Does Mexico Have Enough Land to Fulfill Future Needs for the Consumption of Animal Products?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Framework: Land Use Associated with Livestock Systems
- (1)
- Each animal requires different amounts and types of feed (due to nutritional requirements) depending on the livestock species, breed, age, physiological state, physical activity, etc. [8].
- (2)
- Intensive indoor systems and extensive grazing systems require different amounts and types of feed.
- (3)
- (4)
2.2. Data Source
2.3. Calculations of LRAP
2.3.1. Land for Feed
2.3.2. Dressing Factor of Livestock Animals
2.3.3. LRAP
2.4. Livestock Systems
2.4.1. Beef Production
2.4.2. Milk Production Systems
2.4.3. Pork Production
2.4.4. Chicken Meat and Egg Production
2.5. Production Variables and Nutritional Relevance
2.6. Estimation of the Land Demand for Food for the Mexican Population
2.7. Sensitivity Analysis of the Production Variables
3. Results
3.1. Land Requirements for Animal Products (LRAP)
3.2. Land Demanded by the Present and Future Mexican Population
3.3. Role of the Livestock Production Variables on Changing the LRAP
- (1)
- The land requirement to produce 1 kg of beef is at least one order of magnitude higher than for the other animal products.
- (2)
- The land requirement to produce 1 kg of eggs is always the lowest.
- (3)
- The land requirements to produce 1 kg of milk, chicken meat or pork are similar, and differ mainly according to the production efficiency for the animals (dressing factor or daily milk production per animal) and the crop yield of the feed.
4. Discussion
4.1. Option to Reduce LRAP
4.2. Our Results Compared with the Literature
4.3. Limitations of Our Approach
4.3.1. Differences among Grasslands and Croplands
- (1)
- Differences in management practices of croplands and grasslands. Usually, croplands have higher use of agrochemicals than grasslands, resulting in different environmental impacts. For instance, in Latin America, the use of fertilizers on grasslands is only 2% of the total use of fertilizers in agriculture [34]. Hence, the differential use of agricultural resources between croplands and grasslands should be considered when comparing the area required to produce one kilogram of animal product.
- (2)
- Potential of grasslands for food production. The grass produced in grasslands is not edible for human consumption, but ruminant animals, including cattle, are efficient converters of grass into human food [35]. O’Mara [35] shows the high potential of grasslands for food security and states that management improvements in grassland systems could increase food production with an efficient energy conversion (considering CO2 emissions). In addition, grasslands confer a wide variety of Ecosystem Services on the local environment and population [35]. Thus, grasslands have more benefits than croplands, as long as management practices are adequate, which should be considered when comparing grasslands and croplands.
- (3)
- Environmental impact of grazing systems. In Mexico, grassland systems are mainly extensive free-grazing systems. In the bovine systems studied in this paper, 80% of the cattle of the medium-scale beef production system are free grazing, and only 20% are subject to “controlled” grazing [18]. The problems with extensive grazing systems are usually related with overgrazing [36]. Cattle on rangelands (free grazing) are usually grazing indiscriminately on native vegetation. Some studies of Mexican pastoral systems have shown deleterious effects on the local vegetation usually attributable to poor management of cattle [37] and other ruminant animals such as goats and sheep [38]. Hence, improved management practices could reduce local damage and increase food production. Further studies should design options for management improvements to increase the efficiency of land use in grazing systems. These options should be specific to the local biophysical characteristics of the region and the local management practices.
