Micro-Spatial Analysis of Maize Yield Gap Variability and Production Factors on Smallholder Farms
Abstract
:1. Introduction
2. Materials and Methods
- Description of the study sites;
- Collection and analysis of field data;
- Collection and analysis of remote sensing data.
2.1. Description of the Study Sites
2.2. Mukuyu Village
2.3. Shikomoli Village
2.4. Collection and Analysis of Field Data
2.5. Collection and Analysis of Remote Sensing Data
2.6. Yield Gap Pattern Mapping
3. Results
3.1. Mapping Maize Yields in Mukuyu and Shikomoli
3.2. Mapping Maize Yield Gaps in Mukuyu and Shikomoli
3.3. Yield Gap Maps at Different Neighborhoods in Mukuyu and Shikomoli
3.4. The Maximum, Minimum and Mean Values and Variance at Different Spatial Arrangements
3.5. Management, Biophysical and Socio-Economic Factors at Spatial Arrangements
4. Discussion
4.1. Yield Gap Patterns at Different Spatial Arrangements
4.2. The Production Opportunities for the Different Spatial Arrangements to Enhance Maize Yields
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Intercept | P | N | WC1 | WH1 | MDD1 | MH3 | SPAD3 | SPAD1 | MH1 | WC3 | PLOTDist | QTIng | TTLS | MDD3 | B | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | ||||||||||||||||
P | –0.052 | 1 | ||||||||||||||
N | –0.158 | –0.078 | 1 | |||||||||||||
WC1 | 0.262 | –0.136 | –0.112 | 1 | ||||||||||||
WH1 | 0.172 | –0.037 | –0.025 | –0.27 | 1 | |||||||||||
MDD1 | –0.517 | –0.021 | –0.242 | –0.114 | 0.176 | 1 | ||||||||||
MH3 | –0.136 | –0.02 | –0.328 | 0.044 | –0.043 | 0.129 | 1 | |||||||||
SPAD3 | –0.487 | –0.246 | 0.014 | –0.391 | 0.098 | 0.195 | 0.181 | 1 | ||||||||
SPAD1 | –0.49 | –0.105 | 0.269 | –0.016 | 0.245 | –0.001 | –0.486 | 0.158 | 1 | |||||||
MH1 | –0.365 | 0.058 | –0.077 | –0.117 | –0.725 | –0.171 | –0.058 | 0.259 | –0.26 | 1 | ||||||
WC3 | 0.224 | 0.049 | –0.015 | –0.169 | 0.04 | 0.18 | 0.178 | –0.043 | –0.076 | –0.049 | 1 | |||||
PLOTDist | –0.336 | 0.256 | 0.238 | –0.108 | –0.141 | 0.269 | 0.241 | 0.069 | 0.027 | 0.015 | 0.121 | 1 | ||||
QTIng | –0.108 | 0.158 | –0.142 | –0.074 | –0.117 | 0.216 | 0.064 | –0.227 | –0.007 | 0.185 | 0.172 | 0.192 | 1 | |||
TTLS | –0.182 | –0.063 | –0.121 | –0.121 | –0.128 | 0.026 | –0.01 | –0.163 | –0.234 | 0.106 | –0.169 | –0.349 | –0.017 | 1 | ||
MDD3 | 0.059 | –0.053 | 0.034 | 0.153 | 0.089 | –0.681 | –0.275 | 0.061 | 0.092 | –0.053 | –0.13 | –0.033 | –0.08 | –0.26 | 1 | |
B | –0.055 | –0.052 | –0.209 | –0.02 | –0.062 | –0.075 | 0.044 | 0.057 | –0.048 | 0.082 | 0.021 | 0.121 | 0.119 | 0.25 | –0.031 | 1 |
Intercept | P | N | WC1 | WH1 | MDD1 | MH1 | SPAD3 | SPAD1 | MH1 | WC3 | PLOTDs | QtIng | TTLS | MDD3 | B | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Intercept | 1 | |||||||||||||||
P | –0.08 | 1 | ||||||||||||||
N | –0.358 | –0.357 | 1 | |||||||||||||
WC1 | 0.164 | 0.27 | –0.055 | 1 | ||||||||||||
WH1 | 0.045 | 0.054 | –0.089 | –0.155 | 1 | |||||||||||
MDD1 | –0.279 | 0.12 | –0.066 | –0.232 | –0.022 | 1 | ||||||||||
MH1 | 0.157 | –0.064 | –0.144 | –0.042 | –0.054 | –0.171 | 1 | |||||||||
SPAD3 | 0.034 | 0.007 | –0.067 | –0.154 | 0.104 | 0.105 | –0.014 | 1 | ||||||||
SPAD1 | –0.699 | 0.232 | 0.069 | 0.117 | –0.042 | 0.299 | –0.225 | –0.143 | 1 | |||||||
MH1 | –0.186 | –0.138 | 0.111 | –0.088 | –0.415 | –0.006 | –0.401 | –0.145 | –0.079 | 1 | ||||||
