Perspectives on Perennial Grain Crop Production among Organic and Conventional Farmers in France and the United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Survey Design
2.2. Survey Distribution and Respondents
2.3. Survey Structure
2.4. Categorizing Responses
2.5. Statistical Analysis
3. Results and Discussion
3.1. Demographics of Survey Respondents
3.2. Farmer Interest in Perennial Grains
3.3. Potential Motivations for Growing Perennial Grains
3.3.1. Motivations by Country
3.3.2. Motivations by Farm Type
3.4. Concerns about Perennial Grain Production
3.4.1. Concerns by Country
3.4.2. Concerns by Farm Type
3.5. Potential Integration into Existing Farming Systems
3.5.1. Integration Strategies by Country
3.5.2. Integration Strategies by Farm Type
3.6. Farmer Response to Statements about Perennial Grains
3.6.1. Perennial Grains as Dual Purpose Crops
3.6.2. Perennial Grains and Environmental Benefits
3.6.3. Perennial Grains and Research Funding
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Glover, J.D.; Reganold, J.P. Perennial Grains: Food Security for the Future. Issues Sci. Technol. 2010, 26, 41–47. [Google Scholar]
- Food and Agriculture Organization of the United Nations. FAOSTAT: Crops. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 27 March 2019).
- Cox, T.S.; Glover, J.D.; Van Tassel, D.L.; Cox, C.M.; DeHaan, L.R. Prospects for developing perennial grain crops. Bioscience 2006, 56, 649–659. [Google Scholar] [CrossRef]
- Glover, J.D.; Reganold, J.P.; Bell, L.W.; Borevitz, J.; Brummer, E.C.; Buckler, E.S.; Cox, C.M.; Cox, T.S.; Crews, T.E.; Culman, S.W.; et al. Increased food and ecosystem security via perennial grains. Science 2010, 328, 1638–1639. [Google Scholar] [CrossRef] [PubMed]
- Culman, S.W.; Snapp, S.S.; Ollenburger, M.; Basso, B.; DeHaan, L.R. Soil and Water Quality Rapidly Responds to the Perennial Grain Kernza Wheatgrass. Agron. J. 2013, 105, 735–744. [Google Scholar] [CrossRef]
- Batello, C.; Wade, L.; Cox, S.; Pogna, N.; Bozzini, A.; Choptiany, J. Perennial Crops for Food Security. In Proceedings of the FAO Expert Workshop, Rome, Italy, 28–30 August 2013; Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/3/a-i3495e.pdf (accessed on 12 November 2019).
- Ryan, M.R.; Crews, T.E.; Culman, S.W.; DeHaan, L.R.; Hayes, R.C.; Jungers, J.M.; Bakker, M.G. Managing for Multifunctionality in Perennial Grain Crops. BioScience 2018, 68, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Jungers, J.M.; DeHaan, L.H.; Mulla, D.J.; Sheaffer, C.C.; Wyse, D.L. Reduced nitrate leaching in a perennial grain crop compared to maize in the Upper Midwest, USA. Agric. Ecosyst. Environ. 2019, 272, 63–73. [Google Scholar] [CrossRef]
- Cox, C.M.; Garrett, K.A.; Bockus, W.W. Meeting the challenge of disease management in perennial grain cropping systems. Renew. Agric. Food Syst. 2005, 20, 15–24. [Google Scholar] [CrossRef]
- De Oliveira, G.; Brunsell, N.A.; Sutherlin, C.E.; Crews, T.E.; DeHaan, L.R. Energy, water and carbon exchange over a perennial Kernza wheatgrass crop. Agric. For. Meteorol. 2018, 249, 120–137. [Google Scholar] [CrossRef]
- DeHaan, L.R.; Van Tassel, D.L.; Anderson, J.A.; Asselin, S.R.; Barnes, R.; Baute, G.J.; Cattani, D.J.; Culman, S.W.; Dorn, K.M. A pipeline strategy for grain crop domestication. Crop Sci. 2016, 56, 917–930. [Google Scholar] [CrossRef]
- Acharya, S.N.; Mir, Z.; Moyer, J.R. ACE-1 perennial cereal rye. Can. J. Plant Sci. 2004, 84, 819–821. [Google Scholar] [CrossRef]
- Hayes, R.C.; Newell, M.T.; DeHaan, L.R.; Murphy, K.M.; Crane, S.; Norton, M.R.; Wade, L.J.; Newberry, M.; Fahim, M.; Jones, S.S.; et al. Perennial cereal crops: An initial evaluation of wheat derivatives. Field Crops Res. 2012, 133, 68–89. [Google Scholar] [CrossRef]
- Baker, B. Can Modern Agriculture Be Sustainable? BioScience 2017, 67, 325–331. [Google Scholar] [CrossRef]
- Patagonia Provisions Long Root Pale Ale. Available online: https://www.patagoniaprovisions.com/pages/long-root-pale-ale (accessed on 21 May 2019).
