The Past, Present, and Future of Barley Yellow Dwarf Management
Abstract
:1. Introduction
1.1. History of BYD
1.2. BYD Virus Taxonomy
1.3. BYD Symptom Development
1.4. Vector Biology
1.5. Vector–Virus Interaction
1.6. Vector-Plant Host Interaction
2. Management of BYD
2.1. History of BYD Management
2.2. BYD Virus Resistance
2.3. Current Management of BYD
2.3.1. Northeast United States
2.3.2. Southeast United States
2.3.3. Pacific Northwest United States
2.3.4. Midwest United States
2.3.5. United Kingdom
2.3.6. Italy
2.3.7. Australia
2.4. The Future of BYD Management
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miller, W.A.; Rasochová, L. Barley yellow dwarf viruses. Annu. Rev. Phytopathol. 1997, 35, 167–190. [Google Scholar] [CrossRef] [PubMed]
- Pike, K.S. A Review of Barley Yellow Dwarf Virus Grain Yield Losses. In World Perspectives on Barley Yellow Dwarf; Burnett, P.A., Ed.; CIMMYT: Texcoco, Edo Mex, Mexico, 1990; pp. 356–361. [Google Scholar]
- D’Arcy, C.J.; Burnett, P.A. Barley Yellow Dwarf: 40 Years of Progress; APS Press: St. Paul, MN, USA, 1995. [Google Scholar]
- Halbert, S.E.; Voegtlin, D.J. Evidence for the North American origin of Rhopalosiphum and barley yellow dwarf virus. In Aphids in Natural and Managed Ecosystems; Nieto Nafria, J.M., Dixon, A.F.G., Eds.; Secretariado de Publicaciones, Universidad de León: León, Spain, 1998; pp. 351–356. [Google Scholar]
- Malmstrom, C.M.; McCullough, A.J.; Johnson, H.A.; Newton, L.A.; Borer, E.T. Invasive annual grasses indirectly increase virus incidence in California native perennial bunchgrasses. Oecologia 2005, 145, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Webster, F.M.; Phillips, W.J. The Spring Grain-Aphis or “Green Bug”; USDA Dept. of Entomology: Washington, DC, USA, 1912. [Google Scholar]
- Manns, T.F. The Blade Blight of Oats: A Bacterial Disease; Ohio Agricultural Experiment Station: Wooster, OH, USA, 1909; Volume 210, pp. 91–166. [Google Scholar]
- Oswald, J.W.; Houston, B.E. The yellow-dwarf virus disease of cereal crops. Phytopathology 1953, 43, 128–136. [Google Scholar]
- Rochow, W.F. Biological properties of four isolates of barley yellow dwarf virus. Phytopathology 1969, 59, 1580–1589. [Google Scholar] [PubMed]
- Miller, W.A.; Liu, S.; Beckett, R. Barley yellow dwarf virus: Luteoviridae or Tombusviridae? Mol. Plant Pathol. 2002, 3, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.G.; Barker, H. The Luteoviridae; CABI Publishing: Wallingford, UK, 1999. [Google Scholar]
- Domier, L.L. Family Luteoviridae. In Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses; King, A.M., Lefkowitz, E., Adams, M.J., Carstens, E.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Svanella-Dumas, L.; Candresse, T.; Hulle, M.; Marais, A. Distribution of Barley yellow dwarf virus-PAV in the sub-Antarctic Kerguelen Islands and characterization of two new Luteovirus species. PLoS ONE 2013, 8, e67231. [Google Scholar] [CrossRef]
- Johnson, R.A.; Rochow, W.F. An isolate of barley yellow dwarf virus transmitted specifically by Schizaphis graminum. Phytopathology 1972, 62, 921–925. [Google Scholar] [CrossRef]
- Goodman, P.J.; Watson, M.A.; Hill, A.R.C. Sugar and fructosan accumulation in virus-infected plants: Rapid testing by circular-paper chromatography. Ann. Appl. Biol. 1965, 56, 65–72. [Google Scholar] [CrossRef]
- Riedell, W.E.; Osborne, S.L.; Jaradat, A.A. Crop Mineral Nutrient and Yield Responses to Aphids or in Spring Wheat and Oat. Crop Sci. 2007, 47, 1553–1560. [Google Scholar] [CrossRef]
- Jensen, S.G.; Van Sambeek, J.W. Differential effects of barley yellow dwarf virus on the physiology of tissues of hard red spring wheat. Phytopathology 1972, 62, 290–293. [Google Scholar] [CrossRef]
- De Wolfe, E. Barley Yellow Dwarf. Penn State Agricultural Research and Cooperative Extension 2002. Available online: http://pubs.cas.psu.edu/FreePubs/pdfs/xl0085.pdf (accessed on 14 March 2014).