4.3.2. Data Source and Scale of Our Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alexander, P.; Rounsevell, M.D.; Dislich, C.; Dodson, J.R.; Engström, K.; Moran, D. Drivers for global agricultural land use change: The nexus of diet, population, yield and bioenergy. Glob. Environ. Chang. 2015, 35, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Davis, K.F.; Gephart, J.A.; Emery, K.A.; Leach, A.M.; Galloway, J.N.; D’Odorico, P. Meeting future food demand with current agricultural resources. Glob. Environ. Chang. 2016, 39, 125–132. [Google Scholar] [CrossRef]
- Ranganathan, J.; Vennard, D.; Waite, R.; Dumas, P.; Lipinski, B.; Searchinger, T. Shifting diets for a sustainable food future. In Working Paper, Installment 11 of Creating a Sustainable Food Future; World Resources Institute: Washington, DC, USA, 2016. [Google Scholar]
- Kearney, J. Food consumption trends and drivers. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2793–2807. [Google Scholar] [CrossRef]
- Smil, V. Eating meat: Constants and changes. Glob. Food Secur. 2014, 3, 67–71. [Google Scholar] [CrossRef]
- Smil, V. Nitrogen and Food Production: Proteins for Human Diets. AMBIO 2002, 31, 126–131. [Google Scholar] [CrossRef] [PubMed]
- FAO. FAOSTAT: Food and Agricultural Data from the Food and Agriculture Organization of the United Nations; FAO: Rome, Italy, 2017. [Google Scholar]
- Elferink, E.V.; Nonhebel, S. Variations in land requirements for meat production. J. Clean. Prod. 2007, 15, 1778–1786. [Google Scholar] [CrossRef]
- Alexander, P.; Brown, C.; Arneth, A.; Finnigan, J.; Rounsevell, M.D. Human appropriation of land for food: The role of diet. Glob. Environ. Chang. 2016, 41, 88–98. [Google Scholar] [CrossRef] [Green Version]
- Bosire, C.K.; Krol, M.S.; Mekonnen, M.M.; Ogutu, J.O.; de Leeuw, J.; Lannerstad, M.; Hoekstra, A.Y. Meat and milk production scenarios and the associated land footprint in Kenya. Agric. Syst. 2016, 145, 64–75. [Google Scholar] [CrossRef]
- Peters, C.J.; Picardy, J.; Wilkins, J.L.; Griffin, T.S.; Fick, G.W.; Darrouzet-Nardi, A.F. Carrying capacity of US agricultural land: Ten diet scenarios. Elem. Sci. Anthr. 2016, 4, 1. [Google Scholar] [CrossRef]
- Ridoutt, B.G.; Page, G.; Opie, K.; Huang, J.; Bellotti, W. Carbon, water and land use footprints of beef cattle production systems in southern Australia. J. Clean. Prod. 2014, 73, 24–30. [Google Scholar] [CrossRef]
- Nijdam, D.; Rood, T.; Westhoek, H. The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy 2012, 37, 760–770. [Google Scholar] [CrossRef]
- Wirsenius, S.; Azar, C.; Berndes, G. How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030? Agric. Syst. 2010, 103, 621–638. [Google Scholar] [CrossRef]
- The Noun Project, Icons for Everything. Credits for Each Icon are as Follows: (1) Chicken on Cage: “Livestock by Gan Khoon Lay”; (2) Chicken on foot:“poultry by Symbolon”; (3) Pig: “Pig by Symbolon”; (4) Chicken meat: “Chicken by Sandra”; (5) Cows: “Cow by Anniken& Andreas; (6) Farm land: “Farm by Weltenraser”; (7) Pasture land: “farm land by art shop”; (8) Crop land: “Agriculture by Made”. 2019. Available online: https://thenounproject.com/ (accessed on 1 February 2019).
- Lesur, L. Manual del Ganado Bovino Para Carne: Una Guía Paso a Paso, 1st ed.; Ed. Trillas: Mexico City, Mexico, 2005. [Google Scholar]
- INEGI. Encuesta Nacional Agropecuaria 2014 (National Agricultural Survey 2014). Instituto Nacional de Estadística y Geografía de México (INEGI). 2014. Available online: http://en.www.inegi.org.mx/proyectos/encagro/ena/2014/ (accessed on 1 February 2019).
- INEGI. Work Access to Microdata with Project Number LM-530; Microdata laboratory, National Institute of Statistics and Geography of Mexico (INEGI): Benito Juárez, México, 2017. [Google Scholar]
- Lesur, L.; Martinez, A.; Celis, P. Manual del Ganado Bovino Para Leche: Una Guía Paso a Paso, 1st ed.; Ed. Trillas: Mexico City, Mexico, 2005. [Google Scholar]
- Pérez-Zermeño, O. Sistema de Producción Porcina. Fichas Técnicas Sobre Actividades Agrícolas, Pecuarias y de Traspatio. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA). 2014. Available online: http://www.sagarpa.mx/desarrolloRural/Documents/fichasaapt/Sistema%20de%20producci%C3%B3n%20Porcina.pdf (accessed on 1 August 2018).