- Christenson, B. Taste of General Mills. Available online: https://blog.generalmills.com/2019/04/a-cereal-thats-deeply-rooted-for-good/ (accessed on 21 May 2019).
- Whole Grains Council. Whole Grain Momentum: Whole Grains are the New Norm. Available online: https://wholegrainscouncil.org/sites/default/files/atoms/files/WG_Momentum_infographic2018.pdf (accessed on 26 July 2019).
- Tyl, C.; Ismail, B.P. Compositional evaluation of perennial wheatgrass (Thinopyrum intermedium) breeding populations. Int. J. Food Sci. Technol. 2019, 54, 660–669. [Google Scholar] [CrossRef]
- Zimberoff, L. Superwheat Kernza could Save our Soil and Feed us Well. Available online: http://civileats.com/2015/06/15/superwheat-kernza-could-save-our-soil-and-feed-us-well/ (accessed on 26 July 2019).
- Reganold, J.P.; Jackson-Smith, D.; Batie, S.S.; Harwood, R.R.; Kornegay, J.L.; Bucks, D.; Flora, C.B.; Hanson, J.C.; Jury, W.A.; Meyer, D.; et al. Transforming U.S. Agriculture. Science 2011, 332, 670–671. [Google Scholar] [CrossRef] [PubMed]
- Agence Bio. Focus sur les Filières bio en France: Les Grandes Cultures Biologiques. Available online: http://www.agencebio.org/la-bio-en-france (accessed on 26 July 2019).
- Duchene, O.; Celette, F.; Ryan, M.; DeHaan, L.; Crews, T.; David, C. Integrating multipurpose perennial grains crops in Western European farming systems. Agric. Ecosyst. Environ. 2019, 284, 106591. [Google Scholar] [CrossRef]
- Willer, H.; Lernoud, J.; Kemper, L. The World of Organic Agriculture 2019: Summary. In The World of Organic Agriculture. Statistics and Emerging Trends 2019; Willer, H., Lernoud, J., Eds.; Research Institute of Organic Agriculture (FiBL), Frick, and IFOAM—Organics International: Bonn, Germany, 2019; p. 26. Available online: https://shop.fibl.org/CHen/mwdownloads/download/link/id/1202/?ref=1 (accessed on 4 November 2019).
- Goodman, L.A. Snowball Sampling. Ann. Math. Stat. 1961, 32, 148–170. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lenth, R. Emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package Version 1.3.4. 2018. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 19 July 2018).
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- FiBL Statistics–Statistics. Available online: https://statistics.fibl.org/world/key-indicators-world.html (accessed on 23 January 2019).
- Watt, D. Economic feasibility of a perennial grain: Intermediate wheatgrass. N. D. Res. Rep.-N. D. Agric. Exp. Stn. USA 1989, 108, 11–13. [Google Scholar]
- Becker, R.; Wagoner, P.; Hanners, G.D.; Saunders, R.M. Compositional, nutritional and functional evaluation of intermediate wheatgrass (Thinopyrum intermedium). J. Food Process. Preserv. 1991, 15, 63–77. [Google Scholar] [CrossRef]
- Cox, T.S.; Bender, M.; Picone, C.; Tassel, D.V.; Holland, J.B.; Brummer, E.C.; Zoeller, B.E.; Paterson, A.H.; Jackson, W. Breeding perennial grain crops. Crit. Rev. Plant Sci. 2002, 21, 59–91. [Google Scholar] [CrossRef]
- Crews, T.E. Perennial crops and endogenous nutrient supplies. Renew. Agric. Food Syst. 2005, 20, 25–37. [Google Scholar] [CrossRef]
- Jaikumar, N.S.; Snapp, S.S.; Murphy, K.; Jones, S.S. Agronomic Assessment of Perennial Wheat and Perennial Rye as Cereal Crops. Agron. J. 2012, 104, 1716–1726. [Google Scholar] [CrossRef]
- Pimentel, D.; Cerasale, D.; Stanley, R.C.; Perlman, R.; Newman, E.M.; Brent, L.C.; Mullan, A.; Chang, D.T.-I. Annual vs. perennial grain production. Agric. Ecosyst. Environ. 2012, 161, 1–9. [Google Scholar] [CrossRef]
- DeHaan, L.R.; Wang, S.; Larson, S.R.; Cattani, D.J.; Zhang, X.; Kantarski, T. Current efforts to develop perennial wheat and domesticate Thinopyrum intermedium as a perennial grain. In Proceedings of the Perennial crops for food security, FAO Expert Workshop, Rome, Italy, 28–30 August 2013; Food and Agriculture Organization of the United Nations; pp. 72–89. Available online: http://www.fao.org/3/a-i3495e.pdf (accessed on 12 November 2019).