- Nancarrow, N.; Constable, F.E.; Finlay, K.J.; Freeman, A.J.; Rodoni, B.C.; Trebicki, P.; Vassiliadis, S.; Yen, A.L.; Luck, J.E. The effect of elevated temperature on Barley yellow dwarf virus-PAV in wheat. Virus Res. 2014, 186, 97–103. [Google Scholar] [CrossRef]
- Smith, P.R.; Sward, R.J. Crop loss assessment studies on the effects of barley yellow dwarf virus in wheat in Victoria. Crop Pasture Sci. 1982, 33, 179–185. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Plumb, R.T. Properties and isolates of barley yellow dwarf virus. Ann. Appl. Biol. 1974, 77, 87–91. [Google Scholar] [CrossRef]
- Coceano, P.G.; Peressini, S.; Bianchi, G.L.; Caciagli, P. Long-term changes of aphid vectors of Barley yellow dwarf viruses in north-eastern Italy (Friuli-Venezia Giulia). Ann. Appl. Biol. 2009, 155, 37–50. [Google Scholar] [CrossRef]
- Tatchell, G.M.; Plumb, R.T.; Carter, N. Migration of alate morphs of the bird cherry aphid (Rhopalosiphum padi) and implications for the epidemiology of barley yellow dwarf virus. Ann. Appl. Biol. 1988, 112, 1–11. [Google Scholar] [CrossRef]
- Thackray, D.J.; Diggle, A.J.; Jones, R.A.C. BYDV PREDICTOR: A simulation model to predict aphid arrival, epidemics of Barley yellow dwarf virus and yield losses in wheat crops in a Mediterranean-type environment. Plant Pathol. 2009, 58, 186–202. [Google Scholar] [CrossRef]
- Plumb, R.T. Barley yellow dwarf virus in aphids caught in suction traps, 1969–1973. Ann. Appl. Biol. 2009, 83, 53–59. [Google Scholar] [CrossRef]
- Walters, K.F.A.; Dewar, A.M. Overwintering strategy and the timing of the spring migration of the cereal aphids Sitobion avenae and Sitobion fragariae. J. Appl. Ecol. 1986, 23, 905–915. [Google Scholar] [CrossRef]
- Fabre, F.; Pierre, J.S.; Dedryver, C.A.; Plantegenest, M. Barley yellow dwarf disease risk assessment based on Bayesian modelling of aphid population dynamics. Ecol. Model. 2006, 193, 457–466. [Google Scholar] [CrossRef]
- Kendall, D.A.; Brain, P.; Chinn, N.E. A simulation model of the epidemiology of barley yellow dwarf virus in winter sown cereals and its application to forecasting. J. Appl. Ecol. 1992, 29, 414–426. [Google Scholar] [CrossRef]
- Walters, K.F.A.; Dixon, A.F.G. The effect of temperature and wind on the flight activity of cereal aphids. Ann. Appl. Biol. 1984, 104, 17–26. [Google Scholar] [CrossRef]
- Dry, W.W.; Taylor, L.R. Light and temperature thresholds for take-off by aphids. J. Anim. Ecol. 1970, 39, 493–504. [Google Scholar] [CrossRef]
- Lewis, T.; Taylor, L.R. Diurnal periodicity of flight by insects. Trans. R. Entomol. Soc. Lond. 1965, 116, 393–435. [Google Scholar] [CrossRef]
- Ingwell, L.L.; Eigenbrode, S.D.; Bosque-Pérez, N.A. Plant viruses alter insect behavior to enhance their spread. Sci. Rep. 2012, 2, 578. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Chay, C.; Gildow, F.E.; Gray, S.M. Readthrough protein associated with virions of barley yellow dwarf luteovirus and its potential role in regulating the efficiency of aphid transmission. Virology 1995, 206, 954–962. [Google Scholar] [CrossRef]
- Van den Heuvel, J.F.; Hogenhout, S.A.; van der Wilk, F. Recognition and receptors in virus transmission by arthropods. Trends Microbiol. 1999, 7, 71–76. [Google Scholar] [CrossRef]
