Studying Crop Yield Response to Supplemental Irrigation and the Spatial Heterogeneity of Soil Physical Attributes in a Humid Region
Abstract
:1. Introduction
1.1. Supplemental Irrigation Management in Humid Regions
1.2. Farming Data and Precision Agriculture
- Assess the impact of the spatial heterogeneity of soil water content on the pattern of yield using on-farm data that was collected by the farmer’s soil moisture sensors and yield monitor systems;
- Compare the cotton lint yield under different supplemental irrigation regimes across different soil types;
- Assess the temporal stability of low/high yield zones by combining the measured historical yield data of different crops with available cotton yield data.
2. Materials and Methods
2.1. Study Area
2.2. Soil Data Collection and Lab Analysis
2.3. Descriptive and Spatial Analysis of Soil Properties
2.4. On-Farm Irrigation Experiment
2.5. Multiyear Yield Data Analysis
3. Results and Discussion
3.1. Field-Level Soil Heterogeneity and Application of Soil ECa
3.2. Cotton Supplemental Irrigation
3.3. Multiyear Yield Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO (Food and Agriculture Organization of the United Nations). Statistical Yearbook 2013: World Food and Agriculture; FAO: Rome, Italy, 2013. [Google Scholar]
- NASS (National Agricultural Statistics Service). 2007 Census of Agriculture: Farm and Ranch Irrigation Survey, National Agricultural Statistics Service, USDA. 2010. Available online: http://www.agcensus.usda.gov/index.php (accessed on 22 March 2019).
- Tennessee Farm Bureau Federation. Irrigation: Solving Potential Challenges: Policy Development 2013. 2013. Available online: https://www.tnfarmbureau.org/wp-content/uploads/2010/10/Irrigation.pdf (accessed on 22 March 2019).
- Wong, M.T.F.; Asseng, S. Determining the Causes of Spatial and Temporal Variability of Wheat Yields at Sub-field Scale Using a New Method of Upscaling a Crop Model. Plant Soil 2006, 283, 203–215. [Google Scholar] [CrossRef]
- Guo, W.; Maas, S.J.; Bronson, K.F. Relationship between cotton yield and soil electrical conductivity, topography, and Landsat imagery. Precis. Agric. 2012, 13, 678–692. [Google Scholar] [CrossRef]
- Graveel, J.G.; Fribourg, H.A.; Overton, J.R.; Bell, F.F.; Sanders, W.L. Response of Corn to Soil Variation in West Tennessee, 1957–1980. JPA 1989, 2, 300–305. [Google Scholar] [CrossRef]
- Perry, C.; Barns, E. Cotton Irrigation Management for Humid Regions; Cotton Inc.: Cary, NC, USA, 2012. [Google Scholar]
- Vellidis, G.; Liakos, V.; Perry, C.; Tucker, M.; Collins, G.; Snider, J.; Andreis, J.; Migliaccio, K.; Fraisse, C.; Morgan, K.; et al. A smartphone app for scheduling irrigation on cotton. In Proceedings of the 2014 Beltwide Cotton Conference, New Orleans, LA, USA, 6–8 January 2014; Boyd, S., Huffman, M., Robertson, B., Eds.; National Cotton Council: Memphis, TN, USA, 2014. [Google Scholar]
- Pettigrew, W.T. Moisture Deficit Effects on Cotton Lint Yield, Yield Components, and Boll Distribution. Agron. J. 2004, 96, 377. [Google Scholar] [CrossRef]
- Suleiman, A.A.; Soler, C.M.T.; Hoogenboom, G. Evaluation of FAO-56 crop coefficient procedures for deficit irrigation management of cotton in a humid climate. Agric. Water Manag. 2007, 91, 33–42. [Google Scholar] [CrossRef]
