Pongamia pinnata L. Leaves Biochar Increased Growth and Pigments Syntheses in Pisum sativum L. Exposed to Nutritional Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Leaf Biochar Preparation
2.4. Biochemical Analyses
2.5. Plant Growth and Attributes
2.6. Chlorophyll Contents and Accessory Pigments
2.7. Statistical Analyses
3. Results
3.1. Soil pH and EC
3.2. Stem and Root Length
3.3. Plants Fresh and Dry Weight
3.4. Root Fresh and Dry Weight
3.5. Chlorophyll Contents
3.6. Carotenoids, Anthocyanin, and Lycopene
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Loring, P.A.; Gerlach, S.C. Food, culture, and human health in alaska: An integrative health approach to food security. Environ. Sci. Policy 2009, 12, 466–478. [Google Scholar] [CrossRef]
- Mackellar, F.L. On human carrying capacity: A review essay on joel cohen’s: How many people can the earth support? Popul. Dev. Rev. 1996, 22, 145–156. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Mechlem, K. Food security and the right to food in the discourse of the united nations. Eur. Law J. 2004, 10, 631–648. [Google Scholar] [CrossRef]
- Holzschuh, A.; Steffan-Dewenter, I.; Kleijn, D.; Tscharntke, T. Diversity of flower-visiting bees in cereal fields: Effects of farming system, landscape composition and regional context. J. Appl. Ecol. 2007, 44, 41–49. [Google Scholar] [CrossRef]
- Zhao, D.; Reddy, K.R.; Kakani, V.; Read, J.; Carter, G. Corn (zea mays l.) growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance properties as affected by nitrogen supply. Plant Soil 2003, 257, 205–218. [Google Scholar] [CrossRef]
- Khan, M.N.; Siddiqui, M.H.; Mohammad, F.; Naeem, M.; Khan, M.M.A. Calcium chloride and gibberellic acid protect linseed (linum usitatissimum l.) from nacl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiol. Plant. 2010, 32, 121. [Google Scholar] [CrossRef]
- Munir, T.M.; Khadka, B.; Xu, B.; Strack, M. Mineral nitrogen and phosphorus pools affected by water table lowering and warming in a boreal forested peatland. Ecohydrology 2017, 10, e1893. [Google Scholar] [CrossRef]
- Munir, T.M.; Perkins, M.; Kaing, E.; Strack, M. Carbon dioxide flux and net primary production of a boreal treed bog: Responses to warming and water-table-lowering simulations of climate change. Biogeosciences 2015, 12, 1091–1111. [Google Scholar] [CrossRef] [Green Version]
- Bechtold, M.; De Lannoy, G.J.M.; Koster, R.D.; Reichle, R.H.; Mahanama, S.; Munir, T.M.; Bourgault, M.A.; Brümmer, C.; Burdun, I.; Desai, A.R. Peat-clsm: A specific treatment of peatland hydrology in the nasa catchment land surface model. J. Adv. Model. Earth Syst. 2019, 11. [Google Scholar] [CrossRef]
- Munir, T.M. Peatland Biogeochemistry and Plant Productivity Responses to Field-Based Hydrological and Temperature Simulations of Climate Change. Ph.D. Thesis, University of Calgary, Calgary, AB, Canada, 2015. [Google Scholar]
- Jaipaul, S.S.; Dixit, A.K.; Sharma, A. Growth and yield of capsicum (capsicum annum l.) and garden pea (pisum sativum l.) as influenced by organic manures and biofertilizers. Indian J. Agric. Sci. 2011, 81, 637–642. [Google Scholar]
- Schüler, C.; Pikny, J.; Nasir, M.; Vogtmann, H. Effects of composted organic kitchen and garden waste on mycosphaerella pinodes (berk, et blox) vestergr., causal organism of foot rot on peas (pisum sativum L.). Biol. Agric. Hortic. 1993, 9, 353–360. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Bąba, W.; Gediga, K.; Goltsev, V.; Samborska, I.A.; Cetner, M.D.; Dimitrova, S.; Piszcz, U.; Bielecki, K.; Karmowska, K. Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants. Photosynth. Res. 2018, 136, 329–343. [Google Scholar] [CrossRef] [PubMed]