- Heuvel, J.F.V.D.; Bruyère, A.; A Hogenhout, S.; Ziegler-Graff, V.; Brault, V.; Verbeek, M.; Van Der Wilk, F.; Richards, K. The N-terminal region of the luteovirus readthrough domain determines virus binding to Buchnera GroEL and is essential for virus persistence in the aphid. J. Virol. 1997, 71, 7258–7265. [Google Scholar]
- Gildow, F.E.; Rochow, W.F. Role of accessory salivary glands in aphid transmission of barley yellow dwarf virus. Virology 1980, 104, 97–108. [Google Scholar] [CrossRef]
- Gildow, F.E. Transcellular transport of barley yellow dwarf virus into the hemocoel of the aphid vector, Rhopalosiphum PADI. Phytopathology 1985, 75, 292–297. [Google Scholar] [CrossRef]
- Chay, C.A.; Gunasinge, U.B.; Dinesh-Kumar, S.P.; Miller, W.A.; Gray, S.M. Aphid transmission and systemic plant infection determinants of barley yellow dwarf luteovirus-PAV are contained in the coat protein readthrough domain and 17-kDa protein, respectively. Virology 1996, 219, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Cox-Foster, D.; Gray, S.M.; Gildow, F. Vector specificity of barley yellow dwarf virus (BYDV) transmission: Identification of potential cellular receptors binding BYDV-MAV in the aphid, Sitobion avenae. Virology 2001, 286, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Peiffer, M.L.; Gildow, F.E.; Gray, S.M. Two distinct mechanisms regulate luteovirus transmission efficiency and specificity at the aphid salivary gland. J. Gen. Virol. 1997, 78, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Tamborindeguy, C.; Bereman, M.S.; DeBlasio, S.; Igwe, D.; Smith, D.M.; White, F.; MacCoss, M.J.; Gray, S.M.; Cilia, M. Genomic and proteomic analysis of Schizaphis graminum reveals cyclophilin proteins are involved in the transmission of cereal yellow dwarf virus. PLoS ONE 2013, 8, e71620. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, G. Identification of a protein associated with circulative transmission of Barley yellow dwarf virus from cereal aphids, Schizaphis graminum and Sitobion avenae. Chin. Sci. Bull. 2013, 48, 2083–2087. [Google Scholar] [CrossRef]
- Peter, K.A.; Bereman, M.S.; Fish, T.; Gildow, F.; MacCoss, M.J.; Smith, D.; Cilia, M.; Howe, K.; Thannhauser, T.W.; Gray, S.M. Discovery and targeted LC-MS/MS of purified polerovirus reveals differences in the virus-host interactome associated with altered aphid transmission. PLoS ONE 2012, 7, e48177. [Google Scholar] [CrossRef]
- DeBlasio, S.L.; Johnson, R.; Mahoney, J.; Karasev, A.; Gray, S.M.; MacCoss, M.J.; Cilia, M. Insights Into the Polerovirus–Plant Interactome Revealed by Coimmunoprecipitation and Mass Spectrometry. Mol. Plant Microbe Interact. 2015, 28, 467–481. [Google Scholar] [CrossRef]
- Gray, S.M.; Power, A.G.; Smith, D.M.; Seaman, A.J.; Altman, N.S. Aphid transmission of Barley yellow dwarf virus: Acquisition access periods and virus concentration requirements. Phytopathology 1991, 81, 539–545. [Google Scholar] [CrossRef]
- Brown, P.A.; Blackman, R.L. Karyotype variation in the corn leaf aphid, Rhopalosiphum maidis (Fitch), species complex (Hemiptera: Aphididae) in relation to host-plant and morphology. Bull. Entomol. Res. 1988, 78, 351–363. [Google Scholar] [CrossRef]