- Lesur, L. Manual de Porcicultura: Una Guía Paso a Paso, 1st ed.; Ed. Trillas: Mexico City, Mexico, 2003. [Google Scholar]
- Lesur, L. Manual de Avicultura: Una Guía Paso a Paso, 1st ed.; Ed. Trillas: Mexico City, Mexico, 2003. [Google Scholar]
- Lopez, H. Con Concentrados Caseros Mejore la Alimentación de Sus Aves y Aumente la Producción; Conrado, G.A., Ed.; FAO: Rome, Italy, 2005. [Google Scholar]
- SIAP. Information Service of the Ministry of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA) of Mexico. 2016. Available online: www.siap.gob.mx (accessed on 1 February 2019).
- SAGARPA. Balanza Comercial Agroalimentaria Enero-Junio 2016. Coordinación General de Asuntos Internacionales, SAGARPA. 2016. Available online: https://www.sagarpa.gob.mx/quienesomos/datosabiertos/sagarpa/Documents/2016_08_18_Balanza_Agroalimentaria_enero_junio_EU.pdf (accessed on 1 February 2019).
- Collet, I. Forage Sorghum and Millet, Agfact P2.5.41, 3rd ed.; NSW Department of Primary Industries: Orange, Australia, 2004. [Google Scholar]
- EuroStat. Glossary: Livestock Unit (LSU). 2013. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Glossary:Livestock_unit_(LSU) (accessed on 1 February 2019).
- Kastner, T.; Ibarrola Rivas, M.J.; Koch, W.; Nonhebel, S. Global changes in diets and the consequences for land requirements for food. Proc. Natl. Acad. Sci. USA 2012, 109, 6868–6872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibarrola-Rivas, M.J. Chapter 6: Future global use of resources for food: The huge impact of regional diets. In The Use of Agricultural Resources for Global Food Supply: Understanding its Dynamics and Regional Diversity; University of Groningen: Groningen, The Netherlands, 2015. [Google Scholar]
- Ibarrola-Rivas, M.J.; Nonhebel, S. Variations in the Use of Resources for Food: Land, Nitrogen Fertilizer and Food Nexus. Sustainability 2016, 8, 1322. [Google Scholar] [CrossRef]
- Uzal, S.; Ugurlu, N. The dairy cattle behaviors and time budget and barn area usage in freestall housing. J. Anim. Vet. Adv. 2010, 9, 248–254. [Google Scholar]
- SEMARNAT. Pasture Coefficients (Coeficientes de Agostadero) Reported by the Pasture Coefficient Technical Committee (Comité Técnico Consultivo de Coeficientes de Agostadero: Cotecoca), from the National Agency of Agriculture, Livestock Rural Development, Fisheries and Food of Mexico (SAGARPA). June 2009. Available online: http://aplicaciones.semarnat.gob.mx/estadisticas/compendio2010/10.100.13.5_8080/ibi_apps/WFServlet77fe.html (accessed on 1 February 2019).
