migration. Anat. Rec. 1990, 226, 153–167. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/ar.1092260205 (accessed on 9 October 2018). [CrossRef] [PubMed]
- Burgstaler, J.; Wiedow, D.; Leinweber, P. Verfahren zur Reinigung von Biogas, Rauchgas oder Flüssigkeiten, Adsorbens dafür, Filter, sowie Verwendung des Adsorptionsmittels. German Patent DE102011010525, 8 September 2012. Available online: http://www.freepatentsonline.com/DE102011010525A1.html (accessed on 9 October 2018).
- John, M.K. Colorimetric determination pf phosphorus in soil and plant materials with ascorbic acid. Soil Sci. 1970, 109, 214–220. Available online: https://journals.lww.com/soilsci/Citation/1970/04000/Colorimetric_Determination_of_Phosphorus_in_Soil.2.aspx (accessed on 9 October 2018). [CrossRef]
- Van der Paauw, F.; Sissingh, H.A.; Ris, J. Een Verbeterde Method van Fosfaatextractie van Grond Met Water: Het Pw-Getal; Centrum voor Landbouw Publikaties en Landbouwdocumentatie: Wageningen, The Netherlands, 1971; Volume 749, pp. 54–63. ISBN 90-220-0333-7. Available online: http://library.wur.nl/WebQuery/wurpubs/fulltext/218204 (accessed on 9 October 2018).
- Schüller, H. Die CAL-Methode, eine neue Methode zur Bestimmung des pflanzenverfügbaren Phosphates in Böden. Z. Pflanz. Bodenk. 1969, 123, 48–63. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/jpln.19691230106 (accessed on 9 October 2018). [CrossRef]
- Baligar, V.C.; Fageria, N.K.; He, Z.L. Nutrient use efficiency in plants. Commun. Soil Sci. Plant Anal. 2001, 32, 921–950. Available online: https://pdfs.semanticscholar.org/292a/fbd13719b3ce1e503e726aec69fffac6b1b3.pdf (accessed on 7 October 2018). [CrossRef]
- Panten, K.; (Julius Kühn Institute, Institute for Crop and Soil Science, Bundesallee 69, 38116 Braunschweig, Germany). Personal communication, 2017.
- Gutiérrez Ortiz, F.J.; Aguilera, P.G.; Ollero, P. Biogas desulfurization by adsorption on thermally treated sewage sludge. Sep. Purif. Technol. 2014, 123, 200–213. Available online: https://www.sciencedirect.com/science/article/pii/S1383586613007259 (accessed on 7 October 2018). [CrossRef]
- Tsai, W.-T.; Liu, S.-C.; Chen, H.-R.; Chang, Y.-M.; Tsai, Y.-L. Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere 2012, 89, 198–203. Available online: https://www.sciencedirect.com/science/article/pii/S0045653512007217 (accessed on 9 October 2018). [CrossRef]
- Xu, X.; Cao, X.; Zhao, L.; Sun, T. Comparison of sewage sludge- and pig manure-derived biochars for hydrogen sulfide removal. Chemosphere 2014, 111, 296–303. Available online: https://www.sciencedirect.com/science/article/pii/S0045653514004767 (accessed on 9 October 2018). [CrossRef]
- Zielińska, A.; Oleszczuk, P.; Charmas, B.; Skubiszewska-Zięba, J.; Pasieczna-Patkowska, S. Effect of sewage sludge properties on the biochar characteristic. J. Anal. Appl. Pyrolysis 2015, 112, 201–213. Available online: https://www.sciencedirect.com/science/article/pii/S0165237015000376 (accessed on 9 October 2018). [CrossRef]
- Cascarosa, E.; Ortiz de Zarate, M.C.; Sánchez, J.L.; Gea, G.; Arauzo, J. Sulphur removal using char and ash from meat and bone meal pyrolysis. Biomass Bioenerg 2012, 40, 190–193. Available online: https://www.sciencedirect.com/science/article/pii/S0961953412000396 (accessed on 7 October 2018). [CrossRef]
- Mendoza-Castillo, D.I.; Bonilla-Petricolet, A.; Jáuregui-Rincón, J. On the importance of bone char for the sorption of heavy metals from aqueous solution. Desalin. Water Treat. 2015, 54, 1651–1662. Available online: http://www.deswater.com/DWT_abstracts/vol_54_6/54_6_2015_1651.pdf (accessed on 9 October 2018). [CrossRef]
- Avelar, A.C.; Ferreira, W.M.; Brito, W.; Menezes, M.A.B.C. Mineral composition of phosphates, limestone and bone meal used in Brazilian agriculture and livestock. Arch. Zootec. 2009, 58, 737–740. Available online: http://scielo.isciii.es/pdf/azoo/v58n224/art12.pdf (accessed on 7 October 2018).