- Dixon, A.F.G. The life-cycle and host preferences of the bird cherry-oat aphid, Rhopalosiphum padi L., and their bearing on the theories of host alternation in aphids. Ann. Appl. Biol. 1971, 68, 135–147. [Google Scholar] [CrossRef]
- Leather, S.R.; Dixon, A.F.G. Secondary host preferences and reproductive activity of the bird cherry-oat aphid, Rhopalosiphum padi. Ann. Appl. Biol. 1982, 101, 219–228. [Google Scholar] [CrossRef]
- Lushai, G.; Sherratt, T.N.; David, O.; Barro, P.J.; Maclean, N. Host selection by winged summer females of the aphid Sitobion avenae. Entomol. Exp. Appl. 1997, 85, 199–209. [Google Scholar] [CrossRef]
- Foott, W.H. Biology of the corn leaf aphid, Rhopalosiphum maidis (Homoptera: Aphididae), in southwestern Ontario. Can. Entomol. 1977, 109, 1129–1135. [Google Scholar] [CrossRef]
- Chongrattanameteekul, W.; Foster, J.E.; Araya, J.E. Biological interactions between the cereal aphids Rhopalosiphum padi (L.) and Sitobion avenae (F.)(Horn., Aphididae) on wheat. J. Appl. Entomol. 1991, 111, 249–253. [Google Scholar] [CrossRef]
- Porras, M.; De Moraes, C.M.; Mescher, M.C.; Rajotte, E.G.; Carlo, T.A. A plant virus (BYDV) promotes trophic facilitation in aphids on wheat. Sci. Rep. 1999, 8, 11709. [Google Scholar] [CrossRef] [PubMed]
- Vereijken, P.H. Feeding and Multiplication of Three Cereal Aphid Species and Their Effect on Yield of Winter Wheat. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 1979. Available online: https://library.wur.nl/WebQuery/wurpubs/337932 (accessed on 16 March 2014).
- Oakley, J.N.; Walters, K.F.A. A field evaluation of different criteria for determiningthe need to treat winter wheat against the grain aphid Sitobion avenae and the rose-grain aphid Metopolophium dirhodum. Ann. Appl. Biol. 1994, 124, 195–211. [Google Scholar] [CrossRef]
- Irwin, M.E.; Thresh, J.M. Epidemiology of barley yellow dwarf: A study in ecological complexity. Annu. Rev. Phytopathol. 1990, 28, 393–424. [Google Scholar] [CrossRef]
- Kelley, K.W. Planting date and foliar fungicide effects on yield components and grain traits of winter wheat. Agron. J. 2001, 93, 380–389. [Google Scholar] [CrossRef]
- McGrath, P.F.; Bale, J.S. The effects of sowing date and choice of insecticide on cereal aphids and barley yellow dwarf virus epidemiology in northern England. Ann. Appl. Biol. 1990, 117, 31–43. [Google Scholar] [CrossRef]
- Miller, N.R.; Bergstrom, G.C.; Gray, S.M. Identity, prevalence and distribution of viral diseases of winter wheat in New York in 1988 and 1989. Plant Dis. 1991, 75, 1105–1109. [Google Scholar] [CrossRef]
- Fowler, D.B. Date of seeding, fall growth, and winter survival of winter wheat and rye. Agron. J. 1982, 74, 1060–1063. [Google Scholar] [CrossRef]
- Knapp, W.R.; Knapp, J.S. Response of winter wheat to date of planting and fall fertilization. Agron. J. 1978, 70, 1048–1053. [Google Scholar] [CrossRef]
- Isleib, J. Management Suggestions for Barley Yellow Dwarf Virus Control. Michigan State University Extension. August 2015. Available online: http://msue.anr.msu.edu/news/management_suggestions_for_barley_yellow_dwarf_virus_control (accessed on 30 October 2017).
