The Effects of Individual Variables, Farming System Characteristics and Perceived Barriers on Actual Use of Smart Farming Technologies: Evidence from the Piedmont Region, Northwestern Italy
Abstract
:1. Introduction
Context and Aims of the Present Study
2. Materials and Methods
2.1. Participants and Setting
2.2. Instrument
2.3. Procedure
2.4. Statistical Analyses
3. Results
4. Discussion
Limitations of the Present Study and Possible Research Developments
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.-J. Big Data in Smart Farming—A Review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Pham, X.; Stack, M. How data analytics is transforming agriculture. Bus. Horiz. 2017, 61, 125–133. [Google Scholar] [CrossRef]
- Pivoto, D.; Waquil, P.D.; Talamini, E.; Pauletto Spanhol Finocchio, C.; Dalla Corte, V.F.; de Vargas Mores, G. Scientific development of smart farming technologies and their application in Brazil. Inf. Process. Agric. 2018, 5, 21–32. [Google Scholar] [CrossRef]
- Manyika, J.; Chui, M.; Bughin, J.; Dobbs, R.; Bisson, P.; Marrs, A. Disruptive Technologies: Advances That Will Transform Life, Business, and the Global Economy; McKinsey Global Institute: New York, NY, USA, 2013; Available online: www.mckinsey.com/mgi/publications/multimedia/ (accessed on 15 April 2019).
- OECD. OECD Science, Technology and Innovation Outlook; OECD Publishing: Paris, France, 2018. [CrossRef]
- Walter, A.; Finger, R.; Huber, R.; Buchmann, N. Smart farming is key to developing sustainable agriculture. Proc. Natl. Acad. Sci. USA 2017, 114, 6148–6150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colantoni, A.; Monarca, D.; Laurendi, V.; Villarini, M.; Gambella, F.; Cecchini, M. Smart Machines, Remote Sensing, Precision Farming, Processes, Mechatronic, Materials and Policies for Safety and Health Aspects. Agriculture 2018, 8, 47. [Google Scholar] [CrossRef]
- Bukchin, S.; Kerret, D. Food for Hope: The Role of Personal Resources in Farmers’ Adoption of Green Technology. Sustainability 2018, 10, 1615. [Google Scholar] [CrossRef]
- Long, T.B.; Blok, V.; Coninx, I. Barriers to the Adoption and Diffusion of Technological Innovations for Climate-Smart Agriculture in Europe: Evidence from the Netherlands, France, Switzerland and Italy. J. Clean. Prod. 2016, 112, 9–21. [Google Scholar] [CrossRef]
- Wheeler, S.A. What Influences Agricultural Professionals’ Views towards Organic agriculture? Ecol. Econ. 2008, 65, 145–154. [Google Scholar] [CrossRef]
- Cullen, R.; Forbes, S.L.; Grout, R. Non-Adoption of Environmental Innovations in Wine Growing. New Zeal. J. Crop Hortic. Sci. 2013, 41, 41–48. [Google Scholar] [CrossRef]
- Sneddon, J.; Soutar, G.; Mazzarol, T. Modelling the Faddish, Fashionable and Efficient Diffusion of Agricultural Technologies: A Case Study of the Diffusion of Wool Testing Technology in Australia. Technol. Soc. Chang. 2011, 78, 468–480. [Google Scholar] [CrossRef]
- Tey, Y.S.; Brindal, M. Factors Influencing the Adoption of Precision Agricultural Technologies: A Review for Policy Implications. Precis. Agric. 2012, 13, 713–730. [Google Scholar] [CrossRef]
- Van de Kerkhof, B.; van Persie, V.; Noorbergen, H.; Schouten, L.; Ghauharali, R. Spatio-temporal analysis of remote sensing and field measurements for smart farming. Procedia Environ. Sci. 2015, 27, 21–25. [Google Scholar] [CrossRef]
