The Effects of Climate Smart Agriculture and Climate Change Adaptation on the Technical Efficiency of Rice Farming—An Empirical Study in the Mekong Delta of Vietnam
Abstract
:1. Introduction
2. Climate Change Adaptation Response and Climate Smart Agriculture
3. Study Site and Data Collection
3.1. Study Site
3.2. Data Collection
4. Methodological Framework and Data Description
4.1. Methodological Framework
4.2. Data Description
5. Results and Discussion
5.1. Adaptation Response, CSA Participation, and Technical Efficiency of Rice Farming
5.1.1. Adaptation Response and CSA
5.1.2. Technical Efficiency of Rice Farming
5.2. The Effects of Adaptation Response and CSA on Technical Efficiency
5.2.1. The Propensity Score Models
5.2.2. The Average Treatment Effects for the Treated by Propensity Score Matching
5.2.3. Sensitivity Analysis and Balancing Test
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smith, W. Agriculture in the Central Mekong Delta; Overseas Development Institut (ODI): London, UK, December 2013. [Google Scholar]
- Annual Report 2010: Rice Production Evaluation for 2010 and Work Plan for 2011 for the Southern Vietnam; Ministry of Agriculture and Rural Development: Hanoi, Vietnam, 2010.
- World Bank. Climate-smart Agriculture. Available online: https://www.worldbank.org/en/topic/climate-smart-agriculture (accessed on 22 November 2018).
- OECD. Meeting of Agriculture Ministers—Background Note. Available online: https://www.oecd.org/agriculture/ministerial/background/notes/4_background_note.pdf (accessed on 17 April 2019).
- IPCC. Climate Change 2014. Available online: https://www.ipcc.ch/pdf/assessment-report/ar5/wg3/WGIIIAR5_SPM_TS_Volume.pdf (accessed on 22 November 2018).
- Bryan, E.; Ringler, C.; Okoba, B.; Roncoli, C.; Silvestri, S.; Herrero, M. Adapting agriculture to climate change in Kenya: Household strategies and determinants. J. Environ. Manag. 2013, 114, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Smit, B.; Skinner, M.W. Adaptation options in agriculture to climate change: A typology. Mitig. Adapt. Strat. Chang. 2002, 7, 85–114. [Google Scholar] [CrossRef]
- Khonje, M.; Manda, J.; Alene, A.D.; Kassie, M. Analysis of Adoption and Impacts of Improved Maize Varieties in Eastern Zambia. World Dev. 2015, 66, 695–706. [Google Scholar] [CrossRef]
- Abid, M.; Schneider, U.A.; Scheffran, J. Adaptation to climate change and its impacts on food productivity and crop income: Perspectives of farmers in rural Pakistan. J. Rural Stud. 2016, 47, 254–266. [Google Scholar] [CrossRef]
- Ali, A.; Erenstein, O. Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim. Risk Manag. 2017, 16, 183–194. [Google Scholar] [CrossRef]
- Yahaya, I.; Pokharel, K.P.; Alidu, A.F.; Yamoahet, F.A. Sustainable agricultural intensification practices and rural food security: The case of Northwestern Ghana. Brit. Food J. 2018, 120, 468–482. [Google Scholar] [CrossRef]
- Latruffe, L. Competitiveness, Productivity and Efficiency in the Agricultural and Agri-food Sectors; OECD iLibrary: Paris, France, 1 August 2010. [Google Scholar]
- IPCC. Fourth Assessment Report: Climate Change; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Ho, T.; Shimada, K. The impact of climate change adaptation response on rice farmers’ livelihood in Soc Trang province of Vietnam. Int. J. Food Agric. Econ. 2018, 6, 11–31. [Google Scholar]
