Evaluation of Struvite Recovered from Swine Wastewater as an Alternative Phosphorus Source in Broiler Feed
Abstract
:1. Introduction
2. Materials and Methods
2.1. P Recovery Process and Pre-Treatment
2.2. Growth Performance Test in Broiler
2.3. Statistical Analysis
3. Results
3.1. P Recovery as Struvite and Pre-Treatment
3.2. Effect of Pre-Treated Struvites on Broiler
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cordell, D.; Drangert, J.-O.; White, S. The Story of Phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Cordell, D.; White, S.; Drangert, J.-O.; Neset, T.S.S. Preferred future phosphorus scenarios: A framework for meeting long-term phosphorus needs for global food demand. In Proceedings of the International Conference on Nutrient Recovery from Wastewater Streams, Vancouver, BC, Canada, 10–13 May 2009; Ashley, K., Mavinic, D., Koch, F., Eds.; IWA Publishing: London, UK, 2009. [Google Scholar]
- Cordell, D.; Rosemarin, A.; Schröder, J.J.; Smit, A.L. Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere 2011, 84, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Phosphorus Basics. Available online: https://crops.extension.iastate.edu/phosphorus-basics (accessed on 20 July 2019).
- Reza, A.; Eum, J.; Jung, S.; Choi, Y.; Jang, C.; Kim, K.; Owen, J.S.; Kim, B. Phosphorus Budget for a Forested-Agricultural Watershed in Korea. Water 2019, 11, 4. [Google Scholar] [CrossRef]
- Villamar, C.A.; Cañuta, T.; Belmonte, M.; Vidal, G. Characterization of Swine Wastewater by Toxicity Identification Evaluation Methodology (TIE). Water Air Soil Pollut. 2012, 223, 363–369. [Google Scholar] [CrossRef]
- Desmidt, E.; Ghyselbrecht, K.; Zhang, Y.; Pinoy, L.; Van der Bruggen, B.; Verstraete, W.; Rabaey, K.; Meesschaert, B. Global phosphorus scarcity and full-scale P-recovery techniques: A review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 336–384. [Google Scholar] [CrossRef]
- Liu, Y.H.; Kumar, S.; Kwag, J.H.; Kim, J.H.; Kim, J.D.; Ra, C.S. Recycle of electrolytically dissolved struvite as an alternative to enhance phosphate and nitrogen recovery from swine wastewater. J. Hazard. Mater. 2011, 195, 175–181. [Google Scholar] [CrossRef]
- Kazuyo, M.Y.; Hironari, K.; Kenichi, N.; Tetsuya, N. A material flow analysis of phosphorus in Japan. J. Ind. Ecol. 2009, 13, 687–705. [Google Scholar]
- Symeou, V. Modelling the Phosphorous Intake, Digestion, Utilisation and Excretion in Growing and Finishing Pigs. Ph.D. Thesis, Newcastle University, Newcastle, UK, 2015. [Google Scholar]
- Agudelo Trujillo, J.H.; Lindemann, M.D.; Cromwell, G.L. Phosphorus utilization in growing pigs fed a phosphorus deficient diet supplemented with a rice bran product and amended with phytase. Rev. Colomb. Cienc. Pecu. 2010, 23, 429–443. [Google Scholar]
- Sharpley, A.; Moyer, B. Phosphorus forms in manure and compost and their release during simulated rainfall. J. Environ. Qual. 1999, 29, 1462–1469. [Google Scholar] [CrossRef]
- Reza, A.; Shim, S.; Kim, S.; Ahmed, N.; Won, S.; Ra, C. Nutrient Leaching Loss of Pre-Treated Struvite and Its Application in Sudan Grass Cultivation as an Eco-Friendly and Sustainable Fertilizer Source. Sustainability 2019, 11, 4204. [Google Scholar] [CrossRef]
- Ronteltap, M.; Maurer, M.; Gujer, W. The behaviour of pharmaceuticals and heavy metals during struvite precipitation in urine. Water Res. 2007, 41, 1859–1868. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Environment (MoE). Establishment and Operation of Centralized Livestock Wastewater Treatment Plant; Ministry of Environment: Sejong, Korea, 2018.