WC3 | –0.178 | –0.069 | 0.074 | –0.285 | –0.087 | –0.053 | 0.125 | –0.211 | 0.082 | 0.136 | 1 | |||||
PLOTDs | 0.001 | –0.065 | 0.048 | –0.122 | –0.028 | –0.025 | –0.048 | –0.195 | –0.038 | 0.138 | –0.091 | 1 | ||||
QtIng | –0.031 | –0.047 | 0.031 | 0.055 | 0.043 | –0.147 | 0.173 | 0.119 | –0.119 | –0.118 | –0.127 | –0.035 | 1 | |||
TTLS | –0.363 | 0.257 | –0.069 | 0.094 | 0.063 | –0.021 | –0.144 | –0.256 | 0.319 | 0.089 | 0.176 | –0.188 | 0.159 | 1 | ||
MDD3 | –0.114 | 0.032 | –0.02 | –0.04 | 0.06 | –0.365 | –0.198 | –0.239 | –0.192 | 0.059 | 0.098 | –0.056 | 0.038 | 0.179 | 1 | |
B | –0.006 | 0.138 | –0.164 | 0.135 | 0.02 | 0.006 | –0.129 | –0.036 | 0.027 | 0.014 | 0.113 | –0.049 | –0.022 | 0.175 | 0.23 | 1 |
References
- Salami, A.; Kamara, A.B.; Brixiova, Z. Smallholder Agriculture in East Africa: Trends, Constraints and Opportunities; Report No.: 105; Africa Development Bank Group: Accra, Ghana, 2010; Available online: http:/www.afdb.org/ (accessed on 13 March 2019).
- Rapsomanikis, G. The Economic Lives of Smallholder Farmers: An Analysis Based on Household Data from Nine Countries; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2015. [Google Scholar]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, K.; Carre, F.; Toth, G. Site-specific Land Management General Concepts and Applications; European Commission, Luxembourg: Luxembourg, 2009. [Google Scholar]
- Licker, R.; Johnston, M.; Foley, J.A.; Barford, C.; Kucharik, C.J.; Monfreda, C.; Ramankutty, N. Mind the gap: How do climate and agricultural management explain the “yield gap” of croplands around the world? Glob. Ecol. Biogeogr. 2010, 19, 769–782. [Google Scholar] [CrossRef]
- FAO. Yield Gap Analysis of Field Crops: Methods and Case Studies; FAO Water Reports No. 41; Sadras, V.O., Cassman, K.G., Grassini, P., Hall, A.J., Bastiaanssen, W.G.M., Laborte, A.G., Milne, A.E., Sileshi, G., Steduto, P., Eds.; FAO: Rome, Italy, 2015. [Google Scholar]
- Lobell, D.B. The use of satellite data for crop yield gap analysis. Field Crops Res. 2013, 143, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.K.; Chai, L.; Singh, R.P.; Kafatos, M. Crop yield estimation model for Iowa using remote sensing and surface parameters. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 26–33. [Google Scholar] [CrossRef]
- Battude, M.; Bitar, A.; Morin, D.; Cros, J.; Huc, M.; Sicre, C.M.; le Dantec, V.; Demarez, V. Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data. Remote Sens. Environ. 2016, 14, 668–681. [Google Scholar] [CrossRef]
- Jin, Z.; Azzari, G.; Burke, M.; Aston, S.; Lobell, D.B. Mapping Smallholder Yield Heterogeneity at Multiple Scales in Eastern Africa. Remote Sens. 2017, 9, 15. [Google Scholar] [CrossRef]
- Burke, M.; Lobell, D.B. Satellite-based assessment of yield variation and its determinants in smallholder African systems. Proc. Natl. Acad. Sci. USA 2017, 114, 2189–2194. [Google Scholar] [CrossRef] [Green Version]
- Kravchenko, A.N.; Robertson, G.P.; Thelen, K.D.; Harwood, R.R. Management, Topographical, and Weather Effects on Spatial Variability of Crop Grain Yields. J. Agron. 2005, 97, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Zagórda, M.; Walczykova, M. The application of various software programs for mapping yields in precision agriculture. BIO Web Conf. 2018, 10, 01018. [Google Scholar] [CrossRef] [Green Version]