- Carrer, M.J.; de Souza Filho, H.M.; Batalha, M.O. Factors Influencing the Adoption of Farm Management Information Systems (FMIS) by Brazilian Citrus Farmers. Comput. Electron. Agric. 2017, 138, 11–19. [Google Scholar] [CrossRef]
- O’Grady, M.J.; O’Hare, G.M.P. Modelling the smart farm. Inf. Process. Agric. 2017, 4, 179–187. [Google Scholar] [CrossRef]
- Daberkow, S.G.; McBride, W.D. Socioeconomic profiles of early adopters of precision agriculture technologies. J. Agribus. 1998, 16, 151–158. [Google Scholar]
- Daberkow, S.G.; McBride, W.D. Farm and operator characteristics affecting the awareness and adoption of precision agriculture technologies in the US. Precis. Agric. 2003, 4, 163–177. [Google Scholar] [CrossRef]
- Pierpaoli, E.; Carli, G.; Pignatti, E.; Canavari, M. Drivers of Precision Agriculture Technologies Adoption: A Literature Review. Procedia Technol. 2013, 8, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Adrian, A.M.; Norwood, S.H.; Mask, P.L. Producers’ Perceptions and Attitudes toward Precision Agriculture Technologies. Comput. Electron. Agric. 2005, 48, 256–271. [Google Scholar] [CrossRef]
- Giannakis, E.; Bruggeman, A.; Djuma, H.; Kozyra, J.; Hammer, J. Water pricing and irrigation across Europe: Opportunities and constraints for adopting irrigation scheduling decision support systems. Water Sci. Technol. Water Supply 2016, 16, 245–252. [Google Scholar] [CrossRef]
- Kernecker, M.; Knierim, A.; Wurbs, A.; Kraus, T.; Borges, F. Experience versus expectation: Farmers’ perceptions of smart farming technologies for cropping systems across Europe. Precis. Agric. 2019, 1–17. [Google Scholar] [CrossRef]
- Statistics Denmark. Precision Agriculture. Business Sector; Newsletter; Statistics Denmark: København, Denmark, 2018.
- Reichardt, M.; Jürgens, C. Adoption and future perspective of precision farming in Germany: Results of several surveys among different agricultural target groups. Precis. Agric. 2009, 10, 73–94. [Google Scholar] [CrossRef]
- Eidt, C.M.; Hickey, G.M.; Curtis, M.A. Knowledge Integration and the Adoption of New Agricultural Technologies: Kenyan Perspectives. Food Secur. 2012, 4, 355–367. [Google Scholar] [CrossRef]
- Wielicki, T.; Arendt, L. A Knowledge-Driven Shift in Perception of ICT Implementation Barriers: Comparative Study of US and European SMEs. J. Inf. Sci. 2010, 36, 162–174. [Google Scholar] [CrossRef]
- European Parliament. Precision Agriculture and the Future of Farming in Europe. Scientific Foresight Study; STOA IP/G/STOA/FWC-2013-1/Lot 7/SC5; Scientific Foresigh Unit (STOA): Brussels, Belgium, 2016; Available online: http://www.europarl.europa.eu/RegData/etudes/STUD/2016/581892/EPRS_STU581892_EN.pdf (accessed on 11 April 2019).
- Eip-Agri. Smart Farming Thematic Network; European Commission: Brussels, Belgium, 2017; Available online: https://ec.europa.eu/eip/agriculture/en/news/smart-farming-thematic-network (accessed on 2 April 2019).
- Gava, O.; Favilli, E.; Bartolini, F.; Brunori, G. Knowledge networks and their role in shaping the relations within the Agricultural Knowledge and Innovation System in the agroenergy sector. The case of biogas in Tuscany (Italy). J. Rural Stud. 2017, 56, 100–113. [Google Scholar] [CrossRef]
- Eurostat. Agriculture, Forestry and Fishery Statistics; Publications Office of the European Union: Luxemburg, 2016; Available online: https://ec.europa.eu/eurostat/web/products-statistical-books/-/KS-FK-16-001 (accessed on 25 March 2019).