- Rural Development Administration (RDA). Centralized Livestock Wastewater Treatment Plan 2019; Rural Development Administration: Jeonju, Korea, 2019.
- Ahmed, N.; Shim, S.; Won, S.; Ra, C. Struvite recovered from various types of wastewaters: Characteristics, soil leaching behaviour, and plant growth. Land Degrad. Dev. 2018, 29, 2864–2879. [Google Scholar] [CrossRef]
- Yoon, T.H.; Won, S.G.; Lee, D.H.; Choi, J.W.; Ra, C.S.; Kim, J.D. Effect of a new phosphorus Source, magnesium hydrogen phosphate (MHP) on growth, utilization of phosphorus and physiological responses in Carp Cyprinus carpio. Fish Aquat. Sci. 2016, 19, 49–57. [Google Scholar] [CrossRef]
- Li, B.; Boiarkina, I.; Yu, W.; Huang, H.M.; Munir, T.; Wang, G.Q.; Young, B.R. Phosphorus recovery through struvite crystallization: Challenges for future design. Sci. Total Environ. 2019, 648, 1244–1256. [Google Scholar] [CrossRef] [PubMed]
- Husted, S.; Jensen, L.S.; Jørgensen, S.S. Reducing ammonia loss from cattle slurry by the use of acidifying additives: The role of the buffer system. J. Sci. Food Agric. 1991, 57, 335–349. [Google Scholar] [CrossRef]
- Rahman, M.M.; Liu, Y.; Kwag, J.H.; Ra, C. Recovery of struvite from animal wastewater and its nutrient leaching loss in soil. J. Hazard. Mater. 2011, 186, 2026–2030. [Google Scholar] [CrossRef] [PubMed]
- Skinner, J.T.; Waldroup, P.W. Allometric bone development in floor-reared broilers. J. Appl. Poult. Res. 1995, 4, 265–270. [Google Scholar] [CrossRef]
- Najafi, P.; Torki, M. Performance, Blood Metabolites and Immunocompetaence of Broiler. J. Anim. Vet. Adv. 2010, 9, 1164–1168. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; AOAC International: Rockville, MA, USA, 2005. [Google Scholar]
- Blumenreich, S.M. The white blood cell and differential count. In Clinical Methods: The History, Physical and Laboratory Examination, 3rd ed.; Walker, H.M., Hall, W.D., Hurst, J.W., Eds.; Butterworth Publishers: Boston, MA, USA, 1990; pp. 724–727. [Google Scholar]
- Liu, Y.; Kumar, S.; Kwag, J.H.; Ra, C. Magnesium ammonium phosphate formation, recovery and its application as valuable resources: A review. J. Chem. Technol. Biotechnol. 2013, 88, 181–189. [Google Scholar] [CrossRef]
- Phosphate Rock Statistics and Information. Available online: https://www.usgs.gov/centers/nmic/phosphate-rock-statistics-and-information (accessed on 25 July 2019).