- Weik, L.; Kaul, H.-P.; Kübler, E.; Aufhammer, W. Grain yields of perennial grain crops in pure and mixed stands. J. Agron. Crop Sci. 2002, 188, 342–349. [Google Scholar] [CrossRef]
- Gazza, L.; Galassi, E.; Ciccoritti, R.; Cacciatori, P.; Pogna, N.E. Qualitative traits of perennial wheat lines derived from different Thinopyrum species. Genet. Resour. Crop Evol. 2016, 63, 209–219. [Google Scholar] [CrossRef]
- Marquardt, K.; Vico, G.; Glynn, C.; Weih, M.; Eksvärd, K.; Dalin, P.; Björkman, C. Farmer perspectives on introducing perennial cereal in Swedish farming systems: A sustainability analysis of plant traits, farm management, and ecological implications. Agroecol. Sustain. Food Syst. 2016, 40, 432–450. [Google Scholar] [CrossRef]
- Lanker, M.; Bell, M.; Picasso, V.M. Farmer perspectives and experiences introducing the novel perennial grain Kernza intermediate wheatgrass in the US Midwest. Renew. Agric. Food Sys. 2019, 34, 1–10. [Google Scholar] [CrossRef]
- Sutherlin, C.E.; Brunsell, N.A.; de Oliveira, G.; Crews, T.E.; DeHaan, L.R.; Vico, G. Contrasting Physiological and Environmental Controls of Evapotranspiration over Kernza Perennial Crop, Annual Crops, and C4 and Mixed C3/C4 Grasslands. Sustainability 2019, 11, 1640. [Google Scholar] [CrossRef]
- Asbjornsen, H.; Hernandez-Santana, V.; Liebman, M.; Bayala, J.; Chen, J.; Helmers, M.; Ong, C.K.; Schulte, L.A. Targeting perennial vegetation in agricultural landscapes for enhancing ecosystem services. Renew. Agric. Food Syst. 2014, 29, 101–125. [Google Scholar] [CrossRef]
- Derpsch, R.; Friedrich, T.; Kassam, A.; Li, H. Current status of adoption of no-till farming in the world and some of its main benefits. Int. J. Agric. Biol. Eng. 2010, 3, 1–25. [Google Scholar]
- Pimentel, D.; Hepperly, P.; Hanson, J.; Douds, D.; Seidel, R. Environmental, energetic, and economic comparisons of organic and conventional farming systems. BioScience 2005, 55, 573–582. [Google Scholar] [CrossRef]
- Bell, L.W.; Byrne, F.; Ewing, M.A.; Wade, L.J. A preliminary whole-farm economic analysis of perennial wheat in an Australian dryland farming system. Agric. Syst. 2008, 96, 166–174. [Google Scholar] [CrossRef]
- DeHaan, L.R.; Van Tassel, D.L.; Cox, T.S. Perennial grain crops: A synthesis of ecology and plant breeding. Renew. Agric. Food Syst. 2005, 20, 5–14. [Google Scholar] [CrossRef]
- Muckey, E. Small Grains in Minnesota: Assessing the Feasibility of Local Supply Chains. The Regents of the University of Minnesota. Available online: https://conservancy.umn.edu/bitstream/handle/11299/200086/Muckey%20Final.pdf?sequence=1&isAllowed=y (accessed on 26 July 2019).