- Tittonell, P.; Leffelaar, P.A.; Vanlauwe, B.; van Wijk, M.T.; Giller, K.E. Exploring diversity of crop and soil management within smallholder African farms: A dynamic model for simulation of N balances and use efficiencies at field scale. Agric. Syst. 2006, 91, 71–101. [Google Scholar] [CrossRef]
- Chivasa, W.; Mutanga, O.; Biradar, C. Application of remote sensing in estimating maize grain yield in heterogeneous African agricultural landscapes: A review. Int. J. Remote Sens. 2017, 38, 6816–6845. [Google Scholar] [CrossRef]
- Kitron, U.; Clennon, J.A.; Cecere, M.C.; Gürtler, R.E.; King, C.H.; Vazquez-prokopec, G. Upscale and downscale:Applications of fine scale remotely sensed data to Chagas disease in Argentina and schistosomiasis in Kneya. Geospat Health 2006, 1, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Djurfeldt, G.; Andesron, A.; Holmen, H.; Jirstrom, M. The Millennium Development Goals and the African Food Crisis—Report from the Afrint II Project; SIDA: Stockholm, Sweden, 2011. [Google Scholar]
- Karugia, J.T. A Micro Level Analysis of Agricultural Intensification in Kenya: The Case of Food Staples; Department of Agricultural Economics, University of Nairobi: Nairobi, Kenya, 2003. [Google Scholar]
- One Acre Fund. Optimizing Maize Variety Adoption and Performance 2015; Trial Report: Nairobi, Kenya, 2016. [Google Scholar]
- Ralph, J.; Helmut, S.; Hornetz Berthhold, S.C. Farm Management Handbook: Natural Conditions and Farm Management; Nairobi Atlas of Agro-ecological Zones, Soils and Fertilizing, Kakamega & Vihiga County; Ministry of Agriculture, Kenya and Germany Agency for Technical Cooperation: Nairobi, Kenya, 2010; Volume 2.
- FAO. Mapping Biophysical Factors that Influence Agricultural Production and Rural Vulnerability; Velthuizen, V.H.H., Barbara, F., Gunther, S., Mirella, E., Ataman, N., Freddy, M., Zanetti, M., Eds.; FAO: Rome, Italy, 2007. [Google Scholar]
- Djurfeldt, A.A.; Wambugu, S.K. In-kind transfers of maize, commercialization and household consumption in Kenya. J. East. Afr. Stud. 2011, 5, 447–464. [Google Scholar] [CrossRef]
- KNB. The 2009 Kenya Population and Housing Census—Population Distribution; Kenya National Bureau of Statistics: Nairobi, Kenya, 2010. Available online: http://www.knbs.or.ke/index.php?option=com_phocadownload&view=category&download=584:volume-1c-population-distribution-by-age-sex-and-administrative-units&id=109:population-and-housing-census-2009&Itemid=599 (accessed on 13 February 2019).
- Wandere, D.O.; Egesah, O.B. Comparative ecological perspectives on food security by Abanyole of Kenya. Int. J. Ecol. Ecosolut. 2015, 2, 22–30. [Google Scholar]
- MoA. Vihiga District Environment Action Plan 2009–2013; Ministry of Environment and Mineral Resources: Nairobi, Kenya, 2013.
- Yield Gap Project. Yield Gap Survey Data. 2016. Available online: http://www.yieldgap.org/ (accessed on 6 September 2019).
- O’Keeffe, K. Maize Growth and Development; Edwards, J., Ed.; NSW Department of Primary Industries: Orange, Australia, 2009.
- Sherpherd, G.T. Visual Soil Assessment-Field guide for Maize; FAO: Rome, Italy, 2010; Available online: http://www.fao.org/3/i0007e/i0007e00.pdf (accessed on 31 March 2019).