- Zimmermann, K. Microwave Technologies: An Emerging Tool for Inactivation of Biohazardous Material in Developing Countries. Recycling 2018, 3, 34. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, S. Economic and Environmental Cost Analysis of Incineration and Recovery Alternatives for Flammable Industrial Waste: The Case of South Korea. Sustainability 2017, 9, 1638. [Google Scholar] [CrossRef]
- Janković, S.M.; Milošev, M.Z.; Novaković, M.L. The effects of microwave radiation on microbial cultures. Hosp. Pharmacol. 2014, 1, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Kanemitsu, K.; Inden, K.; Kunishima, H.; Ueno, K.; Hatta, M.; Gunji, Y.; Watanabe, I.; Kaku, M. Does incineration turn infectious waste aseptic? J. Hosp. Infect. 2005, 60, 304–306. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.R.; Batal, A.B.; Dale, N.M. Biological availability of phosphorus sources in prestarter and starter diets for broiler chicks. J. Appl. Poult. Res. 2006, 15, 518–524. [Google Scholar] [CrossRef]
- Kim, J.H.; Seo, S.; Kim, C.H.; Kim, J.W.; Lee, B.B.; Lee, G.I.; Shin, H.S.; Kim, M.C.; Kil, D.Y. Effect of dietary supplementation of crude glycerol or tallow on intestinal transit time and utilization of energy and nutrients in diets fed to broiler chickens. Livest. Sci. 2013, 154, 165–168. [Google Scholar] [CrossRef]
- Kim, B.G.; Lindemann, M.D.; Cromwell, G.L.; Balfagon, A.; Agudelo, J.H. The correlation between passage rate of digesta and dry matter digestibility in various stages of swine. Livest. Sci. 2007, 109, 81–84. [Google Scholar] [CrossRef]
- Tahir, M.; Lughmani, A.B.; Pesti, G.M. Evaluation of an indigenous source of rock phosphate as a supplement for broiler chickens. Poult. Sci. 2011, 90, 1983–1991. [Google Scholar] [CrossRef]
- Meluzzi, A.; Primiceri, G.; Giordani, R.; Fabris, G. Determination of blood constituents reference values in broilers. Poult. Sci. 1992, 71, 337–345. [Google Scholar] [CrossRef]
- Moe, S.M. Disorders Involving Calcium, Phosphorus, and Magnesium. Prim. Care 2008, 35, 215–237. [Google Scholar] [CrossRef] [Green Version]
- David, L.S.; Abdollahi, M.R.; Ravindran, G.; Walk, C.L.; Ravindran, V. Studies on the measurement of ileal calcium digestibility of calcium sources in broiler chickens. Poult. Sci. 2019, 98, 5582–5589. [Google Scholar] [CrossRef]
- Nyblom, H.; Berggren, U.; Balldin, J.; Olsson, R. High AST/ALT ratio may indicate advanced alcoholic liver disease rather than heavy drinking. Alcohol Alcohol. 2004, 39, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.; Bhanja, S.K.; Mehra, M.; Mandal, A.; Pande, V. In ovo trace element supplementation enhances expression of growth genes in embryo and immune genes in post-hatch broiler chickens. J. Sci. Food Agric. 2016, 96, 2737–2745. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.J.; Rodger, H.D. The pathophysiology and systemic pathology of teleosts. In Fish Pathology, 4th ed.; Roberts, R.J., Ed.; Bailliere Tindall: London, UK, 1978; pp. 55–91. [Google Scholar]
