Development of Legumes After Reseeding in Permanent Grassland, as Affected by Nitrogen Fertilizer Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial Site
2.2. Trial
2.3. Fertilizer
2.4. Seeding
2.5. Measurements
2.6. Statistical Analysis
3. Results
3.1. Legume Content in the Grassland
3.1.1. Nitrogen Rates
3.1.2. Legume Development Over Time
3.1.3. Nitrogen Fertilizer Type
3.2. Dry Matter and Crude Protein Yield
3.2.1. The Effect of Legumes
3.2.2. The Effect of N-fertilizer Rate
3.2.3. The Effect of N-fertilizer Type
3.2.4. Yield Over Time
3.2.5. Protein Yield in Relation to Legume Percentage
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: the challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Woods, J.; Williams, A.; Hughes, J.K.; Black, M.; Murphy, R. Energy and the food system. Philos. Trans. R. Soc. Br. 2010, 365, 2991–3006. [Google Scholar] [CrossRef] [PubMed]
- Snyder, C.S.; Bruulsema, T.W.; Jensen, T.L.; Fixen, P.E. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric. Ecosyst. Environ. 2009, 133, 247–266. [Google Scholar] [CrossRef]
- IPCC. Guidelines for National Greenhouse Gas Inventories; IPCC: Kyoto, Japan, 2006; Available online: www.ipcc-nggip.iges.or.jp/public/index.html (accessed on 15 February 2019).
- Cassman, K.G.; Dobermann, A.; Walters, D.T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 2002, 31, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Hugenin-Eli, O.; Delaby, L.; Le Clećh, S.; Moreno, G.M.; Teixeira, R.F.M.; Schneider, M.K. Optimizing ecosystem services provided by grassland systems. Grassl. Sci. Eur. 2018, 23, 520–534. [Google Scholar]
- Carlsson, G.; Huss-Danell, K. Nitrogen fixation in perennial forage legumes in the field. Plant Soil 2003, 253, 353–372. [Google Scholar] [CrossRef]
- Rochette, P.; Janzen, H.H. Towards a revised coefficient for estimating N2O emissions from legumes. Nutr. Cycl. Agroecosyst. 2005, 73, 171–179. [Google Scholar] [CrossRef]
- Barton, L.; Butterbach-Bahl, K.; Kiese, R.; Murphy, D.V. Nitrous oxide emissions from a cropped soil in a semi-arid climate. Glob. Chang. Biol. 2011, 17, 1153–1166. [Google Scholar] [CrossRef]
- Boller, B.C.; Nösberger, J. Symbiotically fixed nitrogen from field-grown white and red clover mixed with ryegrasses at low levels of 15N-fertilization. Plant Soil 1987, 104, 219–226. [Google Scholar] [CrossRef]
- Zanetti, S.; Hartwig, U.A.; Lüscher, A.; Hebeisen, T.; Frehner, M.; Fischer, B.U.; Hendrey, G.R.; Blum, H.; Nösberger, J. Stimulation of symbiotic N2 fixation in Trifolium repens L. under elevated athmospheric pCO2 in a grassland ecosystem. Plant Physiol. 1997, 112, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Pirhofer-Walzl, K.; Rasmussen, J.; Hogh-Jensen, H.; Eriksen, J.; Soegaard, K.; Rasmussen, J. Nitrogen transfer from forage legumes to nine neighboring plants in a multi-species grassland. Plant Soil 2012, 350, 71–84. [Google Scholar] [CrossRef]
- Nyfeler, D.; Huguenin-Elie, O.; Suter, M.; Frossard, E.; Connolly, J.; Lüscher, A. Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding. J. Appl. Ecol. 2009, 46, 683–691. [Google Scholar] [CrossRef]
- Rochon, J.J.; Doyle, C.J.; Greef, J.M.; Hopkins, A.; Molle, G.; Sitzia, M.; Scholefield, D.; Smith, C.J. Grazing legumes in Europe: a review of their status, management, benefits, research needs and future prospects. Grass Forage Sci. 2004, 59, 197–214. [Google Scholar] [CrossRef]
- Guckert, A.; Hay, R.K.M. The overwintering, spring growth and Yield in mixed species swards of white clover in Europe. Ann. Bot. 2001, 88, 667–668. [Google Scholar] [CrossRef]