- Bajwa, S.G.; Vories, E.D. Spatial analysis of cotton (Gossypium hirsutum L.) canopy responses to irrigation in a moderately humid area. Irrig. Sci. 2007, 25, 429–441. [Google Scholar] [CrossRef]
- Bronson, K.F.; Booker, J.D.; Bordovsky, J.P.; Keeling, J.W.; Wheeler, T.A.; Boman, R.K.; Parajulee, M.N.; Segarra, E.; Nichols, R.L. Site-Specific Irrigation and Nitrogen Management for Cotton Production in the Southern High Plains. Agron. J. 2006, 98, 212. [Google Scholar] [CrossRef] [Green Version]
- Gwathmey, C.O.; Leib, B.G.; Main, C.L. Lint yield and crop maturity responses to irrigation in a short-season environment. J. Cotton Sci. 2011, 15, 1–10. [Google Scholar]
- Grant, T.J.; Leib, B.G.; Duncan, H.A.; Main, C.L.; Verbree, D.A. A deficit irrigation trial in differing soils used to evaluate cotton irrigation scheduling for the Mid-South. J. Cotton Sci. 2017, 21, 265–274. [Google Scholar]
- Khosla, R.; Westfall, D.G.; Reich, R.M.; Mahal, J.S.; Gangloff, W.J. Spatial Variation and Site-Specific Management Zones. In Geostatistical Applications for Precision Agriculture; Springer Nature: Berlin, Germany, 2010; pp. 195–219. [Google Scholar]
- Gooley, L.; Huang, J.; Page, D.; Triantafilis, J. Digital soil mapping of available water content using proximal and remotely sensed data. Soil Use Manag. 2013, 30, 139–151. [Google Scholar] [CrossRef]
- McCutcheon, M.C.; Farahani, H.J.; Stednick, J.D.; Buchleiter, G.W.; Green, T.R. Effect of Soil Water on Apparent Soil Electrical Conductivity and Texture Relationships in a Dryland Field. Biosyst. Eng. 2006, 94, 19–32. [Google Scholar] [CrossRef]
- Haghverdi, A.; Leib, B.G.; Washington-Allen, R.A.; Ayers, P.D.; Buschermohle, M.J. High-resolution prediction of soil available water content within the crop root zone. J. Hydrol. 2015, 530, 167–179. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis. Part 1, 2nd ed.; Agron. Monogr. 9; Klute, A., Ed.; ASA and SSSA: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- Cressie, N. Spatial prediction and ordinary kriging. Math. Geol. 1988, 20, 405–421. [Google Scholar] [CrossRef]
- ESRI. ArcMap (Version 10.2.2); Environmental Systems Resource Institute: Redlands, CA, USA, 2014. [Google Scholar]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 2010, 24, 189–206. [Google Scholar] [CrossRef] [Green Version]
- Turc, L. Estimation of irrigation water requirements, potential evapotranspiration: A simple climatic formula evolved up to date. Ann. Agron. 1961, 12, 13–14. [Google Scholar]
- Lu, J.; Sun, G.; McNulty, S.G.; Amatya, D.M. A comparison of six potential evapotranspiration methods for regional use in the southeastern United States. J. Am. Water Resour. Assoc. 2005, 41, 621–633. [Google Scholar] [CrossRef]
- Paterson, N.D.; Richard, J.C.; Neil, M.W. Soil Moisture Sensor with Data Transmitter. U.S. Patent 12/310,946, 10 December 2009. [Google Scholar]
- National Climate Data Center. National Climate Data Center Home Page. 2015. Available online: http://www.ncdc.noaa.gov/data-access/land-based-station-data (accessed on 13 June 2015).
