Impact of Soil Amendments on the Hydraulic Conductivity of Boreal Agricultural Podzols
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Land Preparation
2.2. Infiltration Tests and Measurements
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tindall, J.A.; Kunkel, J.R.; Anderson, D.E. Unsaturated water flow in soil. In Unsaturated Zone Hydrology for Scientists and Engineers; McConnin, R.A., Ed.; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1999; pp. 183–189. [Google Scholar]
- Selker, J.S.; Keller, C.K.; McCord, J.T. An introduction to the vadose zone. In Vadose Zone Processes; CRC Press LLC: Boca Raton, FL, USA, 1999; pp. 3–20. [Google Scholar]
- Li, J.; Xi, B.; Cai, W.; Yang, Y.; Jia, Y.; Li, X.; Lv, Y.; Lv, N.; Huan, H.; Yang, J. Identification of dominating factors affecting vadose zone vulnerability by a simulation method. Sci. Rep. 2017, 7, 45955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouyang, L.; Wang, F.; Tang, J.; Yu, L.; Zhang, R. Effects of biochar amendment on soil aggregates and hydraulic properties. J. Soil Sci. Plant Nutr. 2013, 13, 991–1002. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R. Determination of soil sorptivity and hydraulic conductivity from the disc infiltrometer. Soil Sci. Soc. Am. J. 1997, 61, 1024–1030. [Google Scholar] [CrossRef]
- Eusufzai, M.K.; Fujii, K. Effect of organic matter amendment on hydraulic and pore characteristics of a clay loam soil. Open J. Soil Sci. 2012, 2, 372–381. [Google Scholar] [CrossRef]
- Perkins, K.S. Measurement and modeling of unsaturated hydraulic conductivity. In Hydraulic Conductivity, Issues, Determination and Applications; Elango, L., Ed.; Intech Open Limited: London, UK, 2011; pp. 419–434. [Google Scholar]
- Traunfeld, J.; Nibali, E. Soil amendments and fertilizers. In Fertilizing Guidelines Included by Plant Group; Home and Garden Information Center, University of Maryland Extension: College Park, MD, USA, 2015. [Google Scholar]
- Page-Dumroese, D.S.; Ott, M.R.; Strawn, D.G.; Tirocke, J.M. Using organic amendments to restore soil physical and chemical properties of a mine site in Northeastern Oregon, USA. Appl. Eng. Agric. 2018, 34, 43–55. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, J.H.; Zhao, B.P.; Xue, A.; Hao, G.C. Effects of soil amendment on soil characteristics and maize yield in Horqin Sandy Land. IOP Conf. Ser. Earth Environ. Sci. 2016, 41, 012005. [Google Scholar] [CrossRef] [Green Version]
- Whalen, J.K.; Chang, C. Macroaggregate characteristics in cultivated soils after 25th annual manure applications. Soil Sci. Soc. Am. J. 2002, 66, 1637–1647. [Google Scholar] [CrossRef]
- Jiao, Y.; Whalen, J.K.; Hendershot, W.H. No-tillage and manure applications increase aggregation and improve nutrient retention in a sandy-loam soil. Geoderma 2006, 134, 24–33. [Google Scholar] [CrossRef]
- Eghball, B. Soil properties as influenced by phosphorus-and nitrogen-based manure and compost applications. Agron. J. 2002, 94, 128–135. [Google Scholar] [CrossRef]
- Jarvis, S.C.; Scholefield, D.; Pain, B. Nitrogen cycling in grazing systems. In Nitrogen Fertilization in the Environment; Bacon, P.E., Ed.; Marcel Dekker: New York, NY, USA, 1995; pp. 381–419. [Google Scholar]
- Benbi, D.K.; Biswas, C.R.; Bawa, S.S.; Kumar, K. Influence of farmyard manure, inorganic fertilizers and weed control practices on some soil physical properties in a long-term experiment. Soil Use Manag. 1998, 14, 52–54. [Google Scholar] [CrossRef]
