Do Land Ownership and Agro-Ecological Location of Farmland Influence Adoption of Improved Rice Varieties? Evidence from Sierra Leone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Duration Analysis
2.2. Data
2.3. Descriptive Statistics of Variables Used in Analyses
3. Results
3.1. Non-Parametric Analyses
3.2. Parametric Analyses
4. Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
NERICA | ROK | |||
---|---|---|---|---|
Observed | Expected | Observed | Expected | |
Farmland ownership | ||||
LAND_OWNED | 243.00 | 281.01 | 251.00 | 268.19 |
RENTAL_L | 126.00 | 95.00 | 103.00 | 88.23 |
SHARE_CROPP | 19.00 | 11.99 | 16.00 | 13.58 |
Total | 388.00 | 388.00 | 370.00 | 370.00 |
Chi-square (probability) | 20.86 (0.00) | 4.35 (0.11) | ||
Location of farmland | ||||
UPLAND | 30.00 | 61.57 | 76.00 | 59.23 |
IVS | 187.00 | 162.28 | 147.00 | 167.62 |
UPLAND_IVS | 171.00 | 164.15 | 147.00 | 143.14 |
Total | 388.00 | 388.00 | 370.00 | 370.00 |
Chi-square (Probability) | 21.49 (0.0) | 7.93(0.01) | ||
Source of awareness | ||||
EX_SERV | 243.00 | 204.93 | 190.00 | |
FRD_NGB_REL | 126.00 | 165.02 | 154.00 | |
RADIO_TV_R | 4.00 | 3.04 | 25.00 | |
Total | 373.00 | 373.00 | 370.00 | |
Chi-square (probability) | 17.77 (0.00) | 0.89 (0.64) |
Exponential | Weibull | Log Normal | Log Logistic | Generalised Gamma | |
---|---|---|---|---|---|
Log likelihood | −581.42 | −552.33 | −565.76 | −562.43 | −552.33 |
AIC | 1198.83 | 1142.67 | 1169.51 | 1162.87 | 1144.67 |
BIC | 1273.93 | 1221.93 | 1248.78 | 1242.13 | 1228.10 |
/kappa (standard error) | 1.01(0.21) | ||||
Wald’s test | |||||
kappa = 1(chi-square Pro) | 0.00 (0.96) | ||||
kappa = 0(chi-square Pro) | 24.04 (0.00) |
Exponential | Weibull | Log Normal | Log Logistic | Generalised Gamma | |
---|---|---|---|---|---|
Log likelihood | −548.43 | −473.22 | −505.03 | −494.73 | −471.22 |
AIC | 1132.85 | 984.44 | 1048.06 | 1027.46 | 982.44 |
BIC | 1209.25 | 1065.07 | 1128.70 | 1108.10 | 1067.33 |
/kappa (standard error) | 1.39 (0.22) | ||||
Wald’s test | |||||
kappa = 1(chi-square Pro) | 3.16 (0.08) | ||||
kappa = 0(chi-square Pro) | 40.53 (0.00) |
References
- Tester, M.; Langridge, P. Breeding technologies to increase crop production in a changing world. Science 2010, 327, 818–822. [Google Scholar] [CrossRef]
- Evans, R.G.; Sadler, E.J. Methods and technologies to improve efficiency of water use. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Conteh, A.M.H.; Yan, X.; Sankoh, F.P. The influence of price on rice production in Sierra Leone. Agric. Sci. 2012, 3, 462. [Google Scholar] [CrossRef]
- Seck, P.A.; Diagne, A.; Mohanty, S.; Wopereis, M.C. Crops that feed the world 7: Rice. Food Secur. 2012, 4, 7–24. [Google Scholar] [CrossRef]
- Arounaa, A.; Lokossoub, J.C.; Wopereisc, M.C.S.; Bruce-Oliverd, S.; Roy-Macauley, H. Contribution of improved rice varieties to poverty reduction and food security in sub-Saharan Africa. Glob. Food Secur. 2017, 14, 54–60. [Google Scholar] [CrossRef]
- Naseem, A.; Mhlanga, S.; Diagne, A.; Adegbola, P.Y.; Midingoyi, G.S.K. Economic analysis of consumer choices based on rice attributes in the food markets of West Africa—The case of Benin. Food Secur. 2013, 5, 575–589. [Google Scholar] [CrossRef]