- Manda, J.; Alene, A.D.; Gardebroek, C.; Kassie, M.; Tembo, G. Adoption and impacts of sustainable agricultural practices on maize yields and incomes: Evidence from rural Zambia. J. Agric. Econ. 2016, 67, 130–153. [Google Scholar] [CrossRef]
- Yusuf, A.A.; Francisco, H. Climate Change Vulnerability Mapping in Southeast Asia; EEPSEA: Laguna, Philippines, 2010. [Google Scholar]
- Thuy, N.N.; Anh, H.H. Vulnerability of Rice Production in Mekong River Delta under Impacts from Floods, Salinity and Climate Change. Int. J. Adv. Sci. Eng. Inf. Technol. 2015, 5, 272. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Fraser, M.W. Propensity Score Analysis: Statistical Methods and Applications (Advanced Quantitative Techniques in the Social Sciences), 2nd ed.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2015. [Google Scholar]
- Rosenbaum, P.R.; Rubin, D.B. The central role of the propensity score in observational studies for causal effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Austin, P.C. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivar. Behav. 2011, 46, 399–424. [Google Scholar] [CrossRef] [Green Version]
- Hong, G.; Yu, B. Effects of kindergarten retention on children’s social-emotional development: An application of propensity score method to multivariate, multilevel data. Dev. Psychol. 2008, 44, 407–421. [Google Scholar] [CrossRef]
- Ye, Y.; Kaskutas, L.A. Using Propensity Scores to Adjust for Selection Bias When Assessing the Effectiveness of Alcoholics Anonymous in Observational Studies. Drug Alcohol Depend. 2009, 104, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Wyse, A.E.; Keesler, V.; Schneider, B. Assessing the effects of small school size on mathematics achievement: A propensity score-matching approach. Teach. Coll. Rec. 2008, 110, 1879–1900. [Google Scholar]
- Staff, J.; Patrick, M.; Loken, E.; Maggs, J.L. Teenage Alcohol Use and Educational Attainment. J. Stud. Alcohol Drugs 2008, 69, 848–858. [Google Scholar] [CrossRef] [Green Version]
- Rahut, D.B.; Ali, A. Coping with climate change and its impact on productivity, income, and poverty: Evidence from the Himalayan region of Pakistan. Int. J. Disaster Risk Reduct. 2017, 24, 515–525. [Google Scholar] [CrossRef]
- Chege, J.W.; Nyikal, R.A.; Mburu, J.; Muriithi, B. Impact of export horticulture farming on per capita calorine intake of smallholder farmers in Eastern and Central provinces in Kenya. Int. J. Food Agric. Econ. 2015, 3, 65–81. [Google Scholar]
- Läpple, D.; Thorne, F. The Role of Innovation in Farm Economic Sustainability: Generalised Propensity Score Evidence from Irish Dairy Farms. J. Agric. Econ. 2018, 70, 178–197. [Google Scholar] [CrossRef]
- Mabe, F.N.; Sienso, G.; Donkoh, S.A. Determinants of Choice of Climate Change Adaptation Strategies in Northern Ghana. Appl. Econ. 2014, 6, 75. [Google Scholar] [CrossRef]
- Ndamani, F.; Watanabe, T. Determinants of farmers’ adaptation to climate change: A micro level analysis in Ghana. Sci. Agricola 2016, 73, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Dalton, T.J.; Lilja, N.K.; Johnson, N.; Howeler, R. Farmer Participatory Research and Soil Conservation in Southeast Asian Cassava Systems. World Dev. 2011, 39, 2176–2186. [Google Scholar] [CrossRef]
- Dolisca, F.; Carter, D.R.; McDaniel, J.M.; Shannon, D.A.; Jolly, C.M. Factors influencing farmers’ participation in forestry management programmes: a case study from Haiti. For. Ecol. Manag. 2006, 236, 324–331. [Google Scholar] [CrossRef]