- Darwish, O.H.; Persaud, N.; Martens, D.C. Effect of long-term application of animal manure on physical properties of three soils. Plant Soil 1995, 176, 289–295. [Google Scholar] [CrossRef]
- Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’Neill, B.; Skjemstad, J.O. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730. [Google Scholar] [CrossRef]
- Abel, S.; Peters, A.; Trinks, S.; Schonsky, H.; Facklam, M.; Wessolek, G. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 2013, 202–203, 183–191. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lal, R. Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 2013, 3, 313–339. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Watts, D.W.; Amonette, J.E.; Ippolito, J.A.; Lima, I.M.; Gaskin, J. Biochars impact on soil-moisture storage in an Ultisol. Soil Sci. 2012, 177, 310–320. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Aust. J. Soil Res. 2007, 45, 629–634. [Google Scholar] [CrossRef]
- Lopez, V.D. Biochar as a Soil Amendment: Impact on Hydraulic and Physical Properties of an Arable Loamy Sand Soil. Master’s Thesis, University of California Merced, Merced, CA, USA, 2014. [Google Scholar]
- Six, J.; Feller, C.; Denef, K.; Ogle, S.; de Moraes Sa, J.C.; Albrecht, A. Soil organic matter, biota and aggregation in temperate and tropical soils—Effects of no-tillage. Agron. EDP Sci. 2002, 22, 755–775. [Google Scholar] [CrossRef]
- Brodowski, S.; John, B.; Flessa, H.; Amelung, W. Aggregate-occluded black carbon in soil. Eur. J. Soil Sci. 2006, 57, 539–546. [Google Scholar] [CrossRef]
- Tisdall, J.M.; Oades, J.M. Organic matter and waterstable aggregrates in soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Topoliantz, S.; Ponge, J.F.; Lavelle, P. Humus components and biogenic structures under tropical slash-and-burn agriculture. Eur. J. Soil Sci. 2006, 57, 269–278. [Google Scholar] [CrossRef]
- Sarker, T.C.; Incerti, G.; Spaccini, R.; Piccolo, A.; Mazzoleni, S.; Bonanomi, G. Linking organic matter chemistry with soil aggregate stability: Insight from 13C NMR spectroscopy. Soil Biol. Biochem. 2018, 117, 175–184. [Google Scholar] [CrossRef]
- Chaplot, V.; Cooper, M. Soil aggregate stability to predict organic carbon outputs from soils. Geoderma 2015, 243, 205–213. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 2010, 333, 117–128. [Google Scholar] [CrossRef]
- Downie, A.; Crosky, A.; Munroe, P. Physical properties of biochar. In Biochar for Environmental Management: Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009. [Google Scholar]
- Bamminger, C.; Poll, C.; Marhan, S. Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application. Glob. Chang. Biol. 2017, 24, 318–334. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Bird, M.I. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total Environ. 2016, 543, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Sackett, T.E.; Basiliko, N.; Noyce, G.L.; Winsborough, C.; Schurman, J.; Ikeda, C.; Thomas, S.C. Soil and greenhouse gas responses to biochar additions in a temperate hardwood forest. GCB Bioenergy 2014, 7, 1062–1074. [Google Scholar] [CrossRef]
- Du, Z.; Zhao, J.; Wang, Y.; Zhang, Q. Biochar addition drives soil aggregation and carbon sequestration in aggregate fractions from an intensive agricultural system. J. Soils Sediments 2017, 17, 581–589. [Google Scholar] [CrossRef]