- Mondini, C.; Cayuela, M.L.; Sinicco, T.; Sánchez-Monedero, M.A.; Bertolone, E.; Bardi, L. Soil application of meat and bone meal. Short-term effects on mineralization dynamics and soil biochemical and microbiological properties. Soil Biol. Biochem. 2008, 40, 462–474. Available online: https://www.sciencedirect.com/science/article/pii/S0038071707003823 (accessed on 9 October 2018). [CrossRef]
- Zhang, H.; Voroney, P.; Price, G.; White, A. Sulfur-enriched biochar as a potential soil amendment and fertilizer. Soil Res. 2016, 55, 93–99. Available online: https://www.publish.csiro.au/SR/SR15256 (accessed on 9 October 2018). [CrossRef]
- Turner, B.L.; Leytem, A.B. Phosphorus compounds in sequential extracts of animal manures: Chemical speciation and a novel fractionation procedure. Environ. Sci. Technol. 2004, 38, 6101–6108. Available online: https://pubs.acs.org/doi/abs/10.1021/es0493042 (accessed on 2 January 2019). [CrossRef]
- Tiecher, T.; Zafar, M.; Kochem Mallmann, F.J.; Campanhola, B.E.; Bender, M.A.; Ciotti, L.H.; dos Santos, D.R. Animal manure phosphorus characterization by sequential chemical fractionation, release kinetics and 31P-NMR analysis. Rev. Bras. Ciênc. Solo 2014, 38, 1506–1514. Available online: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-06832014000500016 (accessed on 4 January 2019). [CrossRef]
- Komiyama, T.; Niizuma, S.; Fujisawa, E.; Morikuni, H. Phosphorus compounds and their solubility in swine manure compost. Soil Sci. Plant Nutr. 2013, 59, 419–426. Available online: https://www.tandfonline.com/doi/full/10.1080/00380768.2013.789397 (accessed on 4 January 2019). [CrossRef] [Green Version]
- Liang, Y.; Cao, X.; Zhao, L.; Xu, X.; Harris, W. Phosphorus release from dairy manure, the manure-derived biochar, and their amended soil: Effects of phosphorus nature and soil property. J. Environ. Qual. 2014, 43, 1504–1509. Available online: https://www.ncbi.nlm.nih.gov/pubmed/25603098 (accessed on 4 January 2019). [CrossRef]
- Robinson, J.S.; Baumann, K.; Hu, Y.; Hagemann, P.; Kebelmann, L.; Leinweber, P. Phosphorus transformations in plant-based and bio-waste materials induced by pyrolysis. Ambio 2018, 47 (Suppl. 1), S73–S82. Available online: https://www.ncbi.nlm.nih.gov/pubmed/29159454 (accessed on 4 January 2019). [CrossRef]
- Uchimiya, M.; Hiradate, S. Pyrolysis temperature-dependent changes in dissolved phosphorus speciation of plant and manure biochars. J. Agric. Food Chem. 2014, 62, 1802–1809. Available online: https://pubs.acs.org/doi/10.1021/jf4053385 (accessed on 4 January 2019). [CrossRef]
- Dinkelaker, B.; Hahn, G.; Marschner, H. Non-destructive methods for demonstrating chemical changes in the rhizosphere II. Application of methods. Plant Soil. 1993, 155, 71–74. Available online: https://link.springer.com/chapter/10.1007%2F978-94-011-1880-4_7 (accessed on 7 October 2018). [CrossRef]
- Marschner, H.; Römheld, V.; Horst, W.J.; Martin, P. Root-induced changes in rhizosphere: Importance for the mineral nutrition of plants. Z. Pflanz. Bodenk. 1986, 149, 441–456. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/jpln.19861490408 (accessed on 9 October 2018). [CrossRef]
- Schilling, G.; Gransee, A.; Deubel, A.; Ležovič, G.; Ruppel, S. Phosphorus availability, root exudates, and microbial activity in the rhizosphere. Z. Pflanz. Bodenk. 1998, 161, 465–478. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/jpln.1998.3581610413 (accessed on 9 October 2018). [CrossRef]
- Walker, T.S.; Bais, H.P.; Grotewold, E.; Vivanco, J.M. Root exudation and rhizosphere biology. Plant Physiol. 2003, 132, 44–51. Available online: http://www.plantphysiol.org/content/132/1/44 (accessed on 9 October 2018). [CrossRef] [PubMed]