- Seck, P.A.; Tollens, E.; Wopereis, M.C.; Diagne, A.; Bamba, I. Rising trends and variability of rice prices: Threats and opportunities for sub-Saharan Africa. Food Policy 2010, 35, 403–411. [Google Scholar] [CrossRef]
- Dalton, T.J.; Guei, R.G. Productivity gains from rice genetic enhancements in West Africa: Countries and ecologies. World Dev. 2003, 31, 359–374. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Sie, M.; Hijmans, R.J.; Otsuka, K. Increasing rice production in sub-Saharan Africa: Challenges and opportunities. Adv. Agron. 2007, 94, 55–133. [Google Scholar]
- Diao, X.; Headey, D.; Johnson, M. Toward a green revolution in Africa: What would it achieve, and what would it require? Agric. Econ. 2008, 39, 539–550. [Google Scholar] [CrossRef]
- Kijima, Y.; Ito, Y.; Otsuka, K. Assessing the impact of training on lowland rice productivity in an African setting: Evidence from Uganda. World Dev. 2012, 40, 1610–1618. [Google Scholar] [CrossRef]
- Otsuka, K.; Kijima, Y. Technology policies for a green revolution and agricultural transformation in Africa. J. Afr. Econ. 2010, 19 (Suppl. 2), ii60–ii76. [Google Scholar] [CrossRef]
- Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision; ESA Working Paper No. 12-03; FAO: Rome, Italy, 2012. [Google Scholar]
- FAO. The Special Challenge for Sub-Saharan Africa; High Level Expert Forum: Rome, Italy, 2009. [Google Scholar]
- Perret, S.; Stevens, J. Factors affecting the adoption of water-conservation technologies. In Proceedings of the Symposium and Workshop on Water Conservation Technologies for Sustainable Dryland Agriculture in Sub-Saharan Africa, Pretoria, South Africa, 8–11 April 2003. [Google Scholar]
- Evenson, R.E.; Gollin, D. Assessing the impact of the Green Revolution, 1960 to 2000. Science 2003, 300, 758–762. [Google Scholar] [CrossRef] [PubMed]
- Kaliba, A.R.; Mazvimavi, K.; Gregory, T.L.; Mgonja, F.M.; Mgonja, M. Factors affecting adoption of improved sorghum varieties in Tanzania under information and capital constraints. Agric. Food Econ. 2018, 6, 18. [Google Scholar] [CrossRef]
- Pingali, P.L. Green revolution: Impacts, limits, and the path ahead. Proc. Natl. Acad. Sci. USA 2012, 109, 12302–12308. [Google Scholar] [CrossRef] [PubMed]
- Chima, C.D. Socio-Economic Determinants of Modern Agricultural Technology Adoption in Multiple Food Crops and Its Impact on Productivity and Food Availability at the Farm-Level: A Case Study from South-Eastern Nigeria. Ph.D. Thesis, Plymouth University, Plymouth, UK, March 2015. [Google Scholar]
- Manitra, A.; Iafrate, M.; Paschali, M. Why has Africa Become a Net Food Importer: Explaining African Agricultural and Food Trade Deficits; Trade and Markets Division Food and Agriculture Organization of the UN: Rome, Italy, 2011. [Google Scholar]
- Amanor, K.S. From farmer participation to pro-poor seed markets: The political economy of commercial cereal seed networks in Ghana. IDS Bull. 2011, 42, 48–58. [Google Scholar] [CrossRef]