- Nanda, S.; Dalai, A.K.; Berruti, F.; Kozinski, J.A. Biochar as an Exceptional Bioresource for Energy, Agronomy, Carbon Sequestration, Activated Carbon and Specialty Materials. Waste Biomass Valorization 2016, 7, 201–235. [Google Scholar] [CrossRef]
- Lin, X.W.; Xie, Z.B.; Zheng, J.Y.; Liu, Q.; Bei, Q.C.; Zhu, J.G. Effects of biochar application on greenhouse gas emissions, carbon sequestration and crop growth in coastal saline soil. Eur. J. Soil Sci. 2015, 66, 329–338. [Google Scholar] [CrossRef]
- Villagra-Mendoza, K. Effect of biochar on the unsaturated hydraulic conductivity of two amended soils. Managing Global Resources for a Secure Future. In Proceedings of the Annual Meeting of ASA-CSSA-SSSA, Tampa, FL, USA, 22–25 October 2017. [Google Scholar]
- Miller, D.C.; Robinson, J.B.; Gillham, R.W. Selfsealing of earthen liquid manure storage ponds. I. A case study. J. Environ. Qual. 1985, 14, 533–538. [Google Scholar] [CrossRef]
- Soil Classification Working Group. The Canadian System of Soil Classification, 3rd ed.; Agriculture and Agrifoods Canada, National Research Council of Canada: Ottawa, ON, Canada, 1998. [Google Scholar]
- Badewa, E.; Unc, A.; Cheema, M.; Kavanagh, V.; Galagedara, L. Soil moisture mapping using multi-frequency and multi-coil electromagnetic induction sensors on managed podzols. Agronomy 2018, 8, 224. [Google Scholar] [CrossRef]
- Larney, F.J.; Buckley, K.E.; Hao, X.; McCaughey, W.P. Fresh, stockpiled, and composted beef cattle feedlot manure: Nutrient levels and mass balance estimates in Alberta and Manitoba. J. Environ. Qual. 2006, 35, 1844–1854. [Google Scholar] [CrossRef] [PubMed]
- Herath, H.; Camps-Arbestain, M.; Hedley, M. Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol. Geoderma 2013, 209, 188–197. [Google Scholar] [CrossRef]
- Neufeld, K.; Grayston, S.J.; Bittman, S.; Krzic, M.; Hunt, D.E.; Smukler, S. Long-term alternative dairy manure management approaches enhance microbial biomass and activity in perennial forage grass. Biol. Fertil. Soils 2017, 53, 613–626. [Google Scholar] [CrossRef]
- Burrell, L.D.; Zehetner, F.; Rampazzo, N.; Wimmer, B.; Soja, G. Long-term effects of biochar on soil physical properties. Geoderma 2016, 282, 96–102. [Google Scholar] [CrossRef]
- Kodesova, R.; Nemecek, K.; Zigova, A.; Nikodem, A.; Fer, M. Using dye tracer for visualizing roots impact on soil structure and soil porous system. Biologia 2015, 70, 1439–1443. [Google Scholar] [CrossRef]
- Hallett, P.D. An introduction to soil water repellency. In Proceedings of the 8th International Symposium on Adjuvants for Agrochemicals (ISAA2007); Gaskin, R.E., Ed.; International Society for Agrochemical Adjuvants (ISAA): Columbus, OH, USA, 2007. [Google Scholar]
- Ward, P.R.; Roper, M.M.; Jongepier, R.; Micin, S.F. Impact of crop residue retention and tillage on water infiltration into a water-repellent soil. Biologia 2015, 70, 1480–1484. [Google Scholar] [CrossRef]
- Madsen, M.D.; Petersen, S.L.; Fernelius, K.J.; Roundy, B.A.; Taylor, A.G.; Hopkins, B.G. Influence of soil water repellency on seedling emergence and plant survival in a burned semi-arid woodland. Arid Land Res. Manag. 2012, 26, 236–249. [Google Scholar] [CrossRef]
- Kirby, G.E. In Soils of the Pasadena-Deer Lake Area, Newfoundland. 1988. Available online: http://sis.agr.gc.ca/cansis/publications/surveys/nf/nf17/nf17_report.pdf (accessed on 7 November 2016).