- Gasque Gómez, R. Enciclopedia Bovina, 1st ed.; Universidad Nacional Autónoma de México, Facultad de Medicina Veterinaria y Zootecnia: Mexico City, Mexico, 2008; p. 438. [Google Scholar]
- FAO. Fertilizer use by crop. In 17 FAO Fertilizer and Plant Nutrition Bulletin; Information Division FAO: Rome, Italy, 2006. [Google Scholar]
- O’Mara, F.P. The role of grasslands in food security and climate change. Ann. Bot. 2012, 110, 1263–1270. [Google Scholar] [CrossRef] [Green Version]
- D’Ottavio, P.; Francioni, M.; Trozzo, L.; Sedić, E.; Budimir, K.; Avanzolini, P.; Trombetta, M.F.; Porqueddu, C.; Santilocchi, R.; Toderi, M. Trends and approaches in the analysis of ecosystem services provided by grazing systems: A review. Grass Forage Sci. 2018, 73, 15–25. [Google Scholar]
- Donjuán, M.; Alberto, C.; Jiménez Pérez, J.; Alanís Rodríguez, E.; Camacho, R.; Alonso, E.; Yamallel, Y.; Israel, J.; González Tagle, M.A. Efecto de la ganadería en la composición y diversidad arbórea y arbustiva del matorral espinoso tamaulipeco. Rev. Mex. Cienc. For. 2013, 4, 124–137. [Google Scholar]
- Echavarría-Chairez, F.G.; Serna-Pérez, A.; Salinas-Gonzalez, H.; Iñiguez, L.; Palacios-Díaz, M.P. Small ruminant impacts on rangelands of semiarid highlands of Mexico and the reconverting by grazing systems. Small Rumin. Res. 2010, 89, 211–217. [Google Scholar] [CrossRef]
Maize Grain | Sorghum Grain | Barley Grain | Sorghum Forage | Soybeans | |
---|---|---|---|---|---|
Share of imports (in respect to national supply) | 23% | 16% | 49% | -- | 94% |
Mexican crop yield [ton ha−1 year−1] | 3.3 | 4.2 | 2.7 | 13.6 (dry matter) | 1.8 |
USA crop yield [ton ha−1 year−1] | 10.7 | 4.2 | 3.9 | -- | 3.2 |
Weighted crop yield considering imports [ton ha−1 year−1] | 5.0 | 4.2 | 3.3 | 13.6 | 3.1 |
Land for Feed [m2 year kg-feed−1] | 2.0 | 2.4 | 3.0 | 0.7 | 3.2 |
Live Weight when Slaughtered [kg LU−1] [17] | Carcass Weight [kg LU−1] (Yield Carcass Weight from [7]) | Dressing Factor [Carcass-Weight × Live-Weight−1] | |
---|---|---|---|
Beef | 539.3 | 212.3 | 0.39 |
Pork | 87.5 | 78.5 | 0.90 |
Chicken meat | 2.3 | 1.78 | 0.77 |
Live Weight of the Pig | Age [month] | Barn Area [m2 pig−1] |
---|---|---|
Mother sow with piglets | 1 | 0.1825 |
4.5 kg | 2 | 0.185 |
13.6 kg | 3 | 0.3 |
33 kg | 4 | 0.46 |
67.5 kg | 5 | 0.65 |
90 kg | 6 | 1.4 |
Variable | Beef | Milk | Pork | Chicken Meat | Eggs | ||
---|---|---|---|---|---|---|---|
Grazing | In Barn | On Foot | Caged | ||||
Housing | |||||||
Barn area per Livestock Unit [m2 LU−1] | 12 (1) | 12 (1) | 12 (1) | 1.06 (2) | 0.09 (3) | 1.39 (3) | 0.47 (3) |
Feed | |||||||
Type of feed | Maize grain, sorghum (grain and forage), and barley grain a, (1) | Sorghum grain and soybeans (4) | Maize grain and soybeans (3) | ||||
Daily amount of feed [kg LU−1 day−1] | 1 (grazing period) and 12 (fattening period) b, (5) | 7.4 (5) | 18 (5) | 2.2 (6) | 0.16 (7) | ||
Total amount of feed during lifetime [kg LU−1] | 2 836 (5,6) | --- | --- | 368 (6) | 14 (6,7) | --- | --- |
Crop yield [ton ha−1] c | 7.3 (8) | 4.0 (8) | 4.5 (8) | ||||