- Suter, M.; Connolly, J.; Finn, J.A.; Loges, R.; Kirwan, L.; Sebastia, M.T.; Lüscher, A. Nitrogen yield advantage from grass-legume mixtures is robust over a wide range of legume proportions and environmental conditions. Glob. Chang. Biol. 2015, 21, 2424–2438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsaesser, M.; Engel, S.; Thumm, U. Effects of legume establishment by slot-seeding on dry matter and protein yield. Grassl. Sci. Eur. 2016, 21, 507–509. [Google Scholar]
- Heine, L.; Thumm, U.; Elsaesser, M. Development and persistence of reseeding legumes in permanent grassland under different cutting and fertilization intensity. Grassl. Sci. Eur. 2018, 23, 219–221. [Google Scholar]
- Black, A.D.; Laidlaw, A.S.; Moot, D.J.; O′Kiely, P. Comparative growth and management of white and red clovers. Irish J. Agric. Food Res. 2009, 48, 149–166. [Google Scholar]
- Frame, J. Forage Legumes for Temperate Grasslands; FAO, and Science Publishers: Rome, Italy; Enfield, CT, USA, 2005. [Google Scholar]
- Nyfeler, D.; Huguenin-Elie, O.; Suter, M.; Frossard, E.; Lüscher, A. Grass-legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agric. Ecosyst. Environ. 2011, 140, 155–163. [Google Scholar] [CrossRef]
- Ledgard, S.F.; Sprosen, M.F.; Penno, J.W.; Rajendram, G.S. Nitrogen fixation by white clover in pastures grazed by dairy cows: Temporal variation and effects of nitrogen fertilization. Plant Soil 2001, 229, 177–187. [Google Scholar] [CrossRef]
- Trott, H.; Wachendorf, M.; Ingwersen, B.; Taube, F. Performance and environmental effects of forage production on sandy soils. I. Impact of defoliation system and nitrogen input on performance and N balance of grassland. Grass Forage Sci. 2004, 59, 41–55. [Google Scholar] [CrossRef]
- Klapp, E.; Stählin, A. Standorte, Pflanzengesellschaften und Leistung des Grünlandes. 122 Seiten. Verlag Eugen Ulmer, Stuttgart-S. 1936. Z. Pflanzenernaehr. Dueng. Bodenk. 1936, 43, 221–222. [Google Scholar]
- Geiger, G. Überarbeitete Neuausgabe von Geiger, R.: Koppen-Geiger/Klima der Erde; Wandkarte 1:16 Mill.; Klett-Perthes: Gotha, Germany, 1961. [Google Scholar]
- VDLUFA. Methodenbuch III 31.2; VDLUFA: Darmstadt, Germany, 2004. [Google Scholar]
- Elsaesser, M.; Engel, S.; Breunig, J.; Thumm, U. Increasing protein yields from grassland by reseeding of legumes. Grassl. Sci. Eur. 2014, 19, 880–883. [Google Scholar]
- Elsaesser, M. Merkblätter für die Umweltgerechte Landwirtschaft; Landwirtschaftliches Zentrum Baden-Württemberg: Aulendorf, Germany, 2008. [Google Scholar]
- Tracy, B.F.; Schlueter, D.H.; Flores, J.P. Conditions that favor clover establishment in permanent grass swards. Grassl. Sci. 2014, 61, 34–40. [Google Scholar] [CrossRef]
- Eriksen, J.; Askegaard, M.; Soegaard, K. Complementary effects of red clover inclusion in ryegrass-white clover swards for grazing and cutting. Grass Forage Sci. 2014, 69, 241–250. [Google Scholar] [CrossRef]
- Klöcker, W. The yield potential of white clover-its contribution to yield performance of newly established permanent pasture. 3. Borler site in the Eifel region. Das wirtschaftseigene Futter 1989, 35, 67–78. [Google Scholar]
- Finn, J.A.; Kirwan, L.; Connolly, J.; Sebastaia, M.T.; Helgadottir, A.; Baadshaug, O.H.; Belanger, G.; Black, A.; Brophy, C.; Collins, R.P.; et al. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: a 3-year continental scale field eCPeriment. J. Appl. Ecol. 2013, 50, 365–375. [Google Scholar] [CrossRef]
- Hammelehle, A.; Oberson, A.; Lüscher, A.; Mäder, P.; Mayer, J. Above- and belowground nitrogen distribution of a red clover-perennial ryegrass sward along a soil nutrient availability gradient established by organic and conventional cropping systems. Plant Soil 2018, 425, 507–525. [Google Scholar] [CrossRef]
