Soil N2O Emissions under Different N Rates in an Oil Palm Plantation on Tropical Peatland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Field Experimental Design
2.3. Soil N2O Emission Measurements and Soil Sampling
2.4. Environmental Parameters and Soil Sampling
2.5. Oil Palm Yield Collection
2.6. Statistical Analysis
3. Results
3.1. General Soil Properties
3.2. Ground Water Level, WFPS, and Soil Temperatures
3.3. Soil NH4+ and NO3− concentrations
3.4. Soil N2O Emissions
3.5. Oil Palm Yield
3.6. Factors Controlling Soil N2O Emissions
4. Discussion
4.1. Effect of N Fertilization on N2O Emissions
4.2. Factors Influencing Soil N2O Emissions
4.3. Effect of N Fertilization on Oil Palm Yield
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; et al. Changes in Atmospheric Constituents and in Radiative Forcing. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 129–234. [Google Scholar]
- Davidson, E.A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat. Geosci. 2009, 2, 659. [Google Scholar] [CrossRef]
- Maraseni, T.N.; Qu, J. An international comparison of agricultural nitrous oxide emissions. J. Clean. Prod. 2016, 135, 1256–1266. [Google Scholar] [CrossRef]
- Comte, I.; Colin, F.; Whalen, J.K.; Grünberger, O.; Caliman, J.P. Agricultural practices in oil palm plantations and their impact on hydrological changes, nutrient fluxes and water quality in Indonesia: A review. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2012; Volume 116, pp. 71–124. [Google Scholar]
- Mutert, E.; Fairhurst, T.H.; Von Uexküll, H.R. Agronomic management of oil palms on deep peat. Better Crop. Int. 1999, 13, 22–27. Available online: http://www.ipni.net/publication/bci.nsf/0/963CC0D08521253185257BBA006E791B/$FILE/Better%20Crops%20International%201999-1%20p22.pdf (accessed on 26 May 2019).
- Jauhiainen, J.; Silvennoinen, H.; Hämäläinen, R.; Kusin, K.; Limin, S.; Raison, R.J.; Vasander, H. Nitrous oxide fluxes from tropical peat with different disturbance history and management. Biogeosciences 2012, 9, 1337–1350. [Google Scholar] [CrossRef] [Green Version]
- Couwenberg, J.; Dommain, R.; Joosten, H. Greenhouse gas fluxes from tropical peatlands in south-east Asia. Glob. Chang. Biol. 2010, 16, 1715–1732. [Google Scholar] [CrossRef]
- Murdiyarso, D.; Hergoualc’h, K.; Verchot, L.V. Opportunities for reducing greenhouse gas emissions in tropical peatlands. Proc. Natl. Acad. Sci. USA 2010, 107, 19655–19660. [Google Scholar] [CrossRef] [Green Version]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130122. [Google Scholar] [CrossRef]
- Takakai, F.; Morishita, T.; Hashidoko, Y.; Darung, U.; Kuramochi, K.; Dohong, S.; Limin, S.H.; Hatano, R. Effects of agricultural land-use change and forest fire on N2O emission from tropical peatlands, central Kalimantan, Indonesia. Soil Sci. Plant Nutr. 2006, 52, 662–674. [Google Scholar] [CrossRef]
- Pihlatie, M.; Syväsalo, E.; Simojoki, A.; Esala, M.; Regina, K. Contribution of nitrification and denitrification to N2O production in peat, clay and loamy sand soils under different soil moisture conditions. Nutr. Cycl. Agroecosyst. 2004, 70, 135–141. [Google Scholar] [CrossRef]