Grassland carrying capacity [LU ha−1] | 0.20 (grazing period) (6) | 0.47(6) | --- | --- | --- | --- | --- |
Productivity variables | |||||||
Lifespan [yrs] | 1.9: 1.5 (10) (grazing period) + 0.4 (6) (fattening period) | --- | --- | 0.54 (6) | 0.24 (6) | --- | --- |
Live weight when slaughtered [kg LU−1] | 539 (6) | --- | --- | 88 (6) | 2.3 (7) | --- | --- |
Dressing factor e | 0.39 (9) | --- | --- | 0.9 (9) | 0.77 (9) | --- | --- |
Daily productivity [kg-food LU−1 day−1] | --- | 6.7 (6) | 14 (6) | --- | --- | 0.07 d, (6) | 0.07 d, (6) |
Animal Product | Conversion Factor [g Protein × kg Animal Product −1] |
---|---|
Beef | 148 |
Milk | 32 |
Pork | 108 |
Chicken meat | 104 |
Eggs | 101 |
Present Mexican Diet [kg cap −1 year −1] | Present USA Diet [kg cap −1 year −1] | |
---|---|---|
Beef | 15 | 36 |
Milk | 112 | 255 |
Pork | 15 | 27 |
Chicken meat | 30 | 50 |
Eggs | 18 | 15 |
Present | 2050 with Present Diet | 2050 with Affluent Diet | ||||
---|---|---|---|---|---|---|
Grassland | Cropland | Grassland | Cropland | Grassland | Cropland | |
People [Million people] | 123 | 164 | 164 | |||
Land use [Million hectares] | ||||||
Beef | 66 | 4 | 89 | 5 | 209 | 12 |
Milk | 12 | 3 | 16 | 4 | 36 | 8 |
Pork | - | 2 | - | 3 | - | 5 |
chicken meat | - | 7 | - | 9 | - | 15 |
Eggs | - | 1 | - | 2 | - | 1 |
Crop-based products | - | 13 | - | 18 | - | 18 |
Total land use | 78 | 30 | 104 | 40 | 245 | 60 |
Higher and Lower Estimates of the Production Variables | Beef | Milk | Pork | Chicken Meat | Eggs | ||
---|---|---|---|---|---|---|---|
Grazing | In Barn | On Foot | Caged | ||||
More barn area per LU: 50% more [m2 LU−1] | 18 | 18 | 18 | 1.59 | 0.135 | 2.085 | 0.705 |
Less barn area per LU: 50% less [m2 LU−1] | 6 | 6 | 6 | 0.53 | 0.045 | 0.695 | 0.235 |
More efficient feed crops: 50% higher crop yield [ton ha−1] | 10.95 | 10.95 | 10.95 | 6 | 6.75 | 6.75 | 6.75 |
Less efficient feed crops: 50% lower crop yield [ton ha−1] | 3.65 | 3.65 | 3.65 | 2 | 2.25 | 2.25 | 2.25 |
Higher carrying capacity of Pastures: 50% more [LU ha−1] | 0.3 | 0.705 | -- | -- | -- | -- | -- |
Lower carrying capacity of Pastures: 50% less [LU ha−1] | 0.1 | 0.235 | -- | -- | -- | -- | -- |
Higher final live weight: 20% more [kg] | 646.8 | -- | -- | 105.6 | 2.76 | -- | -- |
Lower final live weight: 20% less [kg] | 431.2 | -- | -- | 70.4 | 1.84 | -- | -- |
Higher dressing factor: 20% higher | 0.468 | -- | -- | 1 | 0.924 | -- | -- |
Lower dressing factor: 20% lower | 0.312 | -- | -- | 0.72 | 0.616 | -- | -- |
Higher daily food production [kg-food LU−1 day−1]: 50% higher | 10.05 | 21 | 0.105 | 0.105 | |||
Lower daily food production [kg-food LU−1 day−1]: 50% lower | 3.35 | 7 | 0.035 | 0.035 |
Animal Product | Land Use | Per Weight [m2 year kg-food−1] | Per Protein [m2 year kg-protein−1] |
---|---|---|---|
Beef | Grassland | 351.5 | 2374 |
Cropland | 20.3 | 137 | |
Barn | 0.11 | 0.8 | |
Milk | Grassland | 8.6 | 264 |
(grazing system) | Cropland | 1.9 | 59 |
Barn | 0.005 | 0.2 | |
Milk | Cropland | 4.8 | 147 |
(barn system) | Barn | 0.005 | 0.2 |
Pork | Cropland | 11.8 | 109 |
Barn | 0.007 | 0.1 | |
Chicken meat | Cropland | 18.3 | 176 |
Barn | 0.012 | 0.1 | |
