Toward Precision in Crop Yield Estimation Using Remote Sensing and Optimization Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Estimating Crop Yield
2.2. Enhancement and Correction of the Images
2.3. Using METRIC
2.4. A New Optimization Technique
3. Results
3.1. Evaporative Fraction Calculation
3.2. Estimating Potato Crop Yield
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Anastasiou, E.; Balafoutis, A.; Darra, N.; Psiroukis, V.; Biniari, A.; Xanthopoulos, G.; Fountas, S. Satellite and Proximal Sensing to Estimate the Yield and Quality of Table Grapes. Agriculture 2018, 8, 94. [Google Scholar] [CrossRef]
- Da Silva, C.; Nannib, M.; Teodoroc, P.; Capristo Silva, G. Vegetation Indices for Discrimination of Soybean Areas: A New Approach. Agron. J. Abstr. Agron. Soils Environ. Qual. 2017, 109, 1331–1343. [Google Scholar] [CrossRef]
- Silva, C.; Manzione, R.; Filho, J. Large-Scale Spatial Modeling of Crop Coefficient and Biomass Production in Agroecosystems in Southeast Brazil. Horticulturae 2018, 4, 44. [Google Scholar] [CrossRef]
- Liou, Y.; Kar, S. Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms—A Review. Energies 2014, 7, 2821–2849. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Liu, S.; Kustas, W.; Zhou, J.; Ma, Y. Using the Surface Temperature-Albedo Space to Separate Regional Soil and Vegetation Temperatures from ASTER Data. Remote Sens. 2015, 7, 5828–5848. [Google Scholar] [CrossRef] [Green Version]
- Gallego, J.; Carfagna, E.; Baruth, B. Accuracy, objectivity and efficiency of remote sensing for agricultural statistics. In Agricultural Survey Methods; Benedetti, R., Ed.; John Wiley & Sons: Chichester, UK, 2010; pp. 193–211. [Google Scholar]
- Zhiwei, J.; Jia, L.; Zhongxin, C.; Liang, S. A review of data assimilation of crop growth simulation based on remote sensing information. In Proceedings of the Third International Conference on Agro-Geoinformatics, Beijing, China, 11–14 August 2014. [Google Scholar]
- Lobell, D. The use of satellite data for crop yield gap analysis. J. Field Crops Res. 2013, 143, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Devadas, R.; Denham, R.; Pringle, M. Support Vector Machine Classification of Object-Based Data for Crop Mapping, Using Multi-Temporal Landsat Imagery. In Proceedings of the Congress of Remote Sensing and Spatial Information Sciences, Melbourne, Australia, 25 August–1 September 2012; p. 6. [Google Scholar]
- Sivarajan, S. Estimating Yield of Irrigated Potatoes Using Aerial and Satellite Remote Sensing. Ph.D. Thesis, University of Utah, Salt Lake City, UT, USA, 2011. [Google Scholar]
- Bastiaanssen, W.; Ali, S. A new crop estimating model based on satellite measurements applied across the Indus basin, Pakistan. J. Ecosyst. Environ. 2003, 94, 321–340. [Google Scholar] [CrossRef]
- Monteith, J. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef]
- Allen, R.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) model. ASCE J. Irrig. Drain Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- USGS. EarthExplorer. 2016. Available online: http://earthexplorer.usgs.gov/ (accessed on 20 February 2019).
- Field, C.; Randerson, J.; Malmstrom, C. Global net primary production: Combining ecology and remote sensing. J. Remote Sens. Environ. 1995, 51, 74–88. [Google Scholar] [CrossRef] [Green Version]
- Bradford, B.; Hicke, A.; Lauenroth, K. The relative importance of light-use efficiency modifications from environmental conditions and cultivation for estimation of large-scale net primary productivity. J. Remote Sens. Environ. 2005, 96, 246–255. [Google Scholar] [CrossRef]
- Scaramuzza, P.; Micijevic, E.; Chander, G. SLC Gap-Filled Products Phase One Methodology. 2016. Available online: https://landsat.usgs.gov/documents/SLC_Gap_Fill_Methodology.pdf (accessed on 3 December 2018).