- Van Beek, C.L.; Pleijter, M.; Kuikman, P.J. Nitrous oxide emissions from fertilized and unfertilized grasslands on peat soil. Nutr. Cycl. Agroecosyst. 2011, 89, 453–461. [Google Scholar] [CrossRef]
- Dobbie, K.E.; Smith, K.A. The effect of water table depth on emissions of N2O from a grassland soil. Soil Use Manag. 2006, 22, 22–28. [Google Scholar] [CrossRef]
- Regina, K.; Silvola, J.; Martikainen, P.J. Short term effects of changing water table on N2O fluxes from peat monoliths from natural and drained boreal peatlands. Glob. Chang. Biol. 1999, 5, 183–189. [Google Scholar] [CrossRef]
- Minamikawa, K.; Eguchi, S.; Nishimura, S.; Ihara, H.; Maeda, M.; Yagi, K.; Komada, M. Groundwater-induced emissions of nitrous oxide through the soil surface and from subsurface drainage in an Andosol upland field: A monolith lysimeter study. Soil Sci. Plant Nutr. 2013, 59, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Sakata, R.; Shimada, S.; Arai, H.; Yoshioka, N.; Yoshioka, R.; Aoki, H.; Inubushi, K. Effect of soil types and nitrogen fertilizer on nitrous oxide and carbon dioxide emissions in oil palm plantations. Soil Sci. Plant Nutr. 2014, 61, 48–60. [Google Scholar] [CrossRef]
- Melling, L.; Hatano, R.; Goh, K.J. Nitrous oxide emissions from three ecosystems in tropical peatland of Sarawak, Malaysia. Soil Sci. Plant Nutr. 2007, 53, 792–805. [Google Scholar] [CrossRef]
- Oktarita, S.; Hergoualc’h, K.; Anwar, S.; Verchot, L.V. Substantial N2O emissions from peat decomposition and N fertilization in an oil palm plantation exacerbated by hotspots. Environ. Res. Lett. 2017, 12, 104007. [Google Scholar] [CrossRef]
- Hadi, A.; Inubushi, K.; Purnomo, E.; Razie, F.; Yamakawa, K.; Tsuruta, H. Effect of land-use changes on nitrous oxide (N2O) emission from tropical peatlands. Chemosphere Glob. Chang. Sci. 2000, 2, 347–358. [Google Scholar] [CrossRef]
- Page, S.E.; Morrison, R.; Malins, C.; Hooijer, A.; Rieley, J.O.; Jauhiainen, J. Review of Peat Surface Greenhouse Gas Emissions from Oil Palm Plantations in Southeast Asia; White Paper Number 15; International Council on Clean Transportation: Washington, DC, USA, 2011; p. 22. Available online: http://www.environmentportal.in/files/file/ICCT_Peat-Emissions_Sept2011.pdf (accessed on 26 May 2019).
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014.
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Hasnol, O.; Farawahida, M.D.; Mohd, H.; Samsudin, A. Re-evaluation of nutrients requirements for oil palm planting on peat soil. Planter 2014, 90, 161–177. Available online: https://www.cabdirect.org/cabdirect/abstract/20143238761 (accessed on 28 May 2019).
- Norman, J.M.; Kucharik, C.J.; Gower, S.T.; Baldocchi, D.D.; Crill, P.M.; Rayment, M.; Savage, K.; Striegl, R.G. A comparison of six methods for measuring soil-surface carbon dioxide fluxes. J. Geophys. Res. Atmos. 1997, 102, 28771–28777. [Google Scholar] [CrossRef]
- Jin, T.; Shimizu, M.; Marutani, S.; Desyatkin, A.R.; Iizuka, N.; Hata, H.; Hatano, R. Effect of chemical fertilizer and manure application on N2O emission from reed canary grassland in Hokkaido, Japan. Soil Sci. Plant Nutr. 2010, 56, 53–65. [Google Scholar] [CrossRef]