- Sall, S.; Norman, D.; Featherstone, A.M. Adaptability of improved rice varieties in Senegal. Agricult. Syst. 1998, 57, 101–114. [Google Scholar] [CrossRef]
- Conteh, A.M.; Yan, X.; Fofana, I.; Gegbe, B.; Isaac, T.I. An estimation of rice output supply response in Sierra Leone: A Nerlovian model approach. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2014, 8, 225–231. [Google Scholar]
- Louhichi, K.; Y Paloma, S.G. A farm household model for agri-food policy analysis in developing countries: Application to smallholder farmers in Sierra Leone. Food Policy 2014, 45, 1–13. [Google Scholar] [CrossRef]
- Chakanda, R.; van Treuren, R.; Visser, B.; van den Berg, R. Analysis of genetic diversity in farmers’ rice varieties in Sierra Leone using morphological and AFLP® markers. Genet. Resour. Crop. Evol. 2013, 60, 1237–1250. [Google Scholar] [CrossRef]
- Johnny, M. Agricultural change and peasant farmer resistance: The case of the traditional upland rice farmer in Sierra Leone. Rural Afr. 1981, 10, 9–17. [Google Scholar]
- Rashid-Noah, A. Survey and development of uplands for rice production. Warda Train. Guide 1995, 3, 9–10. [Google Scholar]
- Ghimire, R.; Wen-Chi, H.; Shrestha, R.B. Factors affecting adoption of improved rice varieties among rural farm households in Central Nepal. Rice Sci. 2015, 22, 35–43. [Google Scholar] [CrossRef]
- Unruh, J.D.; Turray, H. Land Tenure, Food Security and Investment in Postwar Sierra Leone; FAO: Rome, Italy, 2006. [Google Scholar]
- Williams, S.; Oredola-Davies, P. Land and Pro-Poor Change in Sierra Leone. DFID, Sierra Leone. Available online: http://www. britishcouncil. org/land-and-pro-poor-change-insierra-leone.pdf (accessed on 16 July 2013).
- Aha, B.; Ayitey, J.Z. Biofuels and the hazards of land grabbing: Tenure (in) security and indigenous farmers’ investment decisions in Ghana. Land Use Policy 2017, 60, 48–59. [Google Scholar] [CrossRef]
- Schuck, E.C.; Nganje, W.; Yantio, D. The role of land tenure and extension education in the adoption of slash and burn agriculture. Ecol. Econ. 2002, 43, 61–70. [Google Scholar] [CrossRef]
- Zeng, D.; Alwang, J.; Norton, G.; Jaleta, M.; Shiferaw, B.; Yirga, C. Land ownership and technology adoption revisited: Improved maize varieties in Ethiopia. Land Use Policy 2018, 72, 270–279. [Google Scholar] [CrossRef]
- Wang, H.; Pandey, S.; Velarde, O. Pattern of adoption of improved rice varieties and its determinants in Cambodia. Procedia Econ. Financ. 2012, 2, 335–343. [Google Scholar] [CrossRef]
- Donkor, E.; Owusu, V. Effects of land tenure systems on resource-use productivity and efficiency in Ghana’s rice industry. Afr. J. Agric. Resour. Econ. 2014, 9, 286. [Google Scholar]
- Chandio, A.A.; Yuansheng, J. Determinants of adoption of improved rice varieties in northern Sindh, Pakistan. Rice Sci. 2018, 25, 103–110. [Google Scholar] [CrossRef]
- Alcon, F.; de Miguel, M.D.; Burton, M. Duration analysis of adoption of drip irrigation technology in southeastern Spain. Technol. Forecast. Soc. Chang. 2011, 78, 991–1001. [Google Scholar] [CrossRef]
- Läpple, D. Adoption and abandonment of organic farming: An empirical investigation of the Irish drystock sector. J. Agric. Econ. 2010, 61, 697–714. [Google Scholar] [CrossRef]