- Gourmet, C.; Kolb, F.L.; Smyth, C.A.; Pedersen, W.L. Use of imidacloprid as a seed-treatment insecticide to control barley yellow dwarf virus (BYDV) in oat and wheat. Plant Dis. 1996, 80, 136–141. [Google Scholar] [CrossRef]
- Royer, T.A.; Giles, K.L.; Nyamanzi, T.; Hunger, R.M.; Krenzer, E.G.; Elliott, N.C.; Kindler, S.D.; Payton, M. Economic evaluation of the effects of planting date and application rate of imidacloprid for management of cereal aphids and barley yellow dwarf in winter wheat. J. Econ. Entomol. 2005, 98, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Stewart, S. Wheat Insect Control Begins with Planting. UT Crops News Blog. 2013. Available online: http://news.utcrops.com/2013/09/wheat-insect-control-beginswith-planting/ (accessed on 23 October 2017).
- McCornack, B.P.; Ragsdale, D.W. Efficacy of thiamethoxam to suppress soybean aphid populations in Minnesota soybean. Crop Manag. 2006, 5. [Google Scholar] [CrossRef]
- Wegulo, S.N.; Hein, G.L. Yellow Dwarf of Wheat, Barley, and Oats. University of Nebraska-Lincoln Extension. December 2013. Available online: http://extensionpublications.unl.edu/assets/pdf/g1823.pdf (accessed on 30 October 2017).
- Paulsrud, B.E.; Martin, D.; Babadoost, M.; Malvick, D.; Weinzierl, R.; Lindholm, D.C.; Steffey, K.; Pederson, W.; Reed, M.; Maynard, R. Oregon Pesticide Applicator Training Manual; University of Illinois Board of Trustees: Urbana, IL, USA, 2001. [Google Scholar]
- Kennedy, T.F.; Connery, J. Control of barley yellow dwarf virus in minimum-till and conventional-till autumn-sown cereals by insecticide seed and foliar spray treatments. J. Agric. Sci. 2012, 150, 249–262. [Google Scholar] [CrossRef]
- Goulson, D. Review: An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 2013, 50, 977–987. [Google Scholar] [CrossRef]
- Krupke, C.H.; Hunt, G.J.; Eitzer, B.D.; Andino, G.; Given, K. Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS ONE 2012, 7, e29268. [Google Scholar] [CrossRef]
- Herbert, D.A.; Stromberg, E.L.; Chappell, G.F.; Malone, S.M. Reduction of yield components by barley yellow dwarf infection in susceptible winter wheat and winter barley in Virginia. J. Prod. Agric. 1999, 12, 105–109. [Google Scholar] [CrossRef]
- McKirdy, S.J.; Jones, R.A.C. Use of imidacloprid and newer generation synthetic pyrethroids to control the spread of barley yellow dwarf luteovirus in cereals. Plant Dis. 1996, 80, 895–901. [Google Scholar] [CrossRef]
- Dewar, A.M.; Foster, S.P. Overuse of Pyrethroids may be implicated in the Recent BYDV Epidemics in Cereals. Outlooks Pest Manag. 2017, 28, 7–12. [Google Scholar] [CrossRef]
- Dewar, A.M. Alternative Insecticides to Control Grain Aphids, Sitobion Avenae, that Are Resistant to Pyrethroids. Final Project Report. 31 July 2014. Available online: https://cereals.ahdb.org.uk/publications/2014/july/31/alternative-insecticides-to-control-grain-aphids,-sitobion-avenae,-that-are-resistant-to-pyrethroids.aspx (accessed on 14 January 2019).