Eggs | Cropland | 5.3 | 53 |
(Chickens on foot) | Barn | 0.054 | 0.5 |
Eggs | Cropland | 5.3 | 53 |
(Caged chickens) | Barn | 0.018 | 0.2 |
Land Demand | Land Available | |
---|---|---|
Present (2013) (123 Million people) | Grassland: 78 Mha Cropland: 30 Mha | Grassland: 81 Mha Cropland: 26 Mha |
2050 with present diets (164 Million people) | Grassland: 104 Mha Cropland: 40 Mha | |
2050 with affluent diets (164 Million people) | Grassland: 245 Mha Cropland: 60 Mha |
Higher and Lower Estimates of the Production Variables | Beef | Milk | Pork | Chicken Meat | Eggs | ||
---|---|---|---|---|---|---|---|
Grazing | In Barn | On foot | Caged | ||||
LRAP values of this paper | 371.91 | 10.500 | 4.759 | 11.787 | 18.301 | 5.40 | 5.36 |
More barn area per LU: 50% more | 371.97 (+0.0002) | 10.503 (+0.0002) | 4.762 (+0.0005) | 11.790 (+0.0003) | 18.307 (+0.0003) | 5.42 (+0.005) | 5.37 (+0.002) |
Less barn area per LU: 50% less | 371.86 (−0.0002) | 10.498 (−0.0002) | 4.757 (−0.0005) | 11.783 (−0.0003) | 18.295 (−0.0003) | 5.37 (−0.005) | 5.35 (−0.002) |
More efficient feed crops: 50% higher crop yield | 365 (−0.018) | 9.8 (−0.06) | 3.2 (−0.33) | 7.9 (−0.33) | 12.2 (−0.33) | 3.6 (−0.33) | 3.6 (−0.33) |
Less efficient feed crops: 50% lower crop yield | 392 (+0.055) | 12.4 (+0.18) | 9.5 (+0.99) | 23.6 (+0.99) | 36.6 (+0.99) | 10.7 (+0.98) | 10.7 (+0.99) |
Higher carrying capacity of pastures: 50% more | 254 (−0.31) | 7.6 (−0.27) | -- | -- | -- | -- | -- |
Lower carrying capacity of pastures: 50% less | 723 (+0.95) | 19.1 (+0.82) | -- | -- | -- | -- | -- |
Higher final live weight: 20% more | 317 (−0.15) | -- | -- | 9.8 (−0.17) | 15.3 (−0.17) | -- | -- |
Lower final live weight: 20% less | 465 (+0.25) | -- | -- | 14.7 (+0.24) | 22.9 (+0.25) | -- | -- |
Higher dressing factor: 20% higher | 312 (−0.16) | -- | -- | 10.6 (−0.1) | 15.3 (−0.16) | -- | -- |
Lower dressing factor: 20% lower | 469 (0.26) | -- | -- | 14.7 (+0.25) | 23.0 (+0.26) | -- | -- |
Higher daily food production per LU: 50% higher | -- | 7.0 (−0.33) | 3.2 (−0.33) | -- | -- | 3.6 (−0.33) | 3.6 (−0.33) |
Lower daily food production per LU: 50% lower | -- | 21.1 (+1.01) | 9.6 (+1.01) | -- | -- | 10.8 (+1.00) | 10.7 (+1.00) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibarrola-Rivas, M.-J.; Nonhebel, S. Does Mexico Have Enough Land to Fulfill Future Needs for the Consumption of Animal Products? Agriculture 2019, 9, 211. https://doi.org/10.3390/agriculture9100211
Ibarrola-Rivas M-J, Nonhebel S. Does Mexico Have Enough Land to Fulfill Future Needs for the Consumption of Animal Products? Agriculture. 2019; 9(10):211. https://doi.org/10.3390/agriculture9100211
Chicago/Turabian StyleIbarrola-Rivas, Maria-Jose, and Sanderine Nonhebel. 2019. "Does Mexico Have Enough Land to Fulfill Future Needs for the Consumption of Animal Products?" Agriculture 9, no. 10: 211. https://doi.org/10.3390/agriculture9100211
APA StyleIbarrola-Rivas, M. -J., & Nonhebel, S. (2019). Does Mexico Have Enough Land to Fulfill Future Needs for the Consumption of Animal Products? Agriculture, 9(10), 211. https://doi.org/10.3390/agriculture9100211