- Abdulai, A.; Huffman, W.E. The diffusion of new agricultural technologies: The case of crossbred-cow technology in Tanzania. Am. J. Agric. Econ. 2005, 87, 645–659. [Google Scholar] [CrossRef]
- Nazli, H.; Smale, M. Dynamics of variety change on wheat farms in Pakistan: A duration analysis. Food Policy 2016, 59, 24–33. [Google Scholar] [CrossRef]
- Clapp, J. Food self-sufficiency: Making sense of it, and when it makes sense. Food Policy 2017, 66, 88–96. [Google Scholar] [CrossRef]
- Cleves, M.; Gould, W.; Gould, W.W.; Gutierrez, R.; Marchenko, Y. An Introduction to Survival Analysis Using Stata; Stata Press: College Station, TX, USA, 2008. [Google Scholar]
- Addison, J.T.; Portugal, P. Some specification issues in unemployment duration analysis. Labour Econ. 1998, 5, 53–66. [Google Scholar] [CrossRef]
- Ahsanuzzaman, A. Duration analysis of technology adoption in Bangladeshi agriculture. In Proceedings of the 2015 AAEA & WAEA Joint Annual Meeting, San Francisco, CA, USA, 26–28 July 2015. [Google Scholar]
- Smith, L.M.; Haukos, D.A. Floral diversity in relation to playa wetland area and watershed disturbance. Conserv. Biol. 2002, 16, 964–974. [Google Scholar] [CrossRef] [Green Version]
- Kalton, G. Methods for oversampling rare subpopulations in social surveys. Surv. Methodol. 2009, 35, 125–141. [Google Scholar]
- Acharya, A.S.; Prakash, A.; Saxena, P.; Nigam, A. Sampling: Why and how of it. Indian J. Med. Spec. 2013, 4, 330–333. [Google Scholar] [CrossRef]
- Korsching, P.F.; Stofferahn, C.W.; Nowak, P.J.; Wagener, D.J. Adopter characteristics and adoption patterns of minimum tillage: Implications for soil conservation programs. J. Soil Water Conserv. 1983, 38, 428–431. [Google Scholar]
- Besley, T. Property rights and investment incentives: Theory and evidence from Ghana. J. Political Econ. 1995, 103, 903–937. [Google Scholar] [CrossRef] [Green Version]
- Abdulai, A.; Owusu, V.; Goetz, R. Land tenure differences and investment in land improvement measures: Theoretical and empirical analyses. J. Dev. Econ. 2011, 96, 66–78. [Google Scholar] [CrossRef]
- Mwangi, M.; Kariuki, S. Factors determining adoption of new agricultural technology by smallholder farmers in developing countries. J. Econ. Sustain. Dev. 2015, 6, 208–216. [Google Scholar]
- Gavian, S.; Fafchamps, M. Land tenure and allocative efficiency in Niger. Am. J. Agric. Econ. 1996, 78, 460–471. [Google Scholar] [CrossRef]
- Oostendorp, R.H.; Zaal, F. Land acquisition and the adoption of soil and water conservation techniques: A duration analysis for Kenya and the Philippines. World Dev. 2012, 40, 1240–1254. [Google Scholar] [CrossRef]
- Paltasingh, K.R. Land tenure security and adoption of modern rice technology in Odisha, Eastern India: Revisiting Besley’s hypothesis. Land Use Policy 2018, 78, 236–244. [Google Scholar] [CrossRef]
- Banerjee, A.V.; Gertler, P.J.; Ghatak, M. Empowerment and efficiency: Tenancy reform in West Bengal. J. Political Econ. 2002, 110, 239–280. [Google Scholar] [CrossRef] [Green Version]