- Fan, X.; Schnug, E.; Haneklaus, S.; Li, Y. In situ digestion of rock phosphates to mobilize plant-available phosphate for organic farming. Commun. Soil Sci. Plant Anal. 2012, 43, 2191–2201. Available online: https://www.tandfonline.com/doi/abs/10.1080/00103624.2012.708073 (accessed on 7 October 2018). [CrossRef]
- Heydarnezhad, F.; Shahinrokhsar, P.; Vahed, H.S.; Besharati, H. Influence of elemental sulfur and sulfur oxidizing bacteria on some nutrient deficiency in calcareous soils. Int. J. Agric. Crop Sci. 2012, 4, 735–739. Available online: http://gilan.areeo.ac.ir/_gilan/documents/Docs/FaniMohandesi/Maghalat/latin/3.pdf (accessed on 7 October 2018).
- Karimizarchi, M.; Aminuddin, H.; Khanif, M.Y.; Radziah, O. Elemental sulphur application effects on nutrient availability and sweet maize (Zea mays L.) response in a high pH soil of Malaysia. Malaysian J. Soil Sci. 2014, 18, 75–86. Available online: https://www.cabdirect.org/cabdirect/abstract/20163000369 (accessed on 9 October 2018).
- Lee, A.; Watkinson, J.H.; Orbell, G.; Bagyaraj, J.; Lauren, D.R. Factors influencing dissolution of phosphate rock and oxidation of elemental sulphur in some New Zealand soils. N. Z. J. Agric. Res. 1987, 3, 373–385. Available online: https://www.tandfonline.com/doi/abs/10.1080/00288233.1987.10421898 (accessed on 9 October 2018). [CrossRef]
- Li, P.; Caldwell, A.C. The Oxidation of elemental sulfur in soil. Soil Sci. Soc. Am. J. 1966, 30, 370–372. Available online: https://dl.sciencesocieties.org/publications/sssaj/abstracts/30/3/SS0300030370?access=0&view=pdf (accessed on 9 October 2018). [CrossRef]
- Rezapour, S. Effect of sulfur and composted manure on SO4-S, P and micronutrient availability in a calcareous saline–sodic soil. Chem. Ecol. 2014, 30, 147–155. Available online: https://www.tandfonline.com/doi/abs/10.1080/02757540.2013.841896?journalCode=gche20 (accessed on 9 October 2018). [CrossRef]
- Benbi, D.K.; Gilkes, R.J. The movement into soil of P from superphosphate grains and its availability to plants. Fertil. Res. 1987, 12, 21–36. Available online: https://link.springer.com/article/10.1007/BF01049418 (accessed on 7 October 2018). [CrossRef]
- Williams, C.H. Reaction of surface-applied superphosphate with soil: II. Movement of the phosphorus and sulphate into the soil. Soil Res. 1971, 9, 95–106. Available online: http://www.publish.csiro.au/SR/SR9710095 (accessed on 9 October 2018). [CrossRef]
- Zoysa, A.K.N.; Loganathan, P.; Hedley, M.J. A technique for studying rhizosphere processes in tree crops: Soil phosphorus depletion around camellia (Camellia japonica L.) roots. Plant Soil 1997, 190, 253–265. Available online: https://link.springer.com/article/10.1023/A:1004264830936 (accessed on 9 October 2018). [CrossRef]
- Jalali, M. Soil phosphorous buffer coefficient as influenced by time and rate of P addition. Arch. Agron. Soil Sci. 2006, 52, 269–279. Available online: https://www.tandfonline.com/doi/abs/10.1080/03650340600560061 (accessed on 7 October 2018). [CrossRef]
- Hernandez, V.E.; Akhtar, M.; Reyes, A.B.; Qazi, A.M.; Escobar, R.N. Effect of incubation period on phosphate sorption from three P sources in Morelos soil. Biol. Sci. 2005, 8, 61–64. Available online: https://scialert.net/fulltextmobile/?doi=pjbs.2005.61.64 (accessed on 9 October 2018). [CrossRef]
- Muraoka, T.; Boaretto, A.E.; Scivittaro, W.B.; Brasil, E.C. Availability of P from Phosphate Rock, Thermophosphate and Triple Superphosphate after Different Incubation Periods; International Atomic Energy Agency: Vienna, Austria, 2002; Volume 230, pp. 126–130. ISSN 1011-4289. Available online: www.iaea.org/inis/collection/NCLCollectionStore/_Public/34/041/34041671.pdf (accessed on 9 October 2018).