- Sanginga, P.C.; Tumwine, J.; Lilja, N.K. Patterns of participation in farmers’ research groups: Lessons from the highlands of southwestern Uganda. Agric. Hum. Values 2006, 23, 501–512. [Google Scholar] [CrossRef]
- Imbens, G.W. Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review. Econ. Stat. 2004, 86, 4–29. [Google Scholar] [CrossRef] [Green Version]
- Todd, P.E.; Heckman, J.J.; Ichimura, H. Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme. Econ. Stud. 1997, 64, 605–654. [Google Scholar]
- Todd, P.; Heckman, J.J.; Ichimura, H. Matching As An Econometric Evaluation Estimator. Econ. Stud. 1998, 65, 261–294. [Google Scholar]
- Rosenbaum, P.R.; Rubin, D.B. Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome. J. R. Stat. Soc. Ser. B 1983, 45, 212–218. [Google Scholar] [CrossRef]
- Rosenbaum, P.R. Sensitivity to hidden bias. In Observational Studies; Springer: New York, NY, USA, 2002; pp. 105–170. [Google Scholar]
- Rosenbaum, P.R.; Rubin, D.B. Constructing a Control Group Using Multivariate Matched Sampling Methods That Incorporate the Propensity Score. Am. Stat. 1985, 39, 33. [Google Scholar]
- Deressa, T.T.; Hassan, R.M.; Ringler, C.; Alemu, T.; Yesuf, M. Determinants of farmers’ choice of adaptation methods to climate change in the Nile Basin of Ethiopia. Environ. Chang. 2009, 19, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Le Dang, H.; Li, E.; Nuberg, I.; Bruwer, J. Farmers’ assessments of private adaptive measures to climate change and influential factors: A study in the Mekong Delta, Vietnam. Environ. Manag. 2014, 54, 331–345. [Google Scholar] [CrossRef] [PubMed]
- Shongwe, P.; Masuku, M.B.; Manyatsi, A.M. Factors influencing the choice of climate change adaptation strategies by households: A case of Mpolonjeni Area Development Program (ADP) in Swaziland. J. Agric. Stud. 2014, 2, 86–98. [Google Scholar] [CrossRef]
- Hisali, E.; Birungi, P.; Buyinza, F. Adaptation to climate change in Uganda: Evidence from micro level data. Environ. Chang. 2011, 21, 1245–1261. [Google Scholar] [CrossRef]
- Arimi, K. Determinants of climate change adaptation strategies used by rice farmers in Southwestern, Nigeria. J. Agric. Rural Dev. Trop. Subtrop. 2014, 115, 91–99. [Google Scholar]
- Ho, T.; Shimada, K. Technical efficiency of rice farming in the Vietnamese Mekong Delta: A stochastic frontier approach. Ritsumeikan Econ. Rev. 2019, 67, 130–144. [Google Scholar]
Variables | Description |
---|---|
Adaptation | Dependent variable—dummy variable, 1 represents farmer performs adaptation, 0 represents farmer performs no adaptation |
Climate smart agriculture (CSA) program | Dependent variable—dummy variable, 1 represents farmer participates in CSA pilot program, 0 represents farmer does not participate in CSA pilot program |
Education | Number of years in school |
Experience | Number of years of rice farming experience |
Extension | Dummy variable, 1 represents farmers participate in agricultural extension services, 0 represents otherwise |
Belief in climate change | Five-point Likert scales measure, from 1, meaning strongly disagree, to 5, meaning strongly agree with the adverse impacts of climate change on rural livelihood |
Trust in public adaptation | Five-point Likert scales measure, from 1, meaning strongly disagree, to 5, meaning strongly agree with the effectiveness of public adaptation |