- Li, J.; Yuan, J.; Guo, Y.; Sun, Q.; Hu, X. The influence of dietary calcium and phosphorus imbalance on intestinal NaPi-IIb and calbindin mRNA expression and tibia parameters of broilers. Asian Australas. J. Anim. Sci. 2012, 25, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Jordan, G.W. Serum calcium and phosphorus abnormalities in leukemia. Am. J. Med. 1966, 41, 381–390. [Google Scholar] [CrossRef]
Items | MDCP 1 | MS 2 | IS 3 | |||
---|---|---|---|---|---|---|
Starter (1–14 days) | Finisher (15–28 days) | Starter (1–14 days) | Finisher (15–28 days) | Starter (1–14 days) | Finisher (15–28 days) | |
Ingredients (%) | ||||||
Corn | 39.29 | 39.54 | 39.29 | 39.54 | 39.29 | 39.54 |
Wheat | 15.00 | 17.00 | 15.00 | 17.00 | 15.00 | 17.00 |
Gluten | 2.00 | 1.52 | 2.00 | 1.52 | 2.00 | 1.52 |
DDGS 4 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
Whole soybean | 8.00 | 9.00 | 8.00 | 9.00 | 8.00 | 9.00 |
Soybean meal | 20.56 | 17.92 | 20.56 | 17.92 | 20.56 | 17.92 |
Rapeseed meal | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
Limestone | 1.52 | 1.49 | 1.58 | 1.72 | 1.80 | 1.72 |
MDCP | 1.08 | 0.88 | - | - | - | - |
MS | - | - | 1.02 | 0.83 | - | - |
IS | - | - | - | - | 0.87 | 0.71 |
Salt | 0.33 | 0.33 | 0.10 | 0.15 | 0.26 | 0.27 |
Beef tallow | 4.52 | 4.76 | 4.52 | 4.76 | 4.52 | 4.76 |
Choline chloride | 0.16 | 0.19 | 0.16 | 0.19 | 0.16 | 0.19 |
DL-Methionine | 0.31 | 0.29 | 0.31 | 0.29 | 0.31 | 0.29 |
L-lysine | 0.68 | 0.58 | 0.68 | 0.58 | 0.68 | 0.58 |
Threonine | 0.1 | 0.05 | 0.10 | 0.05 | 0.10 | 0.05 |
Vitamin premix a | 0.1 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Mineral premix b | 0.1 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Clinacox | 0.05 | 0.00 | 0.05 | 0.00 | 0.05 | 0.00 |
Lactovita | 0.2 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Maduramycin | 0.00 | 0.05 | 0.00 | 0.05 | 0.00 | 0.05 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Composition (%) | ||||||
Dry matter | 89.58 | 89.82 | 89.58 | 89.82 | 89.58 | 89.82 |
ME 5 (kcal/kg) | 3150 | 3202 | 3150 | 3202 | 3150 | 3202 |
Crude protein | 21.00 | 20.00 | 21.00 | 20.00 | 21.00 | 20.00 |
Crude fat | 7.40 | 7.71 | 7.40 | 7.71 | 7.40 | 7.71 |
Calcium | 1.50 | 1.41 | 1.50 | 1.41 | 1.50 | 1.41 |
Phosphorus | 0.68 | 0.59 | 0.68 | 0.59 | 0.68 | 0.59 |
Items | MDCP | MS | IS | SEM 1 | p-Value |
---|---|---|---|---|---|
Weight gain (g/bird) 2 | |||||
1–14 days | 634 | 646 | 630 | 11.56 | 0.88 |
15–28 days | 1104 | 1123 | 1124 | 22.29 | 0.76 |
1–28 days | 1738 | 1769 | 1754 | 8.95 | 0.74 |
Feed intake (g/bird) 3 | |||||
1–14 days | 1069 | 1049 | 1005 | 37.74 | 0.70 |
15–28 days | 2176 | 2154 | 2221 | 64.94 | 0.57 |
1–28 days | 3245 | 3203 | 3226 | 12.14 | 0.93 |
Feed conversion ratio (g of feed/of gain) 4 | |||||
1–14 days | 1.69 | 1.62 | 1.60 | 0.05 | 0.70 |
15–28 days | 1.97 | 1.92 | 1.97 | 0.06 | 0.73 |
1–28 days | 1.87 | 1.81 | 1.84 | 0.02 | 0.49 |