- Elliott, H.A.; Potter, J.M.; Kang, J.-H.; Brandt, R.C.; O’Connor, G.A. Neutral ammonium citrate extraction of biosolids phosphorus. Commun. Soil Sci. Plant Anal. 2005, 36, 2447–2459. Available online: https://www.tandfonline.com/doi/abs/10.1080/00103620500255816 (accessed on 9 October 2018). [CrossRef]
- Wang, T.; Camps-Arbestain, M.; Hedley, M.; Bishop, P. Predicting phosphorus bioavailability from high-ash biochars. Plant Soil 2012, 357, 173–187. Available online: https://link.springer.com/article/10.1007/s11104-012-1131-9 (accessed on 9 October 2018). [CrossRef]
- Hedley, M.; McLaughlin, M. Reactions of phosphate fertilizers and by-products in soils. In Phosphorus: Agriculture and the Environment; Agronomy Monograph no. 46; Sims, J.T., Sharpley, A.N., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, MI, USA, 2005; pp. 181–252. Available online: https://dl.sciencesocieties.org/publications/books/abstracts/agronomymonogra/phosphorusagric/181?access=0&view=pdf (accessed on 9 October 2018). [CrossRef]
- McLaughlin, M.J.; McBeath, T.M.; Smernik, R.; Stacey, S.P.; Ajiboye, B.; Guppy, C. The chemical nature of P accumulation in agricultural soils-implications for fertiliser management and design: An Australian perspective. Plant Soil 2011, 349, 69–87. Available online: https://link.springer.com/article/10.1007/s11104-011-0907-7 (accessed on 9 October 2018). [CrossRef]
- Mason, S.D. Diffuse Gradients in Thin Film (DGT) As A Technique to Predict Nutrient Availability to Plants. Ph.D. Thesis, University of Adelaide, Adelaide, Australia, April 2007. Available online: https://digital.library.adelaide.edu.au/dspace/bitstream/2440/57973/8/02whole.pdf (accessed on 9 October 2018).
- Santner, J.; Prohaska, T.; Luo, J.; Zhang, H. Ferrihydrite containing gel for chemical imaging of labile phosphate species in sediments and soils using diffusive gradients in thin films. Anal. Chem. 2010, 82, 7668–7674. Available online: https://pubs.acs.org/doi/abs/10.1021/ac101450j (accessed on 9 October 2018). [CrossRef]
- Zhang, C.; Ding, S.; Xu, D.; Tang, Y.; Wong, M.H. Bioavailability assessment of phosphorus and metals in soils and sediments: A review of diffusive gradients in thin films (DGT). Environ. Monit. Assess. 2014, 186, 7367–7378. Available online: https://www.ncbi.nlm.nih.gov/pubmed/25015347 (accessed on 9 October 2018). [CrossRef]
- Vogel, C.; Sekine, R.; Steckenmesser, D.; Lombi, E.; Steffens, D.; Adam, C. Phosphorus availability of sewage sludge-based fertilizers determined by the diffusive gradients in thin films (DGT) technique. J. Plant Nutr. Soil Sci. 2017, 180, 594–601. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/jpln.201600531 (accessed on 9 October 2018). [CrossRef]
- Schnug, E.; Haneklaus, S.H. The enigma of fertilizer phosphorus utilization. In Phosphorus in Agriculture: 100% Zero 2016; Springer: Dordrecht, The Netherlands, 2016; pp. 7–26. Available online: https://link.springer.com/chapter/10.1007/978-94-017-7612-7_2 (accessed on 7 October 2018). [CrossRef]
- Samavat, S. The effects of poultry manure on phosphorous solubility of rocks phosphate. Int. Res. J. Appl. Basic Sci. 2015, 9, 2052–2054. Available online: http://www.irjabs.com/files_site/paperlist/r_2799_151211184228.pdf (accessed on 9 October 2018).