- Albanito, F.; Lebender, U.; Cornulier, T.; Sapkota, T.B.; Brentrup, F.; Stirling, C.; Hillier, J. Direct nitrous oxide emissions from tropical and sub-tropical agricultural systems-a review and modelling of emission factors. Sci. Rep. 2017, 7, 44235. [Google Scholar] [CrossRef]
- Keeney, D.R.; Nelson, D.W. Nitrogen-Inorganic forms. In Methods of Soil Analysis Part 2: Chemical and Microbiological Properties, 2nd ed.; Agronomy 9/2; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 643–698. [Google Scholar]
- Weitz, A.M.; Linder, E.; Frolking, S.; Crill, P.M.; Keller, M. N2O emissions from humid tropical agricultural soils: Effects of soil moisture, texture and nitrogen availability. Soil Biol. Biochem. 2001, 33, 1077–1093. [Google Scholar] [CrossRef]
- Zhou, W.J.; Ji, H.L.; Zhu, J.; Zhang, Y.P.; Sha, L.Q.; Liu, Y.T.; Lin, Y.X. The effects of nitrogen fertilization on N2O emissions from a rubber plantation. Sci. Rep. 2016, 6, 28230. [Google Scholar] [CrossRef]
- Leifeld, J. Distribution of nitrous oxide emissions from managed organic soils under different land uses estimated by the peat C/N ratio to improve national GHG inventories. Sci. Total Environ. 2018, 631, 23–26. [Google Scholar] [CrossRef]
- Augustin, J.; Merbach, W.; Rogasik, J. Factors influencing nitrous oxide and methane emissions from minerotrophic fens in northeast Germany. Biol. Fertil. Soils 1998, 28, 1–4. [Google Scholar] [CrossRef]
- Martikainen, P.J.; Nykänen, H.; Crill, P.; Silvola, J. Effect of a lowered water table on nitrous oxide fluxes from northern peatlands. Nature 1993, 366, 51. [Google Scholar] [CrossRef]
- Susilawati, H.L.; Setyanto, P.; Ariani, M.; Hervani, A.; Inubushi, K. Influence of water depth and soil amelioration on greenhouse gas emissions from peat soil columns. Soil Sci. Plant Nutr. 2016, 62, 57–68. [Google Scholar] [CrossRef]
- Hardwick, S.R.; Toumi, R.; Pfeifer, M.; Turner, E.C.; Nilus, R.; Ewers, R.M. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate. Agric. For. Meteorol. 2015, 201, 187–195. [Google Scholar] [CrossRef]
- Kurnain, A. Moisture release of tropical peat soils as decreasing water table. Trop. Wetl. J. 2016, 1, 33–37. Available online: http://eprints.unlam.ac.id/1986/1/09_5-9-1-SM.pdf (accessed on 14 August 2019).
- Fageria, N.K.; Dos Santos, A.B.; Moraes, M.F. Influence of urea and ammonium sulfate on soil acidity indices in lowland rice production. Commun. Soil Sci. Plant Anal. 2010, 41, 1565–1575. [Google Scholar] [CrossRef]
- Rizal, A.; Ahmad, H.; Osumanu, H.A.; Halimi, M.S. Influence of urea and ammonium sulfate on potential mineralization and nitrification rate in tropical peat soil from oil palm cultivation under lab condition. Int. J. Trop. Agric. 2015, 33 Pt IV, 1747–1754. Available online: https://www.cabdirect.org/cabdirect/abstract/20153342355 (accessed on 26 May 2019).
- Tierling, J.; Kuhlmann, H. Emissions of nitrous oxide (N2O) affected by pH-related nitrite accumulation during nitrification of N fertilizers. Geoderma 2018, 310, 12–21. [Google Scholar] [CrossRef]