- Lüscher, A.; Mueller-Harvey, I.; Soussana, J.F.; Rees, R.M.; Peyraud, J.L. Potential of legume-based grassland-livestock systems in Europe: a review. Grass Forage Sci. 2014, 69, 206–228. [Google Scholar] [CrossRef]
- Elsaesser, M.; Messner, J. Düngung von Wiesen, Weiden und Feldfutter. In Merkblätter für die Umweltgerechte Landwirtschaft; Landwirtschaftliches Zentrum Baden-Württemberg: Aulendorf, Germany, 2018. [Google Scholar]
- Mokry, M.; Mann, T.; Seiter, C.; Heckelmann, A.; Messner, J.; Elsäßer, M. Düngeverordnung. In Merkblätter für die Umweltgerechte Landwirtschaft; Landwirtschaftliches Zentrum Baden-Württemberg: Aulendorf, Germany, 2018. [Google Scholar]
- Frankow-Lindberg, B.E.; Halling, M.; Höglind, M.; Forkman, J. Yield and stability of yield of single- and multi-clover grass-clover swards in two contrasting temperate environments. Grass Forage Sci. 2009, 64, 236–245. [Google Scholar] [CrossRef]
- Conaghan, P. Breeding red clover (Trifolium pratense L.) for improved yield and persistence. Grassl. Sci. 2018, 23, 139–141. [Google Scholar]
- Hoekstra, N.J.; De Deyn, G.B.; van Eekeren, N. Red clover cultivars of Mattenklee type show higher yield and persistence than Ackerklee type. Grassl. Sci. Eur. 2018, 23, 66–68. [Google Scholar]
Attribute | 1960–1990 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|
Annual rainfall (mm) | 902 | 795 | 923 | 1114 | 1072 |
Mean annual Temp (°C) | 7.6 | 9.7 | 9.6 | 9.3 | 9.2 |
Legume | Cutting Frequency | Total N-Rate (kg ha−1) | N-Fertilizer Type | Label | N Applied Prior Cut |
---|---|---|---|---|---|
Contr./RC/WC | 3 | 0 | Mineral | 0 | |
Contr./RC/WC | 3 | 42 | Mineral | 42 | 1 |
Contr./RC/WC | 3 | 85 | Mineral | 85 | 1, 2 |
Contr./RC/WC | 3 | 85 | Slurry | 85s | 1, 2 |
Contr./RC/WC | 5 | 0 | Mineral | 0 | |
Contr./RC/WC | 5 | 85 | Mineral | 85 | 1, 3 |
Contr./RC/WC | 5 | 85 | Slurry | 85s | 1, 2 |
Contr./RC/WC | 5 | 170 | Mineral | 170 | 1, 2, 3 |
Contr./RC/WC | 5 | 170 | Slu. -Min | 170s | 1, 2, 3 |
Leg.- | N Fertilizer Rate (kg N ha−1) 1,2,3 | |||||||
---|---|---|---|---|---|---|---|---|
Treatment | 0 | 42 | 85 | 0 | 85 | 170 | ||
3-cut management | 5-cut management | |||||||
DM (t ha−1 3 years−1) | ||||||||
Control | A | 23.5 a | 23.5 a | 30.7 b | A | 24.7 a | 27.9 a,b | 31.8 b |
RC | C | 40.7 | 40.6 | 38.5 | C | 44.9 | 45.1 | 43.8 |
WC | B | 35.5 b | 29.3 a | 29.8 a | B | 34.4 | 36.3 | 36.9 |
CP (t ha−1 3 years−1) | ||||||||
Control | A | 2.8 a | 2.94 a | 3.40 b | A | 4.05 a | 4.47 a,b | 5.16 b |
RC | C | 6.53 | 6.39 | 5.87 | C | 8.55 | 8.6 | 8.21 |
WC | B | 4.6 | 3.78 | 4.04 | B | 6.38 | 6.87 | 6.49 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weggler, K.; Thumm, U.; Elsaesser, M. Development of Legumes After Reseeding in Permanent Grassland, as Affected by Nitrogen Fertilizer Applications. Agriculture 2019, 9, 207. https://doi.org/10.3390/agriculture9100207
Weggler K, Thumm U, Elsaesser M. Development of Legumes After Reseeding in Permanent Grassland, as Affected by Nitrogen Fertilizer Applications. Agriculture. 2019; 9(10):207. https://doi.org/10.3390/agriculture9100207
Chicago/Turabian StyleWeggler, Karin, Ulrich Thumm, and Martin Elsaesser. 2019. "Development of Legumes After Reseeding in Permanent Grassland, as Affected by Nitrogen Fertilizer Applications" Agriculture 9, no. 10: 207. https://doi.org/10.3390/agriculture9100207
APA StyleWeggler, K., Thumm, U., & Elsaesser, M. (2019). Development of Legumes After Reseeding in Permanent Grassland, as Affected by Nitrogen Fertilizer Applications. Agriculture, 9(10), 207. https://doi.org/10.3390/agriculture9100207