- Joernsgaard, B.; Halmoe, S. Intra-field yield variation over crops and years. Eur. J. Agron. 2003, 19, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Basso, B.; Bertocco, M.; Sartori, L.; Martin, E.C. Analyzing the effects of climate variability on spatial pattern of yield in a maize–wheat–soybean rotation. Eur. J. Agron. 2007, 26, 82–91. [Google Scholar] [CrossRef]
- Sudduth, K.; Kitchen, N.; Wiebold, W.; Batchelor, W.; Bollero, G.; Bullock, D.; Clay, D.; Palm, H.; Pierce, F.; Schuler, R.; et al. Relating apparent electrical conductivity to soil properties across the north-central USA. Comput. Electron. Agric. 2005, 46, 263–283. [Google Scholar] [CrossRef]
- Iqbal, J.; Thomasson, J.A.; Jenkins, J.N.; Owens, P.R.; Whisler, F.D. Spatial Variability Analysis of Soil Physical Properties of Alluvial Soils. Soil Sci. Soc. Am. J. 2005, 69, 1338. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M.; Shouse, P.J.; Ayars, J.E.; Soppe, R.; Ayars, J.E. Identifying Soil Properties that Influence Cotton Yield Using Soil Sampling Directed by Apparent Soil Electrical Conductivity. Agron. J. 2003, 95, 352–364. [Google Scholar] [CrossRef]
- Friedman, S.P. Soil properties influencing apparent electrical conductivity: A review. Comput. Electron. Agric. 2005, 46, 45–70. [Google Scholar] [CrossRef]
- Rhoades, J.D.; Corwin, D.L.; Lesch, S.M. Geospatial measurements of soil electrical conductivity to assess soil salinity and diffuse salt loading from irrigation. In Solar Eruptions and Energetic Particles; American Geophysical Union (AGU): Washington, DC, USA, 1999; Volume 108, pp. 197–215. [Google Scholar]
- Brevik, E.C.; Fenton, T.E.; Lazari, A. Soil electrical conductivity as a function of soil water content and implications for soil mapping. Precis. Agric. 2006, 7, 393–404. [Google Scholar] [CrossRef]
- Haghverdi, A.; Leib, B.G.; Washington-Allen, R.A.; Buschermohle, M.J.; Ayers, P.D. Studying uniform and variable rate center pivot irrigation strategies with the aid of site-specific water production functions. Comput. Electron. Agric. 2016, 123, 327–340. [Google Scholar] [CrossRef] [Green Version]
- Haghverdi, A.; Leib, B.G.; Washington-Allen, R.A.; Ayers, P.D.; Buschermohle, M.J. Perspectives on delineating management zones for variable rate irrigation. Comput. Electron. Agric. 2015, 117, 154–167. [Google Scholar] [CrossRef]
East Pivot | West Pivot | |||||
---|---|---|---|---|---|---|
Program Sector | Start Angle 1 (degree) | Stop Angle (degree) | Depth of Water (mm) | Start Angle (degree) | Stop Angle (degree) | Depth of water (mm) |
1 | 90 | 110 | 10.41 | 275 | 315 | 9.91 |
2 | 110 | 0 | 15.49 | 315 | 335 | 11.68 |
3 | 0 1 | 20 | 20.57 | 335 | 355 | 8.38 |
4 | 20 | 40 | 10.41 | 355 | 235 | 9.91 |
5 | 40 | 70 | 15.49 | 235 | 255 | 11.68 |
6 | 70 | 90 | 20.57 | 255 | 275 | 8.38 |
Year | Variable | Month | ||||||