- Jarošová, J.; Beoni, E.; Kundu, J.K. Barley yellow dwarf virus resistance in cereals: Approaches, strategies and prospects. Field Crop Res. 2016, 198, 200–214. [Google Scholar] [CrossRef]
- Choudhury, S.; Hu, H.; Meinke, H.; Shabala, S.; Westmore, G.; Larkin, P.; Zhou, M. Barley yellow dwarf viruses: Infection mechanisms and breeding strategies. Euphytica 2017, 213, 168. [Google Scholar] [CrossRef]
- Ordon, F.; Habekuss, A.; Kastirr, U.; Rabenstein, F.; Kühne, T. Virus resistance in cereals: Sources of resistance, genetics and breeding. J. Phytopathol. 2009, 157, 535–545. [Google Scholar] [CrossRef]
- Kosova, K.; Chrpova, J.; Sip, V. Recent advances in breeding of cereals for resistance to barley yellow dwarf virus-A review. Czech J. Genet. Plant 2008, 44, 1–10. [Google Scholar] [CrossRef]
- Riedel, C.; Habekuß, A.; Schliephake, E.; Niks, R.; Broer, I.; Ordon, F. Pyramiding of Ryd2 and Ryd3 conferring tolerance to a German isolate of Barley yellow dwarf virus-PAV (BYDV-PAV-ASL-1) leads to quantitative resistance against this isolate. Theor. Appl. Genet. 2011, 123, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Scholz, M.; Ruge-Wehling, B.; Habekuß, A.; Schrader, O.; Pendinen, G.; Fischer, K.; Wehling, P. Ryd4 Hb: A novel resistance gene introgressed from Hordeumbulbosum into barley and conferring complete and dominant resistance to the barley yellow dwarf virus. Theor. Appl. Genet. 2009, 119, 837–849. [Google Scholar] [CrossRef] [PubMed]
- Ordon, F.; Habekuß, A.; Schliephake, E.; Perovic, D.; Krämer, I.; Riedele, C. Molecular breeding for virus resistance in cereals-present state and future perspectives. In Proceedings of the 63th Jahrestagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs, Irdning, Austria, 1–2 November 2012. [Google Scholar]
- Zhang, Z.; Lin, Z.; Xin, Z. Research progress in BYDV resistance genes derived from wheat and its wild relatives. J. Genet. Genom. 2009, 36, 567–573. [Google Scholar] [CrossRef]
- Ayala-Navarrete, L.I.; Mechanicos, A.A.; Gibson, J.M.; Singh, D.; Bariana, H.S.; Fletcher, J.; Shorter, S.; Larkin, P.J. The Pontin series of recombinant alien translocations in bread wheat: Single translocations integrating combinations of Bdv2, Lr19 and Sr25 disease-resistance genes from Thinopyrum intermedium and Th. ponticum. Theor. Appl. Genet. 2013, 126, 2467–2475. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.; Ohm, H.; Goulart, L.; Lister, R.; Appels, R.; Benlhabib, O. Introgression and characterization of barley yellow dwarf virus resistance from Thinopyrum intermedium into wheat. Genome 1995, 38, 406–413. [Google Scholar] [CrossRef]
- Francki, M.G.; Ohm, H.W.; Anderson, J.M. Novel germplasm providing resistance to barley yellow dwarf virus in wheat. Aust. J. Agric. Res. 2001, 52, 1375–1382. [Google Scholar] [CrossRef]
- Ayala, L.; Henry, M.; Gonzalez-de-Leon, D.; Van Ginkel, M.; Mujeeb-Kazi, A.; Keller, B.; Khairallah, M. A diagnostic molecular marker allowing the study of Th. intermedium-derived resistance to BYDV in bread wheat segregating populations. Theor. Appl. Genet. 2001, 102, 942–949. [Google Scholar] [CrossRef]