- INEA. Italian Agriculture in Figures 2012; Istituto Nazionale di Economia Agraria: Rome, Italy, 2012. Available online: http://dspace.crea.gov.it/bitstream/inea/292/1/2101.pdf (accessed on 3 April 2019).
- ISTAT. 6° Censimento Generale Dell’agricoltura 2010 Caratteristiche Strutturali Delle Aziende Agricole 24 Ottobre; ISTAT: Rome, Italy, 2010; Available online: https://www.istat.it/it/files/2011/03/1425-12_Vol_VI_Cens_Agricoltura_INT_CD_1_Trimboxes_ipp.pdf (accessed on 10 May 2019).
- INEA. Italian Agriculture in Figures 2018; Istituto Nazionale di Economia Agraria: Rome, Italy, 2019.
- ISTAT. Censimento Agricoltura; Data Warehouse; ISTAT: Rome, Italy, 2010; Available online: http://dati-censimentoagricoltura.istat.it/Index.aspx (accessed on 13 March 2019).
- Ministero delle Politiche Agricole Alimentari e Forestali. Linee Guida per lo Sviluppo Dell’agricoltura di Precisione in Italia. 2017. Available online: file:///C:/Users/e.cavallo/Downloads/Linee_Guida_Agricoltura_di_precisione.pdf (accessed on 6 May 2019).
- INEA. Italian Agriculture in Figures 2013; Istituto Nazionale di Economia Agraria: Rome, Italy, 2014. Available online: http://dspace.crea.gov.it/bitstream/inea/843/1/Italian_agriculture_figures_2013.pdf (accessed on 21 March 2019).
- FAI CISL. Lavoratori Immigrati in Agricoltura; Fondazione FAI CISL: Rome, Italy, 2017; Available online: https://www.faicisl.it/attachments/article/2458/Lavoratori%20immigrati%20in%20agricoltura%20-%20Fondazione%20Fai%20Cisl%20Studi%20e%20Ricerche.pdf (accessed on 7 May 2019).
- Cavallo, E.; Ferrari, E.; Coccia, M. Likely Technological Trajectories in Agricultural Tractors by Analysing Innovative Attitudes of Farmers. Int. J. Technol. Policy Manag. 2015, 15, 158–177. [Google Scholar] [CrossRef]
- Cavallo, E.; Ferrari, E.; Bollani, L.; Coccia, M. Attitudes and behaviour of adopters of technological innovations in agricultural tractors: A case study in Italian agricultural system. Agric. Syst. 2014, 130, 44–54. [Google Scholar] [CrossRef]
- Regione Piemonte. Il Sistema dei Poli di Innovazione Regionali; Regione Piemonte: Piemonte, Italy; Available online: https://www.regione.piemonte.it/web/temi/fondi-progetti-europei/fondo-europeo-sviluppo-regionale-fesr/sistema-dei-poli-innovazione-regionali (accessed on 14 May 2019).