- Cai, Z.; Xing, G.; Yan, X.; Xu, H.; Tsuruta, H.; Yagi, K.; Minami, K. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management. Plant Soil 1997, 196, 7–14. [Google Scholar] [CrossRef]
- Kumar, U.; Jain, M.C.; Pathak, H.; Kumar, S.; Majumdar, D. Nitrous oxide emission from different fertilizers and its mitigation by nitrification inhibitors in irrigated rice. Biol. Fertil. Soils 2000, 32, 474–478. [Google Scholar] [CrossRef]
- Nugraha, M.I.; Annisa, W.; Syaufina, L.; Anwar, S. Capillary water rise in peat soil as affected by various groundwater levels. Indones. J. Agric. Sci. 2017, 17, 75–83. [Google Scholar] [CrossRef]
- Li, Z.A.; Zou, B.; Xia, H.P.; Ding, Y.Z.; Tan, W.N.; Ma, Z.R. Effect of fertilizer and water content on N2O emission from three plantation soils in south China. J. Environ. Sci. (China) 2005, 17, 970. [Google Scholar]
- Liu, X.; Dong, Y.; Qi, Y.; Peng, Q.; He, Y.; Sun, L.; Jia, J.; Guo, S.; Cao, C.; Yan, Z.; et al. Response of N2O emission to water and nitrogen addition in temperate typical steppe soil in Inner Mongolia, China. Soil Tillage Res. 2015, 151, 9–17. [Google Scholar] [CrossRef]
- Davidson, E.A.; Keller, M.; Erickson, H.E.; Verchot, L.V.; Veldkamp, E. Testing a conceptual model of soil emissions of nitrous and nitric oxides. BioScience 2000, 50, 667–680. [Google Scholar] [CrossRef]
- Ishikura, K.; Darung, U.; Inoue, T.; Hatano, R. Variation in Soil Properties Regulate Greenhouse Gas Fluxes and Global Warming Potential in Three Land Use Types on Tropical Peat. Atmosphere 2018, 9, 465. [Google Scholar] [CrossRef]
- Smith, K.A.; McTaggart, I.P.; Tsuruta, H. Emissions of N2O and NO associated with nitrogen fertilization in intensive agriculture, and the potential for mitigation. Soil Use Manag. 1997, 13, 296–304. [Google Scholar] [CrossRef]
- Pärn, J.; Verhoeven, J.T.; Butterbach-Bahl, K.; Dise, N.B.; Ullah, S.; Aasa, A.; Kasak, K. Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots. Nat. Commun. 2018, 9, 1135. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.J.; Mosier, A.R.; Halvorson, A.D.; Reule, C.A.; Zhang, F.S. Dinitrogen and N2O emissions in arable soils: Effect of tillage, N source and soil moisture. Soil Biol. Biochem. 2007, 39, 2362–2370. [Google Scholar] [CrossRef]
- Koponen, H.T.; Duran, C.E.; Maljanen, M.; Hytönen, J.; Martikainen, P.J. Temperature responses of NO and N2O emissions from boreal organic soil. Soil Biol. Biochem. 2006, 38, 1779–1787. [Google Scholar] [CrossRef]
- Lai, T.V.; Farquharson, R.; Denton, M.D. High soil temperatures alter the rates of nitrification, denitrification and associated N2O emissions. J. Soils Sediments 2019, 1–14. [Google Scholar] [CrossRef]
- Morris, J.; Ye, R.; Silva, L.C.; Horwath, W.R. Nitrogen fertilization had no effect on CH4 and N2O emissions in rice planted in rewetted peatlands. Soil Sci. Soc. Am. J. 2017, 81, 224–232. [Google Scholar] [CrossRef]
- Tarmizi, A.M.; Tayeb, D.M. Nutrient demands of Tenera oil palm planted on inland soils of Malaysia. J. Oil Palm Res. 2006, 18, 204–209. Available online: http://www.oneoilpalm.com/wp-content/uploads/2017/06/Nutrient-demands-of-tenera-oil-palm-planted-on-inland-soils-of-Malaysia.pdf (accessed on 30 August 2019).