Social norm | Five-point Likert scales measure, from 1, meaning strongly disagree, to 5, meaning strongly agree with the dependence of performing or not performing adaptation practices upon friends, relatives, and neighbors |
Farm area | Total area of rice land, measures in hectare |
Access to water sources (Near) a | Distance to water source intuitively evaluated by rice farmer—dummy variable, 1 represents farm locates in near, 0 represents otherwise |
Access to water sources (Medium) a | Distance to water source intuitively estimated by rice farmer—dummy variable, 1 represents farm locates in medium, 0 represents otherwise |
Region (Long An) b | Farm location—dummy variable, 1 represents farmer locate in Long An province, 0 represents otherwise |
Region (Ben Tre) b | Farm location—dummy variable, 1 represents farmer locate in Ben Tre province, 0 represents otherwise |
Variables | Non-Adapting (n = 103) | Adapting (n = 249) | Difference (0 vs. 1) | p-Value | ||
---|---|---|---|---|---|---|
Mean | Mean | H: D a < 0 | H: D ≠ 0 | H: D > 0 | ||
Education | 5.6311 | 6.0080 | −0.3770 (0.4068) | 0.1774 | 0.3547 | 0.8226 |
Experience | 28.9806 | 26.1407 | 2.8400 ** (1.2823) | 0.9863 | 0.0274 | 0.0137 |
Extension | 0.3786 | 0.6305 | −0.2519 *** (0.0568) | 0.0000 | 0.0000 | 1.0000 |
Belief in climate change | 3.6699 | 3.7871 | −0.1172 (0.1145) | 0.1533 | 0.3067 | 0.8467 |
Social norm | 2.6019 | 2.7871 | −0.1852 * (0.1148) | 0.0539 | 0.1077 | 0.9461 |
Trust in public adaptation | 3.5437 | 3.8072 | −0.2635 ** (0.1237) | 0.0169 | 0.0338 | 0.9831 |
Farm area | 1.0466 | 1.3607 | −0.3141 ** (0.1610) | 0.0259 | 0.0519 | 0.9741 |
Access to water sources (Near) | 0.4563 | 0.4538 | 0.0025 (0.0585) | 0.5170 | 0.9660 | 0.4830 |
Access to water sources (Medium) | 0.4078 | 0.4900 | −0.0822 (0.0584) | 0.0802 | 0.1605 | 0.9198 |
Region (Long An) | 0.3495 | 0.3293 | 0.0202 (0.0535) | 0.6420 | 0.7159 | 0.3580 |
Region (Ben Tre) | 0.4078 | 0.2972 | 0.1106 ** (0.0549) | 0.9776 | 0.0448 | 0.0224 |
Variables | Non-CSA (n = 330) | CSA (n = 22) | Difference (0 vs. 1) | p-value | ||
---|---|---|---|---|---|---|
Mean | Mean | H: D a < 0 | H: D ≠ 0 | H: D > 0 | ||
Education | 5.8333 | 6.8636 | −1.0303 * (0.7635) | 0.0890 | 0.1781 | 0.9110 |
Experience | 26.8849 | 28.2727 | 1.3879 (2.4259) | 0.2838 | 0.5676 | 0.7162 |
Extension | 0.5303 | 0.9545 | −0.4242 *** (0.1073) | 0.0000 | 0.0000 | 1.0000 |
Belief in climate change | 3.7121 | 4.3636 | −0.6515 *** (0.2128) | 0.0012 | 0.0024 | 0.9988 |
Farm area | 1.2025 | 2.2636 | −1.10612 *** (0.2989) | 0.0002 | 0.0004 | 0.9998 |
Access to water sources (Near) | 0.4424 | 0.6364 | −0.1939 ** (0.1095) | 0.0387 | 0.0773 | 0.9613 |
Access to water sources (Medium) | 0.4758 | 0.3182 | 0.1576 * (0.1098) | 0.9239 | 0.1523 | 0.0761 |
Region (Long An) | 0.3303 | 0.4091 | −0.0788 (0.1042) | 0.2250 | 0.4499 | 0.7750 |
Region (Ben Tre) | 0.3424 | 0.1364 | 0.2061 ** (0.1032) | 0.9767 | 0.0467 | 0.0233 |
Technical Efficiency | Value |
---|---|
Mean technical efficiency | 0.7725 |
Standard deviation | 0.1564 |
Minimum | 0.1497 |
Maximum | 0.9543 |
Non-adapting (n = 103) | Adapting (n = 249) | Difference (0 vs. 1) | p-Value | ||
---|---|---|---|---|---|
Mean | Mean | H: D a < 0 | H: D ≠ 0 | H: D > 0 | |
0.6643 | 0.8172 | −0.1529 *** (0.0164) | 0.0000 | 0.0000 | 1.0000 |