- Adebiyi, J.; Schmitt Olabisi, L.; Snapp, S. Understanding perennial wheat adoption as a transformative technology: Evidence from the literature and farmers. Renew. Agric. Food Syst. 2015, 31, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Pugliese, J.Y.; Culman, S.W.; Sprunger, C.D. Harvesting forage of the perennial grain crop Kernza (Thinopyrum intermedium) increases root biomass and soil nitrogen cycling. Plant Soil 2019, 437, 241–254. [Google Scholar] [CrossRef]
- Jungers, J.M.; DeHaan, L.R.; Betts, K.J.; Sheaffer, C.C.; Wyse, D.L. Intermediate Wheatgrass Grain and Forage Yield Responses to Nitrogen Fertilization. Agron. J. 2017, 109, 462–472. [Google Scholar] [CrossRef] [Green Version]
- Crowder, D.W.; Reganold, J.P. Financial competitiveness of organic agriculture on a global scale. Proc. Natl. Acad. Sci. USA 2015, 112, 7611–7616. [Google Scholar] [CrossRef] [Green Version]
- Van Mansvelt, J.D.; Stobbelaar, D.J.; Hendriks, K. Comparison of landscape features in organic and conventional farming systems. Landsc. Urban Plan. 1998, 41, 209–227. [Google Scholar] [CrossRef]
- Crews, T.E.; Rumsey, B.E. What Agriculture Can Learn from Native Ecosystems in Building Soil Organic Matter: A Review. Sustainability 2017, 9, 578. [Google Scholar] [CrossRef] [Green Version]
Topic Analyzed | Model | Predictor Variables | Response Variable | Random Effect | Other Details |
---|---|---|---|---|---|
Interest in perennial grains | Logistic regression | Country and farm type | Interest, with two factor levels: “interested” and “need more information” | NA | Only 7 respondents who selected “Not interested” meant a multinomial model was infeasible |
Motivations for growing perennial grains | Two logistic mixed regression models | Model (1) country, motivation, and interaction Model (2) farm type, motivation, and interaction | Binary variable indicating which of 13 given motivations were selected in top three | Respondents | 13 motivations were ranked using estimated marginal means from each model |
Concerns about growing perennial grains | Two logistic mixed regression models | Model (1) country, concern, and interaction Model (2) farm type, concern, and interaction | Binary variable indicating which of 10 given concerns were selected in top three | Respondents | 10 concerns were ranked using estimated marginal means from each model |
Farm integration strategy | Multinomial | Country, farm type, and interaction | Integration strategy, with five factor levels | NA | Five strategies ranked using estimated marginal means |
Country | Farm Type | Farm Size 1 | ||||||
---|---|---|---|---|---|---|---|---|
France | US | Conventional | Organic | Small | Medium | Large | Total | |
Farmer respondents 2 | 77% (270/351) | 23% (81/351) | 25% (88/351) | 75% (263/351) | 54% (188/351) | 25% (88/351) | 21% (75/351) | 100% (351/351) |
>50% of income from farming | 68% (183/268) | 48% (38/79) | 66% (57/87) | 63% (164/260) | 57% (106/186) | 75% (66/88) | 67% (49/73) | 64% (221/347) |
Selected crops produced | ||||||||
Other cereals 3 | 47% (124/264) | 23% (18/78) | 7% (6/86) | 53% (136/256) | 43% (78/182) | 50% (43/86) | 28% (21/74) | 42% (142/342) |
Other grain crops 4 | 37% (98/264) | 22% (17/78) | 25% (22/86) | 36% (93/256) | 30% (54/182) | 43% (37/86) | 32% (24/74) | 34% (115/342) |
Annual and perennial forages | 66% (174/264) | 56% (44/78) | 40% (34/86) | 72% (184/256) | 64% (116/182) | 71% (61/86) | 55% (41/74) | 64% (218/342) |
Livestock | 40% (106/264) | 49% (38/78) | 23% (20/86) | 48% (124/256) | 48% (88/182) | 38% (33/86) | 31% (23/74) | 42% (144/342) |
Previous knowledge of perennial grains | 36% (96/270) | 68% (55/81) | 44% (39/88) | 43% (112/263) | 39% (73/188) | 42% (37/88) | 55% (41/75) | 43% (151/351) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wayman, S.; Debray, V.; Parry, S.; David, C.; Ryan, M.R. Perspectives on Perennial Grain Crop Production among Organic and Conventional Farmers in France and the United States. Agriculture 2019, 9, 244. https://doi.org/10.3390/agriculture9110244
Wayman S, Debray V, Parry S, David C, Ryan MR. Perspectives on Perennial Grain Crop Production among Organic and Conventional Farmers in France and the United States. Agriculture. 2019; 9(11):244. https://doi.org/10.3390/agriculture9110244
Chicago/Turabian StyleWayman, Sandra, Valentine Debray, Stephen Parry, Christophe David, and Matthew R. Ryan. 2019. "Perspectives on Perennial Grain Crop Production among Organic and Conventional Farmers in France and the United States" Agriculture 9, no. 11: 244. https://doi.org/10.3390/agriculture9110244
APA StyleWayman, S., Debray, V., Parry, S., David, C., & Ryan, M. R. (2019). Perspectives on Perennial Grain Crop Production among Organic and Conventional Farmers in France and the United States. Agriculture, 9(11), 244. https://doi.org/10.3390/agriculture9110244