- Muraoka, R.; Jin, S.; Jayne, T.S. Land access, land rental and food security: Evidence from Kenya. Land Use Policy 2018, 70, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, U.; Nejadhashemi, A.P.; Woznicki, S.A. Climate change and eastern Africa: A review of impact on major crops. Food Energy Secur. 2015, 4, 110–132. [Google Scholar] [CrossRef]
Variable | Description | Adopt NERICA | Adopt ROK | ||||
---|---|---|---|---|---|---|---|
No | Yes | t-Test | No | Yes | t-Test | ||
Farmer Characteristics | Mean | Mean | p-Value | Mean | Mean | p-Value | |
AGE | Age of the farmer (years) | 42.97 | 45.17 | 0.03 | 44.73 | 44.40 | 0.75 |
TIME | Time to adopt/at risk | 14.26 | 12.48 | 0.12 | 13.34 | 9.41 | 0.00 |
INCOME | Previous year’s income (million Le) 1 | 1.826 | 4.222 | 0.00 | 3.244 | 3.570 | 0.65 |
EDUC | Level of education (years) | 3.37 | 4.53 | 0.02 | 4.08 | 4.21 | 0.80 |
Dummy variables | % | % | Chi2 p-value | % | % | Chi2 p-value | |
GEND | Sex of the farmer, male = 1, 0 otherwise | 78.42 | 70.09 | 0.03 | 67.48 | 74.51 | 0.08 |
IRRIG_FAC | Use of irrigation facility = 1, 0 otherwise | 6.84 | 15.42 | 0.00 | 15.34 | 11.87 | 0.26 |
FARM_ORG | Farmers’ organiations membership = 1, 0 otherwise | 85.26 | 89.25 | 0.16 | 85.28 | 89.01 | 0.21 |
CREDIT | Have access to credit = 1, 0 otherwise | 27.89 | 33.64 | 0.16 | 28.22 | 33.19 | 0.24 |
MKT_INF | Have easy access to market = 1, 0 otherwise | 25.79 | 48.13 | 0.00 | 35.58 | 43.30 | 0.09 |
Sources of labour | |||||||
HIRE_COM_LAB | Hired/communal labour | 69.27 | 78.24 | 0.02 | 64.85 | 79.30 | 0.00 |
HH_LAB | Household labour | 5.21 | 9.26 | 0.09 | 11.52 | 6.75 | 0.05 |
HH_COM_LAB | Household and communal labour | 23.96 | 11.57 | 0.00 | 22.42 | 12.85 | 0.00 |
INCONSIS_LAB | Inconsistent labour source | 1.56 | 0.93 | 0.49 | 1.21 | 1.09 | 0.90 |
Farmland ownership | |||||||
LAND_OWNED | Land owned by farmer | 68.33 | 61.85 | 0.13 | 59.01 | 65.71 | 0.13 |
RENTAL_L | Rented land | 23.89 | 33.17 | 0.02 | 30.43 | 30.24 | 0.96 |
SHARE_CROPP | Share cropping | 7.78 | 4.99 | 0.19 | 10.56 | 4.05 | 0.00 |
Source of awareness | |||||||
EX_SERV | Extension services | 30.56 | 63.34 | 0.00 | 54.66 | 52.62 | 0.66 |
FRD_NGB_REL | Friends/neighbours/relative | 65.00 | 31.67 | 0.00 | 42.86 | 41.67 | 0.80 |
RADIO_TV_R | Radio/television/research stations/others | 4.44 | 4.99 | 0.78 | 2.48 | 5.71 | 0.10 |
Location of farmland | |||||||
UPLAND | Upland areas | 40.56 | 7.98 | 0.00 | 12.42 | 20.24 | 0.03 |
IVS | Inland valley swamps | 40.56 | 48.88 | 0.06 | 65.84 | 38.81 | 0.00 |
UPLAND_IVS | Both inland valleys and uplands | 18.89 | 43.14 | 0.00 | 21.74 | 40.95 | 0.00 |
Observation | 186.00 | 412.00 | 161.00 | 437.00 |
Source of First Improved Seed | NERICA | ROK | ||||
---|---|---|---|---|---|---|
Non-Adopters | Adopters | chi2/p * | Non-Adopters | Adopters | chi2/p * | |
MAFFS | 27.86 | 76.56 | 0.00 | 76.15 | 60.10 | 0.00 |
SLARI | 1.43 | 2.00 | 0.67 | 3.08 | 1.46 | 0.70 |
Own produce | 3.57 | 5.74 | 0.32 | 6.15 | 4.87 | 0.56 |
Other farmers | 11.43 | 2.74 | 0.00 | 3.08 | 5.60 | 0.50 |
Purchased | 55.71 | 12.97 | 0.00 | 11.54 | 27.98 | 0.00 |
Time | ROK | NERICA | ||||||