- Kwabiah, A.B. Growth, maturity, and yield responses of silage maize (Zea mays L.) to hybrid, planting date and plastic mulch. J. New Seeds 2005, 7, 37–59. [Google Scholar] [CrossRef]
- Ashiq, W. Evaluating the Potential of Biochar in Mitigating Greenhouse Gases Emission and Nitrogen Retention in Dairy Manure Based Silage Corn Cropping Systems. Master’s Thesis, Memorial University of Newfoundland, St. John’s, NL, Canada, 2018. [Google Scholar]
- Angulo-Jaramillo, R.; Vandervaere, J.-P.; Roulier, S.; Thony, J.-L.; Gaudet, J.-P.; Vauclin, M. Field measurement of soil surface hydraulic properties by disc and ring infiltrometers: A review and recent developments. Soil Tillage Res. 2000, 55, 1–29. [Google Scholar] [CrossRef]
- Ankeny, M.D.; Ahmed, M.; Kaspar, T.C.; Horton, R. Simple field method for determining unsaturated hydraulic conductivity. Soil Sci. Soc. Am. J. 1991, 55, 467–470. [Google Scholar] [CrossRef]
- Dohnal, M.; Dusek, J.; Vogel, T. Improving hydraulic conductivity estimates from minidisk infiltrometer measurements for soils with wide pore-size distributions. Soil Sci. Soc. Am. J. 2010, 74, 804–811. [Google Scholar] [CrossRef]
- Homolak, M.; Capuliak, J.; Pichler, V. Estimating hydraulic conductivity of a sandy soil under different plant covers using minidisk infiltrometer and a dye tracer experiment. Biologia 2009, 64, 600–604. [Google Scholar] [CrossRef]
- Siltecho, S.; Hammecker, C.; Sriboonlue, V.; Clermont-Dauphin, C.; Trelo-ges, V.; Antonino, A.C.D.; Angulo-Jaramillo, R. Use of field and laboratory methods for estimating unsaturated hydraulic properties under different land uses. Hydrol. Earth Syst. Sci. 2015, 19, 1193–1207. [Google Scholar] [CrossRef] [Green Version]
- Simunek, J.; van Genuchten, T.M. Estimating unsaturated soil hydraulic properties from tension disc infiltrometer data by numerical inversion. Water Resour. Res. 1996, 32, 2683–2696. [Google Scholar] [CrossRef]
- Carsel, R.F.; Parrish, R.S. Developing joint probability distributions of soil water retention characteristics. Water Resour. Res. 1988, 24, 755–769. [Google Scholar] [CrossRef] [Green Version]
- Fares, A.; Abbas, F.; Ahmad, A.; Deenik, J.L.; Safeeq, M. Response of Selected soil physical and hydrologic properties to manure amendment rates, levels and types. Soil Sci. 2008, 173, 522–533. [Google Scholar] [CrossRef]
- Roberts, R.J.; Clanton, C.J. Surface seal hydraulic conductivity as affected by livestock manure application. Trans. ASABE 2000, 43, 603–613. [Google Scholar] [CrossRef]
- Matula, S.; Miháliková, M.; Lufinková, J.; Báťková, K. The role of the initial soil water content in the determination of unsaturated soil hydraulic conductivity using a tention infiltormeter. Plant Soil Environ. 2015, 61, 515–521. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. Elements of Nature and Properties of Soils; Prentice Hall: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Githinji, L. Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Arch. Agron. Soil Sci. 2014, 60, 457–470. [Google Scholar] [CrossRef]
- Deveraux, R.; Sturrock, C.; Mooney, S. The effects of biochar on soil physical properties and witner wheat growth. Earth Environ. Sci. Trans. R. Soc. Edinb. 2012, 103, 13–18. [Google Scholar]
- Brockhoff, S.R.; Christians, N.E.; Killorn, R.J.; Horton, R.; Davis, D.D. Physical and mineral-nutrition properties of sand-based turfgrass toot zones amended with biochar. Agron. J. 2010, 102, 1627–1631. [Google Scholar] [CrossRef]