- Teh, C.B.S. Availability, Use, and Removal of Oil Palm Biomass in Indonesia; Report for the International Council on Clean Transportation; University Putra: Selangor, Malaysia, 2016. [Google Scholar]
- Simojoki, A.; Jaakkola, A. Effect of nitrogen fertilization, cropping and irrigation on soil air composition and nitrous oxide emission in a loamy clay. Eur. J. Soil Sci. 2000, 51, 413–424. [Google Scholar] [CrossRef]
- Sosulski, T.; Szara, E.; Stępień, W.; Szymańska, M. Nitrous oxide emissions from the soil under different fertilization systems on a long-term experiment. Plant Soil Environ. 2014, 60, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Marwanto, S.; Watanabe, T.; Iskandar, W.; Sabiham, S.; Funakawa, S. Effects of seasonal rainfall and water table movement on the soil solution composition of tropical peatland. Soil Sci. Plant Nutr. 2018, 64, 386–395. [Google Scholar] [CrossRef]
- Kusa, K.; Sawamoto, T.; Hu, R.; Hatano, R. Comparison of the closed-chamber and gas concentration gradient methods for measurement of CO2 and N2O fluxes in two upland field soils. Soil Sci. Plant Nutr. 2008, 54, 777–785. [Google Scholar] [CrossRef]
Treatment | Month | kg AS palm−1 | kg AS palm−1 yr−1 | kg N ha−1 yr−1 |
---|---|---|---|---|
T1 | March | 0 | 0 | 0 |
June | 0 | |||
September | 0 | |||
November | 0 | |||
T2 | March | 0.25 | 1 | 31.1 |
June | 0.25 | |||
September | 0.25 | |||
November | 0.25 | |||
T3 | March | 0.5 | 2 | 62.2 |
June | 0.5 | |||
September | 0.5 | |||
November | 0.5 | |||
T4 | March | 1 | 4 | 124.3 |
June | 1 | |||
September | 1 | |||
November | 1 |
Rate | February | March | May | June | |||||||
RP | AS | MOP | Cu | Zn | Bo | AS | MOP | ||||
T1 (Control) | 1.75 | 0 | 1 | 0.1 | 0.1 | 0.1 | 0 | 1 | |||
T2 (Low N) | 1.75 | 0.25 | 1 | 0.1 | 0.1 | 0.1 | 0.25 | 1 | |||
T3 (Recommended N) | 1.75 | 0.5 | 1 | 0.1 | 0.1 | 0.1 | 0.5 | 1 | |||
T4 (High N) | 1.75 | 1.0 | 1 | 0.1 | 0.1 | 0.1 | 1.0 | 1 | |||
Rate | August | September | October | November | |||||||
Kieserite | AS | MOP | Cu | Zn | Bo | AS | MOP | ||||
T1 (Control) | 1.75 | 0 | 1.6 | 0.1 | 0.1 | 0.1 | 0 | 1.6 | |||
T2 (Low N) | 1.75 | 0.25 | 1.6 | 0.1 | 0.1 | 0.1 | 0.25 | 1.6 | |||
T3 (Recommended N) | 1.75 | 0.5 | 1.6 | 0.1 | 0.1 | 0.1 | 0.5 | 1.6 | |||
T4 (High N) | 1.75 | 1.0 | 1.6 | 0.1 | 0.1 | 0.1 | 1.0 | 1.6 |
Properties | Value ± SD |
---|---|
Average annual rainfall (mm) | 2697 ± 596.7 |
WFPS (%) | 70.4 ± 10.4 |
GWL (cm) | −53.0 ± 20.4 |
Bulk density (g cm−3) | 0.24 ± 0.01 |
Soil pH | 3.4 ± 0.1 |
LOI (%) | 96.7 ± 1.0 |
C (%) | 55.8 ± 2.4 |
N (%) | 1.9 ± 0.2 |
C/N ratio | 30.3 ± 2.4 |
Properties | GWL | T1 | T2 | T3 | T4 |
---|---|---|---|---|---|
WFPS (%) | Low GWL | 61.5 (7.0)a | 61.4 (7.4)a | 64.0 (6.4)a | 59.7 (7.1)a |
High GWL | 68.0 (7.0)a* | 72.2 (6.6)a* | 69.3 (7.8)a* | 71.3 (6.3)a* | |
NO3− (0–25 cm) (mg N kg−1) | Low GWL | 25.0 (14.7)a | 28.9 (11.2)a | 31.9 (18.1)a | 34.8 (10.6)a |
High GWL | 14.7 (8.6)b* | 14.1 (14.0)b* | 20.8 (14.8)ab | 33.7 (33.9)a | |