Non-CSA (n = 330) | CSA (n = 22) | Difference (0 vs. 1) | p-Value | ||
---|---|---|---|---|---|
Mean | Mean | H: D a < 0 | H: D ≠ 0 | H: D > 0 | |
0.7649 | 0.8857 | −0.1207 *** (0.0339) | 0.0002 | 0.0004 | 0.9998 |
Variables | Model 1 (CSA) | Model 2 (Adaptation) | ||
---|---|---|---|---|
Coefficient | Marginal | Coefficient | Marginal | |
Education | 0.0348 (0.0707) | 0.0018 (0.0036) | −0.0220 (0.0395) | −0.0041 (0.0074) |
Experience | 0.0271 (0.0218) | 0.0014 (0.0011) | −0.0186 (0.0115) | −0.0035 (0.0021) |
Extension | 2.6239 ** (1.0450) | 0.1322 ** (0.0551) | 0.8160 *** (0.2594) | 0.1523 *** (0.0461) |
Belief in climate change | 0.8119 ** (0.3367) | 0.0409 ** (0.0172) | 0.0254 (0.1292) | 0.0047 (0.0241) |
Farm area | 0.2659 * (0.1397) | 0.0134 * (0.0070) | 0.1695 (0.1150) | 0.0316 (0.0213) |
Region_Long An | −0.3519 (0.5733) | −0.0177 (0.0289) | −0.3981 (0.3219) | −0.0243 (0.0597) |
Region_Ben Tre | −0.6540 (0.7148) | −0.0330 (0.0362) | −0.4215 (0.3257) | −0.0787 (0.0603) |
Access to water source (Near) | 0.5987 (1.1394) | 0.0302 (0.0575) | 0.6206 (0.4407) | 0.1158 (0.0813) |
Access to water source (Medium) | −0.1589 (1.1139) | −0.0080 (0.0597) | 0.9792 ** (0.4439) | 0.1828 ** (0.0808) |
Trust in public adaptation | - | - | 0.1581 (0.1204) | 0.0295 (0.0222) |
Social norm | - | - | 0.1175 (0.1290) | 0.0219 (0.0240) |
Constant | −9.5085 *** (2.2889) | - | −0.5222 (0.9206) | - |
Number of observations | 352 | 352 | ||
Likelihood ratio chi2(9) | 37.70 | 35.14 | ||
Pseudo R2 | 0.0000 | 0.0002 | ||
Probability > chi2 | 0.2291 | 0.0826 |
CSA Participation | Nearest Neighbor Matching | Kernel Matching |
---|---|---|
ATE CSA (1 vs 0) | 0.1419 *** (0.0193) | 0.1299 (NC) |
ATT CSA (1 vs 0) | 0.1357 *** (0.0234) | 0.1266 ** (NC) |
CSA Participation | Nearest Neighbor Matching | Kernel Matching |
---|---|---|
ATE CSA (1 vs 0) | 0.1317 *** (0.0187) | 0.0841 (NC) |
ATT CSA (1 vs 0) | 0.0451 * (0.0250) | 0.0820 ** (NC) |
Gamma | sig+ | sig− | t-hat+ | t-hat− | CI+ | CI− |
---|---|---|---|---|---|---|
1 | 0 | 0 | 0.1219 | 0.1219 | 0.1028 | 0.1411 |
2 | 2.9 × 10−9 | 0 | 0.0786 | 0.1651 | 0.0570 | 0.1855 |
3 | 0.000054 | 0 | 0.0532 | 0.1889 | 0.0297 | 0.2108 |
4 | 0.0049 | 0 | 0.0363 | 0.2050 | 0.0098 | 0.2277 |
5 | 0.0518 | 0 | 0.0228 | 0.2169 | −0.0060 | 0.2403 |
6 | 0.1947 | 0 | 0.0115 | 0.2262 | −0.0184 | 0.2505 |
Matching | Covariate | Mean Standardized Bias (%) | % Reduction Bias | t-Test | p-Value | |||
---|---|---|---|---|---|---|---|---|
Unmatched | Matched | Unmatched | Matched | Unmatched | Matched | |||
NNM | Education | 11.2 | 18.8 | −68.3 ** | 0.93 | 2.08 | 0.355 | 0.038 |
Experience | −25.7 | 13.0 | 49.2 | −2.21 | 1.42 | 0.027 | 0.157 | |
Extension | 51.9 | 7.4 | 85.7 | 4.44 | 0.83 | 0.000 | 0.409 | |
Belief in climate change | 11.9 | −4.5 | 62.3 | 1.02 | −0.51 | 0.307 | 0.607 | |
Trust in public adaptation | 24.6 | 6.4 | 74.1 | 1.95 | 0.75 | 0.052 | 0.452 | |
Social norm | 19.2 | −9.6 | 50.1 | 1.61 | −1.05 | 0.108 | 0.295 | |
Farm area | 24.1 | 8.9 | 63.1 | 1.95 | 0.92 | 0.052 | 0.359 | |
Region (Long An) | −4.3 | −0.8 | 80.1 | −0.36 | −0.10 | 0.716 | 0.924 | |
Region (Ben Tre) | −23.2 | 0.8 | 96.4 | −2.01 | 0.10 | 0.045 | 0.922 | |
Access to water (Near) | −0.5 | 4.8 | −865.6 | −0.04 | 0.54 | 0.966 | 0.589 | |
Access to water (Medium) | 16.5 | −1.6 | 90.2 | 1.41 | −0.18 | 0.160 | 0.858 | |
KM | Education | 11.2 | 14.9 | −33.3 | 0.93 | 1.53 | 0.355 | 0.126 |