- Rogovska, N.; Laird, D.A.; Rathke, S.J.; Karlen, D.L. Biochar impact on Midwestern Mollisols and maize nutrient availability. Geoderma 2014, 230, 340–347. [Google Scholar] [CrossRef]
- Hardie, M.; Clothier, B.; Bound, S.; Oliver, G.; Close, D. Does biochar influence soil physical properties and soil water availability? Plant Soil 2014, 376, 347–361. [Google Scholar] [CrossRef]
- Celik, I.; Ortas, I.; Kilic, S. Effects of compost, mycorrhiza, manure and fertilizer on some physical properties of a Chromoxerert soi. Soil Tillage Res. 2004, 78, 59–67. [Google Scholar] [CrossRef]
- Hafez, A.A.R. Comparative changes in soil physical properties inducted by admixtures of manures from various domestic animals. Soil Sci. 1974, 118, 53–59. [Google Scholar] [CrossRef]
- Culley, J.L.B.; Phillips, P.A. Sealing of soils by liquid cattle manure. Can. Agric. Eng. 1982, 24, 87–89. [Google Scholar]
- Cherobim, V.F.; Favaretto, N.; de Freitas Melo, V.; Barth, G.; Chi-Hua, H. Soil surface sealing by liquid dairy manure affects saturated hydraulic conductivity of Brazilian Oxisols. Agric. Water Manag. 2018, 203, 193–196. [Google Scholar] [CrossRef]
Feedstock | Unit | Yellow Pine Wood (Pinus taeda) |
---|---|---|
Particle size | mm | 1–6 |
Bulk Density | (g cm−3) | 0.20 |
Moisture | % | 15.2 |
pH (1: 10 BC: Water) | – | 9.0 |
EC (1:10) at 21−22 °C | (dS m−1) | 5.2 |
Fixed carbon | % | 87.3 |
Volatile Carbon (600 °C) | % | 12.7 |
Ash | % | 6 |
Characteristic (as Received Basis) | DM1 | DM2 |
---|---|---|
Dry matter (%) | 10.90 | 1.70 |
pH | 6.80 | 7.10 |
Total Nitrogen (%) | 0.44 | 0.12 |
Total Phosphorus (%) | 0.08 | 0.01 |
Total Potassium (%) | 0.37 | 0.12 |
Total Calcium (%) | 0.19 | 0.04 |
Total Magnesium (%) | 0.07 | 0.01 |
Total Iron (mg kg−1) | 68.00 | 7.00 |
Total Manganese (mg kg−1) | 21.00 | 5.00 |
Total Copper (mg kg−1) | 4.50 | 20.00 |
Total Zinc (mg kg−1) | 21.00 | 5.00 |
Total Boron (mg kg−1) | 3.40 | 0.50 |
Total Sodium (mg kg−1) | 904.00 | 241.00 |
Treatment | Saturation | FC | PWP | MPV | AWC |
---|---|---|---|---|---|
IN | 50.3 | 30.5 | 7.3 | 19.7 | 23.3 |
IN+BC | 47.4 | 25.3 | 6.6 | 22.1 | 18.7 |
IN+DM1 | 54.4 | 27.9 | 6.9 | 26.5 | 21.0 |
IN+BC+DM1 | 50.7 | 32.6 | 11.3 | 18.1 | 21.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wanniarachchi, D.; Cheema, M.; Thomas, R.; Kavanagh, V.; Galagedara, L. Impact of Soil Amendments on the Hydraulic Conductivity of Boreal Agricultural Podzols. Agriculture 2019, 9, 133. https://doi.org/10.3390/agriculture9060133
Wanniarachchi D, Cheema M, Thomas R, Kavanagh V, Galagedara L. Impact of Soil Amendments on the Hydraulic Conductivity of Boreal Agricultural Podzols. Agriculture. 2019; 9(6):133. https://doi.org/10.3390/agriculture9060133
Chicago/Turabian StyleWanniarachchi, Dinushika, Mumtaz Cheema, Raymond Thomas, Vanessa Kavanagh, and Lakshman Galagedara. 2019. "Impact of Soil Amendments on the Hydraulic Conductivity of Boreal Agricultural Podzols" Agriculture 9, no. 6: 133. https://doi.org/10.3390/agriculture9060133
APA StyleWanniarachchi, D., Cheema, M., Thomas, R., Kavanagh, V., & Galagedara, L. (2019). Impact of Soil Amendments on the Hydraulic Conductivity of Boreal Agricultural Podzols. Agriculture, 9(6), 133. https://doi.org/10.3390/agriculture9060133