- Hayes, A.F. Beyond Baron and Kenny: Statistical Mediation Analysis in the New Millennium. Commun. Monogr. 2009, 76, 408–420. [Google Scholar] [CrossRef]
- Caffaro, F.; Micheletti Cremasco, M.; Roccato, M.; Cavallo, E. It does not Occur by Chance: A Mediation Model of the Influence of Workers’ Characteristics, Work Environment Factors, and Near Misses on Agricultural Machinery-Related Accidents. Int. J. Occup. Environ. Health 2017, 23. [Google Scholar] [CrossRef] [PubMed]
- Caffaro, F.; Roccato, M.; Micheletti Cremasco, M.; Cavallo, E. Falls from agricultural machinery: Risk factors related to work experience, worked hours, and operators’ behavior. Hum. Factors 2018, 60, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Tarighi, J.; Ghasemzade, H.; Bahrami, M.; Abdollahpour, S.; Mahmoudi, A.; Cultrera, A.; Cavallo, E. Evaluation heavy duty tractor performance using CAN/bus technology. Biol. Forum 2015, 7, 734–738. [Google Scholar]
- ISO. ISO 11783-1:2017—Tractors and Machinery for Agriculture and Forestry—Serial Control and Communications Data Network—Part 1: General Standard for Mobile Data Communication; International Organization for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- Arbuckle, J.L. Amos TM 23 User’s Guide; IBM: Chicago, IL, USA, 2014. [Google Scholar]
- Bollen, K.A. Structural Equations with Latent Variables; Wiley: New York, NY, USA, 1989. [Google Scholar]
- Bentler, P.M. Comparative Fit Indexes in Structural Models. Psychol. Bull. 1990, 107, 238–246. [Google Scholar] [CrossRef]
- Steiger, J.H. Structural Model Evaluation and Modification: An Interval Estimation Approach. Multivar. Behav. Res. 1990, 25, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Reise, S.P.; Widaman, K.F.; Pugh, R.H. Confirmatory Factor Analysis and Item Response Theory: Two Approaches for Exploring Measurement Invariance. Psychol. Bull. 1993, 114, 552–566. [Google Scholar] [CrossRef]
- Gasson, R.; Crow, G.; Errington, A.; Hutson, J.; Marsden, T.; Winter, D.M. The Farm as a Family Business: A Review. J. Agric. Econ. 1988, 39, 1–41. [Google Scholar] [CrossRef]
- Flett, R.; Alpass, F.; Humphries, S.; Massey, C.; Morriss, S.; Long, N. The Technology Acceptance Model and Use of Technology in New Zealand Dairy Farming. Agric. Syst. 2004, 80, 199–211. [Google Scholar] [CrossRef]
- Caffaro, F.; Roccato, M.; Micheletti Cremasco, M.; Cavallo, E. An Ergonomic Approach to Sustainable Development: The Role of Information Environment and Social-Psychological Variables in the Adoption of Agri-Environmental Innovations. Sust. Develop. (in press). [CrossRef]
- Unay Gailhard, İ.; Bavorová, M.; Pirscher, F. Adoption of agri-environmental measures by organic farmers: The role of interpersonal communication. J. Agric. Educ. Ext. 2015, 21, 127–148. [Google Scholar] [CrossRef]
- Genius, M.; Koundouri, P.; Nauges, C.; Tzouvelekas, V. Information transmission in irrigation technology adoption and diffusion: Social learning, extension services, and spatial effects. Am. J. Agric. Econon. 2013, 96, 328–344. [Google Scholar] [CrossRef]
- McLaughlin, A.C.; Sprufera, J.F. Aging Farmers Are at High Risk for Injuries and Fatalities: How Human-Factors Research and Application Can Help. North Carol. Med. J. 2011, 72, 481–483. [Google Scholar]
- Caffaro, F.; Lundqvist, P.; Micheletti Cremasco, M.; Nilsson, K.; Pinzke, S.; Cavallo, E. Machinery-Related Perceived Risks and Safety Attitudes in Senior Swedish Farmers. J. Agromedicine 2018, 23, 78–91. [Google Scholar] [CrossRef] [PubMed]
- European Commission. How Many People Work in Agriculture in the European Union? An Answer Based on Eurostat Data Sources Contents. EU Agric. Econ. Briefs 2013, 8, 1–17. Available online: http://ec.europa.eu/agriculture/rural-area-economics/briefs/pdf/08_en.pdf (accessed on 5 March 2019).