Experience | −25.7 | −1.6 | 93.7 | −2.21 | −0.17 | 0.027 | 0.866 | |
Extension | 51.9 | 5.5 | 89.3 | 4.44 | 0.57 | 0.000 | 0.571 | |
Belief in climate change | 11.9 | −8.6 | 27.3 | 1.02 | −0.95 | 0.307 | 0.344 | |
Trust in public adaptation | 19.2 | −11.8 | 38.3 | 1.61 | −1.26 | 0.108 | 0.208 | |
Social norm | 24.6 | −1.4 | 94.1 | 2.13 | −0.16 | 0.034 | 0.874 | |
Farm area | 24.1 | 3.0 | 87.7 | 1.95 | 0.32 | 0.052 | 0.747 | |
Region (Long An) | −4.3 | −1.4 | 67.8 | −0.36 | −0.14 | 0.716 | 0.886 | |
Region (Ben Tre) | −23.2 | 6.6 | 71.7 | −2.01 | 0.70 | 0.045 | 0.484 | |
Access to water (Near) | −0.5 | 2.3 | −357.8 | −0.04 | 0.24 | 0.966 | 0.812 | |
Access to water (Medium) | 16.5 | 0.7 | 95.6 | 1.41 | 0.08 | 0.160 | 0.940 |
Matching | Covariate | Mean Standardized Bias (%) | % Reduction Bias | t-test | p-value | |||
---|---|---|---|---|---|---|---|---|
Unmatched | Matched | Unmatched | Matched | Unmatched | Matched | |||
NNM | Education | 30.6 | −59.5 | −94.1 * | 1.35 | −1.84 | 0.178 | 0.072 |
Experience | 12.9 | 36.7 | −184.9 | 0.57 | 1.28 | 0.568 | 0.208 | |
Extension | 110.4 | 11.8 | 89.3 | 3.95 | 0.59 | 0.000 | 0.561 | |
Belief in climate change | 71.4 | 14.9 | 79.1 | 3.06 | 0.54 | 0.002 | 0.589 | |
Farm area | 72.2 | −58.0 | 19.7 | 3.55 | −1.06 | 0.000 | 0.295 | |
Region (Long An) | 16.2 | −9.3 | 42.3 | 0.76 | −0.30 | 0.450 | 0.767 | |
Region (Ben Tre) | −49.3 | 0.0 | 100.0 | −2.00 | −0.00 | 0.047 | 1.000 | |
Access to water (Near) | 39.2 | 0.0 | 100.0 | 1.77 | 0.00 | 0.077 | 1.000 | |
Access to water (Medium) | −32.3 | −9.3 | 71.2 | −1.43 | −0.31 | 0.152 | 0.757 | |
KM | Education | 30.6 | −10.8 | 64.7 | 1.35 | −0.33 | 0.178 | 0.745 |
Experience | 12.9 | −1.9 | 85.4 | 0.57 | −0.06 | 0.568 | 0.949 | |
Extension | 110.4 | 5.9 | 94.6 | 3.95 | 0.28 | 0.000 | 0.782 | |
Belief in climate change | 71.4 | −0.9 | 98.7 | 3.06 | −0.03 | 0.002 | 0.977 | |
Farm area | 72.2 | −5.0 | 93.0 | 3.55 | −0.14 | 0.000 | 0.893 | |
Region (Long An) | 16.2 | 12.7 | 21.6 | 0.76 | 0.38 | 0.450 | 0.706 | |
Region (Ben Tre) | −49.3 | −0.2 | 99.6 | −2.00 | −0.01 | 0.047 | 0.994 | |
Access to water (Near) | 39.2 | 0.0 | 100.0 | 1.77 | 0.00 | 0.077 | 1.000 | |
Access to water (Medium) | −32.3 | −6.7 | 79.1 | −1.43 | −0.21 | 0.152 | 0.835 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, T.T.; Shimada, K. The Effects of Climate Smart Agriculture and Climate Change Adaptation on the Technical Efficiency of Rice Farming—An Empirical Study in the Mekong Delta of Vietnam. Agriculture 2019, 9, 99. https://doi.org/10.3390/agriculture9050099
Ho TT, Shimada K. The Effects of Climate Smart Agriculture and Climate Change Adaptation on the Technical Efficiency of Rice Farming—An Empirical Study in the Mekong Delta of Vietnam. Agriculture. 2019; 9(5):99. https://doi.org/10.3390/agriculture9050099
Chicago/Turabian StyleHo, Thanh Tam, and Koji Shimada. 2019. "The Effects of Climate Smart Agriculture and Climate Change Adaptation on the Technical Efficiency of Rice Farming—An Empirical Study in the Mekong Delta of Vietnam" Agriculture 9, no. 5: 99. https://doi.org/10.3390/agriculture9050099
APA StyleHo, T. T., & Shimada, K. (2019). The Effects of Climate Smart Agriculture and Climate Change Adaptation on the Technical Efficiency of Rice Farming—An Empirical Study in the Mekong Delta of Vietnam. Agriculture, 9(5), 99. https://doi.org/10.3390/agriculture9050099