---|---|---|---|---|---|---|---|---|
May | June | July | August | September | October | November | ||
2013 | Rain, mm | 23 | 150 | 190 | 95 | 79 | 112 | 63 |
IW-East, mm | 40 | 31 | 62 | |||||
IW-West, mm | 15 | 20 | 30 | |||||
ETref 1, mm day−1 | 4.33 | 4.43 | 3.92 | 2.49 | 1.28 | |||
2014 | Rain, mm | 143 | 172 | 56 | 124 | 120 | 18 | |
IW-East, mm | 62 | 31 | ||||||
IW-West, mm | 20 | 30 | ||||||
ETref 1, mm day−1 | 4.15 | 4.42 | 4.86 | 4.51 | 3.47 | 2.94 | ||
30 year | Rain, mm | 120 | 101 | 102 | 74 | 82 | 82 | 117 |
Tmean, °C | 21 | 25 | 27 | 26 | 22 | 16 | 10 |
Year | Crop | Mean | SD |
---|---|---|---|
2007 | Corn | 7.137 | 4.158 |
2008 | Corn | 3.420 | 0.903 |
2009 | Soybean | 3.221 | 0.860 |
2010 | Cotton | 0.947 | 0.306 |
2012 | Cotton | 0.913 | 0.494 |
2013 | Cotton | 0.871 | 0.329 |
2014 | Cotton | 1.244 | 0.493 |
Variable 1 | Layer | Min. | Max. | Mean | SD |
---|---|---|---|---|---|
BD, g cm−3 | 1th | 1.12 | 1.66 | 1.36 | 0.10 |
2nd | 1.11 | 1.70 | 1.35 | 0.12 | |
3rd | 1.06 | 1.86 | 1.34 | 0.12 | |
4th | 1.17 | 1.78 | 1.40 | 0.13 | |
total | 1.06 | 1.86 | 1.36 | 0.12 | |
WC, % | 1th | 10.75 | 59.74 | 28.35 | 7.43 |
2nd | 7.27 | 43.12 | 26.02 | 10.78 | |
3rd | 5.98 | 42.38 | 21.64 | 11.08 | |
4th | 5.67 | 45.32 | 20.18 | 11.15 | |
total | 3.94 | 47.61 | 17.94 | 8.49 | |
Sand, % | 1th | 8.77 | 88.25 | 38.07 | 20.11 |
2nd | 0.00 | 94.98 | 46.39 | 31.57 | |
3rd | 2.50 | 95.70 | 61.38 | 31.10 | |
4th | 5.46 | 96.86 | 69.90 | 26.09 | |
Clay, % | 1th | 7.37 | 47.56 | 27.55 | 9.04 |
2nd | 2.50 | 56.60 | 22.18 | 14.17 | |
3rd | 1.26 | 47.72 | 14.27 | 11.44 | |
4th | 0.34 | 37.10 | 11.00 | 7.80 | |
Silt, % | 1th | 4.38 | 54.06 | 34.38 | 12.75 |
2nd | 0.00 | 66.51 | 31.43 | 19.85 | |
3rd | 0.00 | 72.81 | 24.35 | 21.76 | |
4th | 0.00 | 69.23 | 19.10 | 19.83 | |
ECa, mS m−1 | shallow | 1.60 | 48.70 | 24.64 | 10.66 |
ECa, mS m−1 | deep | 1.70 | 162.20 | 27.52 | 18.73 |
Variable | Layer | Nugget | Sill | Range (m) | Moran’s I | z-Score |
---|---|---|---|---|---|---|
* BD, g cm−3 | 1th | 0.008 | 0.011 | 526 | 0.087 | 1.181 |
2nd | 0.01 | 0.015 | 95 | −0.086 | −0.929 | |
3rd | 0.011 | 0.016 | 280 | 0.137 | 1.802 | |
4th | 0 | 0.017 | 100 | 0.091 | 1.221 | |
total | 0 | 0.007 | 95 | −0.007 | 0.038 | |
WC, % | 1th | 0 | 44 | 100 | 0.175 | 2.266 |
2nd | 12 | 129 | 332 | 0.327 | 4.063 | |
3rd | 0 | 131 | 206 | 0.284 | 3.545 | |
4th | 56 | 125 | 212 | 0.284 | 3.556 | |
total | 0 | 88 | 316 | 0.326 | 4.049 | |
Sand, % | 1th | 115 | 446 | 360 | 0.421 | 5.213 |
2nd | 440 | 1119 | 300 | 0.365 | 4.510 | |
3rd | 401 | 1037 | 219 | 0.320 | 3.978 | |
4th | 413 | 717 | 260 | 0.300 | 3.747 | |
Clay, % | 1th | 19 | 92 | 389 | 0.392 | 4.861 |
2nd | 123 | 215 | 428 | 0.239 | 3.016 | |
3rd | 68 | 138 | 177 | 0.321 | 4.034 | |
4th | 35 | 63 | 216 | 0.335 | 4.227 | |
Silt, % | 1th | 39 | 174 | 334 | 0.382 | 4.740 |