- Pansu, M.; Gautheyrou, J. Handbook for Soil Analysis; Mineralogical, Organic and Inorganic Methods; Springer: New York, NY, USA, 2006. [Google Scholar]
- FAO. Guidelines for Soil Description; FAO: Rome, Italy, 2006; p. 94. [Google Scholar]
- Tobergte, D.R.; Curtis, S. Yield and Yield Components; A practical Guide for Comparing Crop Management Practices. J. Chem. Inf. Model. 2013, 53, 1689–1699. [Google Scholar]
- Hall, O.; Bustos, M.A.; Boke-olén, N.; Marstorp, H.; Onyango, C.; Kosura, W. Estimation of Yields From a Combination of Crop Models and Remote Sensing in Complex Agricultural Landscapes, 2018; Unpublished report.
- Lobell, D.B.; Thau, D.; Seifert, C.; Engle, E.; Little, B. Remote Sensing of Environment A scalable satellite-based crop yield mapper. Remote Sens. Environ. 2015, 164, 324–333. [Google Scholar] [CrossRef]
- Santacruz, A. Image Classification with Random Forests in the R Language. 2015. Available online: https://www.youtube.com/watch?v=fal4Jj81uMA%0A%0A (accessed on 1 September 2017).
- ESR. ArcGIS Desktop: Release 10.1; Environmental Systems Research Institute: Redlands, CA, USA, 2012. [Google Scholar]
- Bazzoffi, P. Measurement of rill erosion through a new UAV-GIS methodology. Ital. J. Agron. 2015, 10 (Suppl. 1), 708. [Google Scholar] [CrossRef]
- João, B.; Silva, V.; Ramisch, J.J. Whose Gap Counts? The Role of Yield Gap Analysis Within a Development-Oriented Agronomy. Exp. Agric. 2018, 55, 311–338. [Google Scholar]
- Lobell, D.B.; Ortiz-Monasterio, J.I.; Falcon, W.P. Yield uncertainty at the field scale evaluated with multi-year satellite data. Agric. Syst. 2007, 92, 76–90. [Google Scholar] [CrossRef]
- Tabu, I.M.; Obura, R.K.; Bationo, A.; Nakhone, L. Effects of Farmers’ Management Practices on Soil Properties and Maize yield. J. Agron. 2005, 4, 293–299. [Google Scholar]
- Endale, Y.; Derero, A.; Argaw, M.; Muthuri, C. Farmland tree species diversity and spatial distribution pattern in semi-arid East Shewa, Ethiopia. For. Trees Livelihoods 2016, 26, 199–214. [Google Scholar] [CrossRef]
- Munialo, S. Investigating Viability of Premium Influenced Agro-usage Structure for Increased Phyto-diversity and Production of African Leafy Vegetables. Thesis [Internet], University of Nairobi, Nairobi, Kenya, 2013. Available online: https://www.ruforum.org/sites/default/files/Munialo Sussy.pdf (accessed on 18 April 2019).
- Onubuogu, G.; Esiobu, N.S.; Nwosu, C.S.; Okereke, C.N. Resource use efficiency of smallholder cassava farmers in Owerri Agricultural zone, Imo State, Nigeria. Sch. J. Agric. Sci. 2014, 4, 306–318. [Google Scholar]
- Sanginga, N.; Woomer, P.L. Integrated Soil Fertility Management in Africa: Principles, Practices and Deveolpmental Process; Tropical Soil Biology and Fertility Institute of the International Centre for Tropical Agriculture: Nairobi, Kenya, 2009. [Google Scholar]
- Achieng, J.O.; Ouma, G.; Odhiambo, G.; Muyekho, F. Effect of farmyard manure and inorganic fertilizers on maize production on Alfisols and Ultisols in Kakamega, Western Kenya. Agric. Biol. J. N. Am. 2010, 1, 740–747. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X.; Huffman, T.; Liu, X.; Yang, J. Influence of topography and land management on soil nutrients variability in Northeast China. Nutr. Cycl. Agroecosyst. 2011, 89, 427–438. [Google Scholar] [CrossRef]
- Kabubo-Mariara, J.; Kabara, M. Environment for Development Climate Change and Food Security in Kenya. 2015. Available online: www.efdinitiative.org (accessed on 4 April 2019).