- Zhang, Z.; Xin, Z.; Ma, Y.; Chen, X.; Xu, Q.; Lin, Z. Mapping of a BYDV resistance gene from Thinopyrum intermedium in wheat background by molecular markers. Sci. China Ser. C 1999, 42, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, Y.; Chen, L.; Zhao, D.; Wang, X.; Zhang, Z. Wheat resistome in response to barley yellow dwarf virus infection. Funct. Integr. Genom. 2013, 13, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Navarrete, L.; Bariana, H.S.; Singh, R.P.; Gibson, J.M.; Mechanicos, A.A.; Larkin, P.J. Trigenomic chromosomes by recombination of Thinopyrum intermedium and Th. ponticum translocations in wheat. Theor. Appl. Genet. 2007, 116, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Perry, K.L.; Kolb, F.L.; Sammons, B.; Lawson, C.; Cisar, G.; Ohm, H. Yield effects of barley yellow dwarf virus in soft red winter wheat. Phytopathology 2000, 90, 1043–1048. [Google Scholar] [CrossRef] [PubMed]
- Wen, F.; Lister, R.M.; Fattouh, F.A. Cross-protection among strains of barley yellow dwarf virus. J. Gen. Virol. 1991, 72, 791–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.B.; Abbott, D.C.; Waterhouse, P.M. A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Mol. Plant Pathol. 2000, 1, 347–356. [Google Scholar] [CrossRef] [PubMed]
- McGrath, P.; Vincent, J.; Lei, C.-H.; Pawlowski, W.; Torbert, K.; Gu, W.; Kaeppler, H.; Wan, Y.; Lemaux, P.; Rines, H.; et al. Coat protein-mediated resistance to isolates of barley yellow dwarf in oats and barley. Eur. J. Plant Pathol. 1997, 103, 695–710. [Google Scholar] [CrossRef]
- Gaunce, G.M.; Bockus, W.W. Estimating yield losses due to barley yellow dwarf on winter wheat in Kansas using disease phenotypic data. Plant Health Prog. 2015, 16, 1–6. [Google Scholar] [CrossRef]
- Fritz, A.K. Improvement of Hard Winter Wheat Varieties for Kansas. June 2016. Available online: https://portal.nifa.usda.gov/web/crisprojectpages/0225545-improvement-of-hard-winter-wheat-varieties-for-kansas.html (accessed on 23 October 2017).
- Cruz, C.D.; Bockus, W.W.; Stack, J.P.; Tang, X.; Valent, B.; Pedley, K.F.; Peterson, G.L. Preliminary assessment of resistance among US wheat cultivars to the Triticum pathotype of Magnaporthe oryzae. Plant Dis. 2012, 96, 1501–1505. [Google Scholar] [CrossRef]
- Bergstrom, G.; Department of Plant Pathology and Plant-Microbe Biology, Cornell University. Personal communication, 2017.
- Chapin, J.; Department of Entomology, Clemson University. Personal communication, 2017.
- Flanders, K.; Department of Entomology and Plant Pathology, Auburn University. Personal communication, 2017.
- Rashed, A.; Department of Entomology, Plant Pathology, and Nematology, University of Idaho. Personal communication, 2017.
- Peter, M.L.; Hackett, J. K-State-Developed Wheat is Again Top Variety in Kansas. K-State Research and Extension News. March 2017. Available online: https://www.ksre.k-state.edu/news/stories/2017/03/everest-wheat-tops-2017.html (accessed on 23 October 2017).
- Appel, J.; De Wolf, E.D.; Todd, T.; Bockus, W.W. Preliminary 2015 Kansas Wheat Disease Loss Estimates. Kansas Cooperative Plant Disease Survey Report 2015. Available online: https://agriculture.ks.gov/docs/default-source/pp-disease-reports-2012/2015-ks-wheat-disease-loss-estimates4ec4d4002e6262e1aa5bff0000620720.pdf?sfvrsn=0 (accessed on 24 October 2017).
- Plumb, R.; Rothamsted Research Station. Personal communication, 2017.
- Caciagli, P.; Institute for Sustainable Plant Protection, National Research Council of Italy. Personal communication, 2017.
- Jones, R.; The University of Western Australia. Personal communication, 2017.