- Giannakis, E.; Efstratoglou, S.; Antoniades, A. Off-Farm Employment and Economic Crisis: Evidence from Cyprus. Agriculture 2018, 8, 41. [Google Scholar] [CrossRef]
- Lundqvist, P.; Svennefelt, C.A. Health and Safety Strategy in Swedish Agriculture. Work 2012, 41 (Suppl. S1), 5304–5307. [Google Scholar] [CrossRef] [PubMed]
- Cosimi, S. A Milano Parte Seeds&Chips, una Startup su Dieci Lavora Nell’agritech. Available online: https://thefoodmakers.startupitalia.eu/62109-20180507-milano-parte-seedschips-startup-dieci-lavora-nellagritech (accessed on 11 May 2019).
- Alliance for Internet of Things Innovation. Smart Farming and Food Safety Internet of Things Applications—Challenges for Large Scale Implementations. 2015. Available online: https://aioti.eu/wp-content/uploads/2017/03/AIOTIWG06Report2015-Farming-and-Food-Safety.pdf (accessed on 6 May 2019).
- European Comission. Future of the Common Agricultural Policy; European Comission: Brussels, Belgium, 2019; Available online: https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/future-cap_en (accessed on 11 May 2019).
- Roccato, M. L’uso della statistica nella ricerca in psicologia sociale [Using statistics in social-psychological research]. In Metodi, Modelli e Tecnologie Dell’informazione a Supporto Delle Decisioni [Methods, Models, and Information Technologies as a Support for the Decision-Making]; Maio, A.D., Gallo, M., Simonetti, B., Eds.; Franco Angeli: Milan, Italy, 2008; Volume 2, pp. 183–191. [Google Scholar]
- De Martino, M.; Magnotti, F. The innovation capacity of small food firms in Italy. Eur. J. Innov. Manag. 2018, 21, 362–383. [Google Scholar] [CrossRef]
- Schuman, H.; Presser, S. Questions and Answers in Attitude Surveys: Experiments on Question Form., Wording, and Context; Academic Press: New York, NY, USA, 1981. [Google Scholar]
Variable | Level | % | ||
Education | None | 0.6 | ||
Primary school | 2.9 | |||
Secondary school | 29.7 | |||
High school | 59.0 | |||
Degree and over | 7.8 | |||
Farm size (ha) | Up to 2 | 15.8 | ||
2 to 9 | 37.4 | |||
10 to 29 | 22.6 | |||
30 to 49 | 11.9 | |||
50 and over | 12.3 | |||
Working alone | Yes | 27.1 | ||
No | 72.9 | |||
Variable | Mean | SD | ||
Perceived economic barriers | 0.61 | 0.27 | ||
Perceived commercial barriers | 0.43 | 0.34 |
Education | Farm Size | Working Alone | Perceived Economic Barriers | |
---|---|---|---|---|
Perceived economic barriers | ||||
SFT adoption | 0.026 | −0.079 | ||
Perceived commercial barriers |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caffaro, F.; Cavallo, E. The Effects of Individual Variables, Farming System Characteristics and Perceived Barriers on Actual Use of Smart Farming Technologies: Evidence from the Piedmont Region, Northwestern Italy. Agriculture 2019, 9, 111. https://doi.org/10.3390/agriculture9050111
Caffaro F, Cavallo E. The Effects of Individual Variables, Farming System Characteristics and Perceived Barriers on Actual Use of Smart Farming Technologies: Evidence from the Piedmont Region, Northwestern Italy. Agriculture. 2019; 9(5):111. https://doi.org/10.3390/agriculture9050111
Chicago/Turabian StyleCaffaro, Federica, and Eugenio Cavallo. 2019. "The Effects of Individual Variables, Farming System Characteristics and Perceived Barriers on Actual Use of Smart Farming Technologies: Evidence from the Piedmont Region, Northwestern Italy" Agriculture 9, no. 5: 111. https://doi.org/10.3390/agriculture9050111
APA StyleCaffaro, F., & Cavallo, E. (2019). The Effects of Individual Variables, Farming System Characteristics and Perceived Barriers on Actual Use of Smart Farming Technologies: Evidence from the Piedmont Region, Northwestern Italy. Agriculture, 9(5), 111. https://doi.org/10.3390/agriculture9050111