Variables | Description |
---|---|
Total land size (TTLs) | Size of the cultivable land in acres (whether inherited, leased or purchased) owned by the farmer. |
Labor use | Family and hired labor used for all operations related to maize cultivation (man hour ha–1); categorized as 1—Family, 2—Hired. |
Gender of farm operator | The state of the farm operator being male (=1), or female (=2). |
Credit facility | Credit acquisition for use on farm activities; Yes = 1, Otherwise = 0. |
Inorganic | Quantity and frequency of inorganic fertilizer use; Yes = 1, Otherwise = 0 |
Organic | Quantity of organic fertilizer use; Yes = 1, Otherwise = 0 |
Land preparation | Time of preparing land for planting maize. 1—Before harvesting of the previous crop, 2—Immediately after harvesting, 3—2 Months before onset of rains, 4—1 month before onset of rains, 5—at the onset of rain, 6—1 week after the onset of rain, 7—2 weeks after onset of rains. |
Maize variety | The duration of maize growth from planting to maturity; 1—long duration, 2—medium duration, 3—short duration |
Frequency of weed control | Number of times weed control is done on the farm |
Maize density | Number of maize plants per hectare. Determined through counting in the 4 m by 4 m plot quantified per hectare |
Maize height | Measured on 10 randomly chosen plants in the 4 m by 4 m plot |
Weed cover | Measured using a Likert scale according to [28]. |
Weed height | Measured on 10 randomly chosen weeds in the 4 m by 4 m plot |
SPAD values (chlorophyll content) | Measured using a SPAD 502 chlorophyll meter (Minolta Camera Co., Osaka, Japan) by taking readings of the youngest fully developed leaf from 15 randomly selected plants per study plot, at approximately 25% from the leaf tip and leaf base. |
Soil properties | Soil nutrients; nitrogen (N), boron (B), phosphorus (P) determined by methods described by [29]. |
Slope | Measured using a Likert scale 1–3 where 1—steep, 2—gentle, 3—flat. Erosion values of 0—none, 1—slight, 2—moderate, 3—severe, according to [30]. |
Erosion status | Measured using a Likert scale 0–3 where 0—none, 1—slight, 2—moderate, 3—severe, according to [30]. |
Mukuyu | Shikomoli | Plot Location |
---|---|---|
40 m by 40 m | 40 m by 40 m | Near house |
80 m by 80 m | 80 m by 80 m | Mid farm |
150 m by 150 m | 150 m by 150 m | Far farm |
300 m by 300 m | 300 m by 300 m | Far farm |
Mukuyu | Shikomoli | |||||
---|---|---|---|---|---|---|
Neighborhoods | Max Values | Min Values | Mean Values | Max Values | Min Values | Mean Values |
40 m by 40 m | 3.3 | –1.0 | 1.9 | 3.6 | –0.2 | 1.85 |
80 m by 80 m | 3.0 | –0.1 | 1.89 | 2.4 | 0.06 | 1.84 |
150 m by 150 m | 3.0 | 0.4 | 1.88 | 2.2 | 1.0 | 1.84 |
300 m by 300 m | 3.0 | 0.8 | 1.87 | 2.2 | 1.3 | 1.83 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sussy, M.; Ola, H.; Maria, F.A.B.; Niklas, B.-O.; M. Cecilia, O.; Willis, O.-K.; Håkan, M.; Djurfeldt, G. Micro-Spatial Analysis of Maize Yield Gap Variability and Production Factors on Smallholder Farms. Agriculture 2019, 9, 219. https://doi.org/10.3390/agriculture9100219
Sussy M, Ola H, Maria FAB, Niklas B-O, M. Cecilia O, Willis O-K, Håkan M, Djurfeldt G. Micro-Spatial Analysis of Maize Yield Gap Variability and Production Factors on Smallholder Farms. Agriculture. 2019; 9(10):219. https://doi.org/10.3390/agriculture9100219
Chicago/Turabian StyleSussy, Munialo, Hall Ola, Francisca Archila Bustos Maria, Boke-Olén Niklas, Onyango M. Cecilia, Oluoch-Kosura Willis, Marstorp Håkan, and Göran Djurfeldt. 2019. "Micro-Spatial Analysis of Maize Yield Gap Variability and Production Factors on Smallholder Farms" Agriculture 9, no. 10: 219. https://doi.org/10.3390/agriculture9100219
APA StyleSussy, M., Ola, H., Maria, F. A. B., Niklas, B. -O., M. Cecilia, O., Willis, O. -K., Håkan, M., & Djurfeldt, G. (2019). Micro-Spatial Analysis of Maize Yield Gap Variability and Production Factors on Smallholder Farms. Agriculture, 9(10), 219. https://doi.org/10.3390/agriculture9100219