- Tasumi, M.; Allen, R.; Trezza, R. At-surface albedo from Landsat and MODIS satellites for use in energy balance studies of evapotranspiration. J. Hydrol. Eng. 2008, 13, 51–63. [Google Scholar] [CrossRef]
- Hadjimitsis, D.; Papadavid, G.; Agapiou, A.; Themistocleous, K.; Hadjimitsis, M.; Retalis, A.; Michaelides, S.; Chrysoulakis, N.; Toulios, L.; Clayton, C. Atmospheric correction for satellite remotely sensed data intended for agricultural applications: Impact on vegetation indices. Nat. Hazards Earth Syst. Sci. 2010, 10, 89–95. [Google Scholar] [CrossRef]
- Bastiaanssen, W.; Menenti, M.; Feddes, R.; Holtslag, A. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef] [Green Version]
- Bastiaanssen, W.; Noordman, E.; Pelgrum, H.; Davids, G.; Thoreson, B.; Allen, R. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. ASCE J. Irrig. Drain. Eng. 2005, 131, 85–93. [Google Scholar] [CrossRef]
- Allen, R.; Trezza, R.; Tasumi, M.; Kjaersgaard, J. Mapping Evapotranspiration at High Resolution using Internalized Calibration (METRIC) Applications Manual for Landsat Satellite Imagery Version 2.0.8: Idaho; University of Idaho: Moscow, ID, USA, 2012; p. 83. [Google Scholar]
- Dennis, J. Nonlinear Least-Squares. In State of the Art in Numerical Analysis; Jacobs, D., Ed.; Academic Press: New York, NY, USA, 1977; pp. 269–312. [Google Scholar]
- Waltz, A.; Morales, J.; Nocedal, J.; Orban, D. An interior algorithm for nonlinear optimization that combines line search and trust region steps. J. Math. Program. 2006, 107, 391–408. [Google Scholar] [CrossRef]
- De Myttenaere, A.; Golden, B.; Le Grand, B.; Rossi, F. Using the Mean Absolute Percentage Error for Regression Models. In Proceedings of the 23th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Bruges, Belgium, 22–24 April 2015. [Google Scholar]
- Lizana, C.; Avila, A.; Tolabab, A.; Martinezce, J. Field responses of potato to increased temperature during tuber bulking: Projection for climate change scenarios, at high-yield environments of Southern Chile. J. Agric. For. Meteorol. 2017, 239, 192–201. [Google Scholar] [CrossRef]
- Hyndman, R.; Koehler, A. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [Google Scholar] [CrossRef] [Green Version]
- Pontius, R.; Thontteh, O.; Chen, H. Components of information for multiple resolution comparison between maps that share a real variable. Environ. Ecol. Stat. 2008, 15, 111–142. [Google Scholar] [CrossRef]
Interval Date | # of Days of Irrigation | Break Days | # of Hours of Irrigation | Volume/mm |
---|---|---|---|---|
11–17 May 2015 | 7 | 1 | 6 | 6 |
19–25 May 2015 | 7 | 2 | 7 | 6 |
28 May to 3 June 2015 | 7 | 0 | 8 | 6 |
4–10 June 2015 | 7 | 0 | 8 | 6 |
11–17 June 2015 | 7 | 2 | 8 | 6 |
20–26 June 2015 | 7 | 0 | 8 | 6 |
29 June to 5 July 2015 | 7 | 2 | 7 | 6 |
8–13 July 2015 | 7 | 3 | 6 | 6 |
Date | Location | Bowen Ratio ETa (mm) | Remote Sensing ETa (mm) | Absolute Percentage Error |
---|---|---|---|---|
8 June 2015 | Qab-Elias | 7.54 | 6.4 | 15 |
8 June 2015 | Taanayel | 5.49 | 4.6 | 16 |
24 June 2015 | Qab-Elias | 8.29 | 6.88 | 17 |
24 June 2015 | Taanayel | 6.37 | 5.6 | 12 |
MAPE | 15 |
Time | Rn W/m2 | G W/m2 | Latent Heat Flux W/m2 | Evaporative Fraction |
---|---|---|---|---|
9:00 | 323 | 18.72 | 220.083 | 0.72329 |
10:00 | 725 | 46.08 | 515.380 | 0.75912 |
11:00 | 1007 | 91.22 | 718.760 | 0.78486 |
12:00 | 724 | 116.88 | 482.840 | 0.79530 |
13:00 | 889 | 112.4 | 621.720 | 0.80057 |
14:00 | 882 | 105.4 | 624.120 | 0.80376 |
15:00 | 944 | 82.62 | 700.311 | 0.81301 |
16:00 | 1184 | 54.72 | 909.990 | 0.80581 |
17:00 | 797 | 37.34 | 607.363 | 0.79952 |
18:00 | 205 | 18.34 | 146.389 | 0.78425 |
Time | Rn W/m2 | G W/m2 | Latent Heat Flux W/m2 | Evaporative Fraction |
---|---|---|---|---|
9 | 681 | 21.82 | 467.78 | 0.70964 |
10 | 597 | 33.52 | 415.48 | 0.73735 |
11 | 735 | 52.28 | 517.57 | 0.75801 |
12 | 1093 | 66.32 | 778.40 | 0.75817 |
13 | 1055 | 64.5 | 749.57 | 0.75676 |
14 | 1071 | 55.3 | 767.73 | 0.75587 |
15 | 1048 | 44 | 756.94 | 0.75392 |
16 | 1047 | 33.02 | 763.98 | 0.75345 |
17 | 653 | 15.56 | 474.95 | 0.74509 |
18 | 445 | 1.26 | 325.92 | 0.73448 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awad, M.M. Toward Precision in Crop Yield Estimation Using Remote Sensing and Optimization Techniques. Agriculture 2019, 9, 54. https://doi.org/10.3390/agriculture9030054
Awad MM. Toward Precision in Crop Yield Estimation Using Remote Sensing and Optimization Techniques. Agriculture. 2019; 9(3):54. https://doi.org/10.3390/agriculture9030054
Chicago/Turabian StyleAwad, Mohamad M. 2019. "Toward Precision in Crop Yield Estimation Using Remote Sensing and Optimization Techniques" Agriculture 9, no. 3: 54. https://doi.org/10.3390/agriculture9030054
APA StyleAwad, M. M. (2019). Toward Precision in Crop Yield Estimation Using Remote Sensing and Optimization Techniques. Agriculture, 9(3), 54. https://doi.org/10.3390/agriculture9030054