- Shtienberg, D. Will decision-support systems be widely used for the management of plant diseases? Annu. Rev. Phytopathol. 2013, 51, 1–16. [Google Scholar] [CrossRef]
- McElhany, P.; Real, L.A.; Power, A.G. Vector preference and disease dynamics: A study of barley yellow dwarf virus. Ecology 1995, 76, 444–457. [Google Scholar] [CrossRef]
- Leclercq-Le Quillec, F.; Plantegenest, M.; Riault, G.; Dedryver, C.A. Analyzing and modeling temporal disease progress of barley yellow dwarf virus serotypes in barley fields. Phytopathology 2000, 90, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Cox, P.G. Some issues in the design of agricultural decision support systems. Agric. Syst. 1996, 52, 355–381. [Google Scholar] [CrossRef]
- Turban, E. Decision Support and Expert Systems. In Management Support Systems; Macmillan: New York, NY, USA, 1993. [Google Scholar]
- Fabre, F.; Dedryver, C.A.; Leterrier, J.L.; Plantegenest, M. Aphid abundance on cereals in autumn predicts yield losses caused by Barley yellow dwarf virus. Phytopathology 2003, 93, 1217–1222. [Google Scholar] [CrossRef] [PubMed]
- Isard, S.A.; Russo, J.M.; DeWolf, E.D. The establishment of a national pest information platform for extension and education. Plant Health Prog. 2006, 1–4. [Google Scholar] [CrossRef]
- Hershman, D.E.; Sikora, E.J.; Giesler, L.J. Soybean rust PIPE: Past, present, and future. J. Integr. Pest Manag. 2011, 2, D1–D7. [Google Scholar] [CrossRef]
- Roberts, M.J.; Schimmelpfennig, D.E.; Ashley, E.; Livingston, M.J.; Ash, M.; Vasavada, U. The value of plant disease early-warning systems: A case study of USDA’s soybean rust coordinated framework (No. 7208). In Economic Research Report 2078; United States Department of Agriculture, Economic Research Service: Washington, DC, USA, 2006. [Google Scholar]
- Bradley, C.A.; Allen, T.W.; Dorrance, A.E.; Dunphy, E.J.; Giesler, L.J.; Hershman, D.E.; Hollier, C.A.; Horn, V.; Wrather, J.A. Evaluation of the Soybean Rust Pest Information Platform for Extension and Education (PIPE) Public Website’s Impact on Certified Crop Advisers. Plant Health Prog. 2010. [Google Scholar] [CrossRef]
- Walls III, J.T.; Caciagli, P.; Tooker, J.F.; Russo, J.M.; Rajotte, E.G.; Rosa, C. Modeling the decision process for barley yellow dwarf management. Comput. Electron. Agric. 2016, 127, 775–786. [Google Scholar] [CrossRef]
- Magarey, R.D.; Travis, J.W.; Russo, J.M.; Seem, R.C.; Magarey, P.A. Decision support systems: Quenching the thirst. Plant Dis. 2002, 86, 4–14. [Google Scholar] [CrossRef]
- Pavón-Pulido, N.; López-Riquelme, J.A.; Torres, R.; Morais, R.; Pastor, J.A. New trends in precision agriculture: A novel cloud-based system for enabling data storage and agricultural task planning and automation. Precis. Agric. 2017, 18, 1038–1068. [Google Scholar] [CrossRef]
- Tan, L.; Hou, H.; Zhang, Q. An Extensible Software Platform for Cloud-Based Decision Support and Automation in Precision Agriculture. In Proceedings of the 2016 IEEE 17th International Conference Information Reuse and Integration (IRI), Pittsburgh, PA, USA, 28–30 July 2016; pp. 218–225. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walls, J., III; Rajotte, E.; Rosa, C. The Past, Present, and Future of Barley Yellow Dwarf Management. Agriculture 2019, 9, 23. https://doi.org/10.3390/agriculture9010023
Walls J III, Rajotte E, Rosa C. The Past, Present, and Future of Barley Yellow Dwarf Management. Agriculture. 2019; 9(1):23. https://doi.org/10.3390/agriculture9010023
Chicago/Turabian StyleWalls, Joseph, III, Edwin Rajotte, and Cristina Rosa. 2019. "The Past, Present, and Future of Barley Yellow Dwarf Management" Agriculture 9, no. 1: 23. https://doi.org/10.3390/agriculture9010023
APA StyleWalls, J., III, Rajotte, E., & Rosa, C. (2019). The Past, Present, and Future of Barley Yellow Dwarf Management. Agriculture, 9(1), 23. https://doi.org/10.3390/agriculture9010023