- Baltzer, J.L.; Thomas, S.C. Leaf optical responses to light and soil nutrient availability in temperature deciduous trees. Am. J. Bot. 2005, 92, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Abid, M.; Danish, S.; Zafar-ul-Hye, M.; Shaaban, M.; Iqbal, M.M.; Rehim, A.; Qayyum, M.F.; Naqqash, M.N. Biochar increased photosynthetic and accessory pigments in tomato (solanum lycopersicum l.) plants by reducing cadmium concentration under various irrigation waters. Environ. Sci. Pollut. R. 2017, 24, 22111–22118. [Google Scholar] [CrossRef] [PubMed]
- Younis, U.; Qayyum, M.F.; Shah, M.H.R.; Danish, S.; Shahzad, A.N.; Malik, S.A.; Mahmood, S. Growth, survival, and heavy metal (cd and ni) uptake of spinach (spinacia oleracea) and fenugreek (trigonella corniculata) in a biochar-amended sewage-irrigated contaminated soil. J. Plant Nutr. Soil Sci. 2015, 178, 209–217. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Abbas, T.; Adrees, M.; Zia-ur-Rehman, M.; Ibrahim, M.; Abbas, F.; Qayyum, M.F.; Nawaz, R. Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (oryza sativa l.) under cd stress with different water conditions. J. Environ. Manag. 2018, 206, 676–683. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [Green Version]
- Kalaji, H.M.; Oukarroum, A.; Alexandrov, V.; Kouzmanova, M.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Allakhverdiev, S.I.; Goltsev, V. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiol. Biochem. 2014, 81, 16–25. [Google Scholar] [CrossRef]
- Bojović, B.; Stojanović, J. Chlorophyll and carotenoid content in wheat cultivars as a function of mineral nutrition. Arch. Biol. Sci. 2005, 57, 283–290. [Google Scholar] [CrossRef]
- Cendrero-Mateo, M.P.; Carmo-Silva, A.E.; Porcar-Castell, A.; Hamerlynck, E.P.; Papuga, S.A.; Moran, M.S. Dynamic response of plant chlorophyll fluorescence to light, water and nutrient availability. Funct. Plant Biol. 2015, 42, 746–757. [Google Scholar] [CrossRef] [Green Version]
- Munir, T.M.; Khadka, B.; Xu, B.; Strack, M. Partitioning forest-floor respiration into source based emissions in a boreal forested bog: Responses to experimental drought. Forests 2017, 8, 75. [Google Scholar] [CrossRef]
- Khan, M.I.; Trivellini, A.; Fatma, M. Role of ethylene in responses of plants to nitrogen availability. Front. Plant Sci. 2015, 6, 927. [Google Scholar] [CrossRef] [Green Version]
- Michaud, M.; Jouhet, J. Lipid trafficking at membrane contact sites during plant development and stress response. Front. Plant Sci. 2019, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Zafar-ul-Hye, M.; Danish, S.; Abbas, M.; Ahmad, M.; Munir, T.M. ACC deaminase producing pgpr bacillus amyloliquefaciens and agrobacterium fabrum along with biochar improve wheat productivity under drought stress. Agronomy 2019, 9, 343. [Google Scholar] [CrossRef]
- De la Rosa, J.M.; Paneque, M.; Hilber, I.; Blum, F.; Knicker, H.E.; Bucheli, T.D. Assessment of polycyclic aromatic hydrocarbons in biochar and biochar-amended agricultural soil from southern spain. J. Soils Sediments 2016, 16, 557–565. [Google Scholar] [CrossRef]
- Wacal, C.; Ogata, N.; Basalirwa, D.; Handa, T.; Sasagawa, D.; Acidri, R.; Ishigaki, T.; Kato, M.; Masunaga, T.; Yamamoto, S.; et al. Growth, seed yield, mineral nutrients and soil properties of sesame (sesamum indicum l.) as influenced by biochar addition on upland field converted from paddy. Agronomy 2019, 9, 55. [Google Scholar] [CrossRef]
- Kung, C.-C.; Kong, F.; Choi, Y. Pyrolysis and biochar potential using crop residues and agricultural wastes in china. Ecol. Indic. 2015, 51, 139–145. [Google Scholar] [CrossRef]