2nd | 165 | 453 | 279 | 0.396 | 4.887 | |
3rd | 211 | 484 | 200 | 0.270 | 3.366 | |
4th | 6 | 10 | 341 | 0.266 | 3.332 | |
ECa, mS m−1 | shallow | 38 | 133 | 253 | 0.816 | 65.436 |
ECa, mS m−1 | deep | 126 | 388 | 223 | 0.846 | 67.899 |
Clay (%) | Sand (%) | Silt (%) | ||||||||||
L1 | L2 | L3 | L4 | L1 | L2 | L3 | L4 | L1 | L2 | L3 | L4 | |
ECa-S | 0.75 | 0.55 | 0.35 | 0.40 | −0.75 | −0.63 | −0.45 | −0.39 | 0.65 | 0.60 | 0.46 | 0.36 |
ECa-D | 0.59 | 0.61 | 0.52 | 0.57 | −0.62 | −0.73 | −0.63 | −0.63 | 0.56 | 0.72 | 0.63 | 0.60 |
* BD (g cm−3) | WC (%) | |||||||||||
L1 | L2 | L3 | L4 | L1 | L2 | L3 | L4 | |||||
ECa-S | −0.01 | −0.15 | −0.31 | −0.02 | 0.66 | 0.61 | 0.47 | 0.47 | ||||
ECa-D | 0.06 | −0.20 | −0.45 | −0.13 | 0.63 | 0.71 | 0.64 | 0.65 |
2013 | 2014 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Layer | 1 | 2 | 3 | 4 | Total | 1 | 2 | 3 | 4 | Total |
* BD, g cm−3 | −0.16 | −0.04 | −0.09 | −0.07 | 0.00 | −0.23 | −0.49 | −0.18 | ||
WC, % | 0.22 | 0.08 | 0.03 | 0.12 | 0.47 | 0.51 | 0.46 | 0.51 | ||
Sand, % | −0.12 | −0.03 | −0.03 | −0.08 | −0.44 | −0.52 | −0.50 | −0.53 | ||
Clay, % | 0.16 | 0.03 | −0.03 | 0.01 | 0.40 | 0.44 | 0.42 | 0.47 | ||
Silt, % | 0.07 | 0.03 | 0.06 | 0.10 | 0.42 | 0.53 | 0.51 | 0.53 | ||
WC33 | 0.18 | 0.06 | 0.05 | 0.12 | 0.40 | 0.50 | 0.52 | 0.51 | ||
WC1500 | 0.19 | 0.05 | 0.01 | 0.11 | 0.40 | 0.48 | 0.48 | 0.50 | ||
ECa-S, mS m−1 | 0.12 | 0.49 | ||||||||
ECa-D, mS m−1 | 0.08 | 0.58 | ||||||||
P, Mg ha−1 | −0.02 | 0.07 | ||||||||
K, Mg ha−1 | −0.11 | −0.23 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haghverdi, A.; Leib, B.; Washington-Allen, R.; Wright, W.C.; Ghodsi, S.; Grant, T.; Zheng, M.; Vanchiasong, P. Studying Crop Yield Response to Supplemental Irrigation and the Spatial Heterogeneity of Soil Physical Attributes in a Humid Region. Agriculture 2019, 9, 43. https://doi.org/10.3390/agriculture9020043
Haghverdi A, Leib B, Washington-Allen R, Wright WC, Ghodsi S, Grant T, Zheng M, Vanchiasong P. Studying Crop Yield Response to Supplemental Irrigation and the Spatial Heterogeneity of Soil Physical Attributes in a Humid Region. Agriculture. 2019; 9(2):43. https://doi.org/10.3390/agriculture9020043
Chicago/Turabian StyleHaghverdi, Amir, Brian Leib, Robert Washington-Allen, Wesley C. Wright, Somayeh Ghodsi, Timothy Grant, Muzi Zheng, and Phue Vanchiasong. 2019. "Studying Crop Yield Response to Supplemental Irrigation and the Spatial Heterogeneity of Soil Physical Attributes in a Humid Region" Agriculture 9, no. 2: 43. https://doi.org/10.3390/agriculture9020043
APA StyleHaghverdi, A., Leib, B., Washington-Allen, R., Wright, W. C., Ghodsi, S., Grant, T., Zheng, M., & Vanchiasong, P. (2019). Studying Crop Yield Response to Supplemental Irrigation and the Spatial Heterogeneity of Soil Physical Attributes in a Humid Region. Agriculture, 9(2), 43. https://doi.org/10.3390/agriculture9020043