---|---|---|---|---|---|---|---|---|
Weibull | Generalized Gamma | Weibull | Generalized Gamma | |||||
Coefficient | Std. Err. | Coefficient | Std. Err. | Coefficient | Std. Err. | Coefficient | Std. Err. | |
EDUC | −0.03 | 0.03 | −0.03 | 0.03 | −0.05 * | 0.03 | −0.04 | 0.02 |
AGE | 1.53 *** | 0.16 | 1.53 *** | 0.17 | 1.55 *** | 0.13 | 1.53 *** | 0.12 |
INCOME | 0.08 ** | 0.04 | 0.08 ** | 0.04 | −0.02 | 0.03 | −0.03 | 0.03 |
GEND | 0.09 | 0.09 | 0.09 | 0.09 | 0.29 *** | 0.07 | 0.26 *** | 0.06 |
FARM_ORG | −0.25 ** | 0.12 | −0.25 ** | 0.12 | −0.32 *** | 0.10 | −0.30 *** | 0.09 |
CREDIT | −0.07 | 0.08 | −0.07 | 0.09 | 0.06 | 0.07 | 0.06 | 0.06 |
MKT_INF | 0.08 | 0.08 | 0.08 | 0.08 | 0.04 | 0.07 | 0.04 | 0.06 |
IRRIG_FAC | 0.08 | 0.12 | 0.08 | 0.13 | −0.01 | 0.09 | 0.01 | 0.08 |
Source of labour 1 | ||||||||
HH_LAB | −0.12 | 0.15 | −0.12 | 0.15 | −0.21 ** | 0.11 | −0.22 ** | 0.10 |
HH_COM_LAB | 0.34 *** | 0.13 | 0.34 ** | 0.13 | 0.18 * | 0.10 | 0.18 * | 0.10 |
INCONSIS_LAB | 0.14 | 0.32 | 0.14 | 0.33 | 0.59 | 0.40 | 0.57 | 0.39 |
Land ownership 2 | ||||||||
RENTAL_L | −0.21 ** | 0.09 | −0.21 ** | 0.09 | −0.07 | 0.07 | −0.03 | 0.07 |
SHARE_CROPP | −0.30 | 0.19 | −0.30 | 0.19 | −0.29 ** | 0.14 | −0.27 ** | 0.13 |
Location of farmland 3 | ||||||||
IVS | 0.34 *** | 0.12 | 0.34 *** | 0.12 | −0.35 ** | 0.13 | −0.36 ** | 0.13 |
UPLAND_IVS | 0.28 ** | 0.11 | 0.28 ** | 0.11 | −0.27 ** | 0.13 | −0.30 ** | 0.13 |
Source of knowing the variety 4 | ||||||||
FRD_NGB_REL | 0.10 | 0.09 | 0.10 | 0.09 | 0.37 *** | 0.07 | 0.35 *** | 0.07 |
RADIO_TV_R | −0.27 | 0.16 | −0.27 | 0.16 | −0.10 | 0.15 | −0.10 | 0.13 |
Constant term | −3.26 *** | 0.63 | −3.25 *** | 0.68 | −2.75 *** | 0.52 | −2.56 *** | 0.49 |
LR chi2 | 129.77 *** | 128.55 *** | 196.27 *** | 199.28 *** | ||||
/ln_p | 0.36 *** | 0.04 | 0.59 *** | 0.04 | ||||
p | 1.43 | 0.06 | 1.81 | 0.08 | ||||
1/p | 0.70 | 0.03 | 0.55 | 0.02 | ||||
/ln_sig | −0.36 *** | 0.08 | −0.74 *** | 0.09 | ||||
Sigma | 0.70 | 0.06 | 0.48 | 0.04 | ||||
/kappa | 1.01 *** | 0.21 | 1.39 *** | 0.22 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansaray, B.; Jin, S.; Horlu, G.S.A. Do Land Ownership and Agro-Ecological Location of Farmland Influence Adoption of Improved Rice Varieties? Evidence from Sierra Leone. Agriculture 2019, 9, 256. https://doi.org/10.3390/agriculture9120256
Mansaray B, Jin S, Horlu GSA. Do Land Ownership and Agro-Ecological Location of Farmland Influence Adoption of Improved Rice Varieties? Evidence from Sierra Leone. Agriculture. 2019; 9(12):256. https://doi.org/10.3390/agriculture9120256
Chicago/Turabian StyleMansaray, Bashiru, Shaosheng Jin, and Godwin S. Agbemavor Horlu. 2019. "Do Land Ownership and Agro-Ecological Location of Farmland Influence Adoption of Improved Rice Varieties? Evidence from Sierra Leone" Agriculture 9, no. 12: 256. https://doi.org/10.3390/agriculture9120256
APA StyleMansaray, B., Jin, S., & Horlu, G. S. A. (2019). Do Land Ownership and Agro-Ecological Location of Farmland Influence Adoption of Improved Rice Varieties? Evidence from Sierra Leone. Agriculture, 9(12), 256. https://doi.org/10.3390/agriculture9120256