Element | BC | BCplus | TSP | ||||
---|---|---|---|---|---|---|---|
Wet-Chemical | SEM EDX | Wet-Chemical | SEM EDX | Wet-Chemical | |||
Spot 1 | Spot 2 | Spot 1 | Spot 2 | ||||
pHCaCl2 | 8.6 | 5.0 | n. d. | ||||
Ca(t) | 321 | 13 | 14 | 235 | 16 | 17 | 158 |
P(t) | 148 | 6 | 7 | 107 | 7 | 8 | 200 |
Mg(t) | 6.0 | 1 | 1 | 4.0 | 0.3 | 0.4 | 6.5 |
S(t) | 0.91 | 0.3 | 0.4 | 270 | 3 | 4 | n. d. |
C(t) | 104 | 37 | 36 | 82 | 23 | 22 | n. d. |
molar Ca(t)/P(t) | 1.7 | 2.1 | 2.0 | 1.7 | 2.2 | 2.0 | 0.6 |
molar S(t)/P(t) | 0.006 | 0.04 | 0.05 | 2.4 | 0.42 | 0.43 | - |
molar Cat/Ct | 0.9 | 0.9 | - | ||||
molar Pt/Ct | 0.5 | 0.5 | - | ||||
Extract | Percentage (%) of total P concentrations extracted with Aqua regia | ||||||
Pwater | 0.13 | 0.74 | 87 | ||||
PNAC | 35 | 37 | 96 | ||||
PCA | 72 | 79 | 101 | ||||
PMA | 94 | 99 | 104 |
Fertilizer Treatment | Incubation Time before Seeding [Weeks] | ||||
---|---|---|---|---|---|
0 | 2 | 4 | 6 | 8 | |
Cumulative Biomass Yield [g pot−1] | |||||
Zero P0 | 76a | 76a | 76b | 76ab | 76b |
BC | 77a | 74a | 75b | 73b | 76ab |
BCplus | 79a | 81a | 76b | 78ab | 82a |
TSP | 78a | 81a | 82a | 80a | 82ab |
ANOVA p-value | n.s. 0.3190 | * 0.0258 | ** 0.0048 | ** 0.0108 | * 0.0117 |
Fertilizer Treatment | Incubation Time before Seeding [Weeks] | ||||
---|---|---|---|---|---|
0 | 2 | 4 | 6 | 8 | |
Apparent Nutrient Recovery [ANR; %] | |||||
BC | 1.4c | −0.3c | 0.8c | −1.4c | 2.2c |
BCplus | 10.5b | 13.4b | 9.5b | 11.2b | 14.7b |
TSP | 21.1a | 21.9a | 17.9a | 21.8a | 23.0a |
ANOVA p-value | *** 0.0001 | *** <0.0001 | *** 0.0001 | *** <0.0001 | *** <0.0001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimmer, D.; Panten, K.; Frank, M.; Springer, A.; Leinweber, P. Sulfur-Enriched Bone Char as Alternative P Fertilizer: Spectroscopic, Wet Chemical, and Yield Response Evaluation. Agriculture 2019, 9, 21. https://doi.org/10.3390/agriculture9010021
Zimmer D, Panten K, Frank M, Springer A, Leinweber P. Sulfur-Enriched Bone Char as Alternative P Fertilizer: Spectroscopic, Wet Chemical, and Yield Response Evaluation. Agriculture. 2019; 9(1):21. https://doi.org/10.3390/agriculture9010021
Chicago/Turabian StyleZimmer, Dana, Kerstin Panten, Marcus Frank, Armin Springer, and Peter Leinweber. 2019. "Sulfur-Enriched Bone Char as Alternative P Fertilizer: Spectroscopic, Wet Chemical, and Yield Response Evaluation" Agriculture 9, no. 1: 21. https://doi.org/10.3390/agriculture9010021
APA StyleZimmer, D., Panten, K., Frank, M., Springer, A., & Leinweber, P. (2019). Sulfur-Enriched Bone Char as Alternative P Fertilizer: Spectroscopic, Wet Chemical, and Yield Response Evaluation. Agriculture, 9(1), 21. https://doi.org/10.3390/agriculture9010021