Apparent total tract digestibility (%) 5 | |||||
Dry matter | 71.41 | 72.20 | 72.63 | 0.48 | 0.61 |
Crude protein | 55.18 | 59.29 | 55.13 | 0.89 | 0.14 |
Crude fat | 81.47 b | 84.25 a | 85.43 a | 0.56 | 0.00 |
Crude ash | 42.06 b | 50.29 a | 45.59 a,b | 1.46 | 0.05 |
Items | MDCP | MS | IS | SEM 1 | p-Value |
---|---|---|---|---|---|
Organ weight (g/100g BW) | |||||
Heart | 0.76 | 0.77 | 0.67 | 0.02 | 0.41 |
Kidney | 0.14 | 0.13 | 0.12 | 0.01 | 0.40 |
Liver | 3.14 | 3.46 | 3.04 | 0.08 | 0.09 |
Cecum | 0.55 | 0.66 | 0.65 | 0.03 | 0.19 |
Gizzard | 1.37 | 1.36 | 1.34 | 0.02 | 0.85 |
Small intestine | 4.73 | 4.57 | 4.58 | 0.13 | 0.90 |
Tibia | 1.13 | 1.11 | 1.10 | 0.02 | 0.95 |
Length (cm) | |||||
Small intestine | 201.88 | 194.92 | 200.75 | 19.30 | 0.31 |
Tibia | 11.43 | 11.19 | 11.20 | 0.62 | 0.23 |
Tibia composition | |||||
Dry matter | 49.44 | 48.16 | 48.56 | 0.26 | 0.10 |
Crude ash | 54.09 | 51.29 | 51.07 | 0.66 | 0.10 |
Calcium | 16.79 | 16.27 | 16.44 | 0.15 | 0.38 |
Phosphorus | 8.46 | 8.10 | 8.24 | 0.08 | 0.23 |
Items | MDCP | MS | IS | SEM 1 | p-Value |
---|---|---|---|---|---|
Serum biochemicals | |||||
Aspartate aminotransferase (U/L) | 358.11 | 314.28 | 362.38 | 19.02 | 0.57 |
Alanine Aminotransferase (U/L) | 1.93 | 1.91 | 1.79 | 0.12 | 0.90 |
Blood urea nitrogen (mg/dL) | 1.28 | 1.21 | 1.13 | 0.06 | 0.60 |
Creatinine (mg/dL) | 0.31 | 0.34 | 0.31 | 0.01 | 0.21 |
Inorganic P (mg/dL) | 7.42 | 7.00 | 7.12 | 0.17 | 0.63 |
Calcium (mg/dL) | 11.78 b | 12.56 a | 12.20 a,b | 0.13 | 0.03 |
Blood composition | |||||
Red blood cell (106/µL) | 2.73 | 2.80 | 2.75 | 0.04 | 0.84 |
White blood cells (103/µL) | 399.16 | 415.48 | 410.45 | 9.75 | 0.81 |
Neutrophils (%) | 78.42 | 72.79 | 75.38 | 2.57 | 0.71 |
Lymphocytes (%) | 0.00 | 0.00 | 0.00 | - | - |
Eosinophils (%) | 0.00 | 0.00 | 0.00 | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Shim, S.; Reza, A.; Kim, S.; Won, S.; Jung, B.; Kim, J.; Ra, C. Evaluation of Struvite Recovered from Swine Wastewater as an Alternative Phosphorus Source in Broiler Feed. Agriculture 2019, 9, 221. https://doi.org/10.3390/agriculture9100221
Kim M, Shim S, Reza A, Kim S, Won S, Jung B, Kim J, Ra C. Evaluation of Struvite Recovered from Swine Wastewater as an Alternative Phosphorus Source in Broiler Feed. Agriculture. 2019; 9(10):221. https://doi.org/10.3390/agriculture9100221
Chicago/Turabian StyleKim, Mijung, Soomin Shim, Arif Reza, Seungsoo Kim, Seunggun Won, Baedong Jung, Jinsoo Kim, and Changsix Ra. 2019. "Evaluation of Struvite Recovered from Swine Wastewater as an Alternative Phosphorus Source in Broiler Feed" Agriculture 9, no. 10: 221. https://doi.org/10.3390/agriculture9100221
APA StyleKim, M., Shim, S., Reza, A., Kim, S., Won, S., Jung, B., Kim, J., & Ra, C. (2019). Evaluation of Struvite Recovered from Swine Wastewater as an Alternative Phosphorus Source in Broiler Feed. Agriculture, 9(10), 221. https://doi.org/10.3390/agriculture9100221