NH4+ (0–25 cm) (mg N kg−1) | Low GWL | 489.1 (182.7)a | 484.6 (144.4)a | 440.0 (188.7)a | 436.7 (143.8)a |
High GWL | 411.5 (144.6)a | 460.8 (481.7)a | 447.4 (134.6)a | 497.2 (192.3)a | |
N2O (µg N m−2 hr−1) | Low GWL | 343.7 (240.4)a | 270.9 (144.9)a | 394.4 (340.0)a | 424.1 (200.9)a |
High GWL | 1063.9 (920.7)a* | 957.0 (621.3)a* | 1304.8 (729.5)a* | 1209.9 (564.3)a* |
2010 | 2011 | 2012 | 2013 | 2016 | 2017 | |
---|---|---|---|---|---|---|
GWL | −0.348* | −0.527** | −0.297* | −0.054 | −0.418** | 0.003 |
0.015 | 0.000 | 0.043 | 0.714 | 0.003 | 0.981 |
Year | Annual Cumulative N2O Emissions (kg N ha−1 yr−1) | |||
---|---|---|---|---|
T1 | T2 | T3 | T4 | |
2010 | 45.9 (11.5)b AB | 43.5 (5.3)b A | 60.4 (11.7)ab A | 67.8 (9.7)a A |
2011 | 47.5 (4.2)b A | 43.3 (2.5)b A | 70.7 (22.2)ab A | 79.7 (3.3)a A |
2012 | 25.9 (11.3)b BC | 24.9 (6.2)b B | 36.8 (5.4)ab BC | 50.7 (2.8)a B |
2013 | 13.59 (4.6)a C | 19.4 (3.2)a BC | 20.9 (7.0)a CD | 22.9 (3.8)a C |
2016 | 6.5 (0.3)b C | 7.6 (1.6)ab D | 8.2 (0.6)ab D | 9.8 (1.6)a C |
2017 | 12.2 (5.1)a C | 11.8 (1.0)a D | 13.4 (0.1)a CD | 18.2 (3.3)a C |
Mean | 25.2 (17.8)a | 25.1(15.4)a | 35.1 (25.7)a | 41.5(28.7)a |
Treatment | Variable | Std. Coefficient | SE | p-Value | R2 |
---|---|---|---|---|---|
T1 | GWL | 0.375 | 1.958 | 0.000 | 0.18 |
WFPS | −0.374 | 3.810 | 0.000 | 0.32 | |
T2 | GWL | 0.373 | 1.659 | 0.000 | 0.20 |
WFPS | −0.322 | 3.143 | 0.002 | 0.29 | |
Soil temperature at 5 cm | 0.648 | 52.43 | 0.003 | ||
Soil temperature at 10 cm | −0.419 | 69.20 | 0.050 | ||
T3 | WFPS | −0.415 | 4.698 | 0.000 | 0.42 |
GWL | 0.454 | 2.314 | 0.000 | 0.13 | |
NH4+ | 0.235 | 0.473 | 0.009 | ||
NO3− | 0.222 | 4.216 | 0.038 | ||
T4 | NO3− | 0.442 | 2.645 | 0.000 | 0.29 |
GWL | 0.516 | 2.253 | 0.000 | 0.17 | |
WFPS | −0.293 | 4.730 | 0.002 | 0.31 |
Variable | 50–70% | 70–96% | ||
---|---|---|---|---|
N2O | WFPS | N2O | WFPS | |
WFPS | 0.384** | - | −0.506** | - |
0.000 | - | 0.000 | - | |
NO3− | 0.032 | −0.115 | 0.376** | −0.137* |
0.782 | 0.313 | 0.000 | 0.049 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaddy, A.; Melling, L.; Ishikura, K.; Hatano, R. Soil N2O Emissions under Different N Rates in an Oil Palm Plantation on Tropical Peatland. Agriculture 2019, 9, 213. https://doi.org/10.3390/agriculture9100213
Chaddy A, Melling L, Ishikura K, Hatano R. Soil N2O Emissions under Different N Rates in an Oil Palm Plantation on Tropical Peatland. Agriculture. 2019; 9(10):213. https://doi.org/10.3390/agriculture9100213
Chicago/Turabian StyleChaddy, Auldry, Lulie Melling, Kiwamu Ishikura, and Ryusuke Hatano. 2019. "Soil N2O Emissions under Different N Rates in an Oil Palm Plantation on Tropical Peatland" Agriculture 9, no. 10: 213. https://doi.org/10.3390/agriculture9100213
APA StyleChaddy, A., Melling, L., Ishikura, K., & Hatano, R. (2019). Soil N2O Emissions under Different N Rates in an Oil Palm Plantation on Tropical Peatland. Agriculture, 9(10), 213. https://doi.org/10.3390/agriculture9100213