- Scotti, R.; D’ascoli, R.; Gonzalez Caceres, M.; Bonanomi, G.; Sultana, S.; Cozzolino, L.; Scelza, R.; Zoina, A.; Rao, M. Combined use of compost and wood scraps to increase carbon stock and improve soil quality in intensive farming systems. Eur. J. Soil Sci. 2015, 66, 463–475. [Google Scholar] [CrossRef]
- Scotti, R.; Pane, C.; Spaccini, R.; Palese, A.M.; Piccolo, A.; Celano, G.; Zaccardelli, M. On-farm compost: A useful tool to improve soil quality under intensive farming systems. Appl. Soil Ecol. 2016, 107, 13–23. [Google Scholar] [CrossRef]
- Laird, D.A. The charcoal vision: A win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron. J. 2008, 100, 178–181. [Google Scholar] [CrossRef]
- Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’neill, B.; Skjemstad, J.; Thies, J.; Luizao, F.; Petersen, J. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730. [Google Scholar] [CrossRef]
- Rondon, M.A.; Lehmann, J.; Ramírez, J.; Hurtado, M. Biological nitrogen fixation by common beans (phaseolus vulgaris l.) increases with bio-char additions. Biol. Fertil. Soils 2007, 43, 699–708. [Google Scholar] [CrossRef]
- Saarnio, S.; Heimonen, K.; Kettunen, R. Biochar addition indirectly affects N2O emissions via soil moisture and plant N uptake. Soil Biol. Biochem. 2013, 58, 96–106. [Google Scholar] [CrossRef]
- Liu, H.; Ju, Z.; Bachmann, J.; Horton, R.; Ren, T. Moisture-dependent wettability of artificial hydrophobic soils and its relevance for soil water desorption curves. Soil Sci. Soc. Am. J. 2012, 76, 342–349. [Google Scholar] [CrossRef]
- Steiner, C.; Teixeira, W.G.; Lehmann, J.; Nehls, T.; de Macêdo, J.L.V.; Blum, W.E.H.; Zech, W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered central amazonian upland soil. Plant Soil 2007, 291, 275–290. [Google Scholar] [CrossRef]
- Ashraf, M.; Harris, P. Photosynthesis under stressful environments: An overview. Photosynthetica 2013, 51, 163–190. [Google Scholar] [CrossRef]
- Amuthavalli, P.; Sivasankaramoorthy, S. Effect of salt stress on the growth and photosynthetic pigments of pigeon pea (cajanus cajan l.). J. Appl. Pharm. Sci. 2012, 2, 131. [Google Scholar] [CrossRef]
- United States Salinity Laboratory Staff. Diagnosis and Improvement of Saline and Alkali Soils; USDA Handbook 60; United States Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Method of Soil Analysis, 2nd ed.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Nadeem, S.M.; Zahir, Z.A.; Naveed, M.; Arshad, M. Rhizobacteria containing acc-deaminase confer salt tolerance in maize grown on salt-affected fields. Can. J. Microbiol. 2009, 55, 1302–1309. [Google Scholar] [CrossRef]
- Walkley, A. An examination of methods for determining organic carbon and nitrogen in soils. J. Agric. Sci. 1935, 25, 598–609. [Google Scholar] [CrossRef]
- Qayyum, M.F.; Abid, M.; Danish, S.; Saeed, M.K.; Ali, M.A. Effects of various biochars on seed germination and carbon mineralization in an alkaline soil. Pak. J. Agric. Sci. 2015, 51, 977–982. [Google Scholar]
- Singh, B.; Singh, B.P.; Cowie, A.L. Characterisation and evaluation of biochars for their application as a soil amendment. Aust. J. Soil Res. 2010, 48, 516–525. [Google Scholar] [CrossRef]
- Suthar, R.G.; Wang, C.; Nunes, M.C.N.; Chen, J.; Sargent, S.A.; Bucklin, R.A.; Gao, B. Bamboo biochar pyrolyzed at low temperature improves tomato plant growth and fruit quality. Agriculture 2018, 8, 153. [Google Scholar] [CrossRef]
- Jones, J.B., Jr.; Wolf, B.; Mills, H.A. Plant Analysis Handbook: A Practical Sampling, Preparation, Analysis, and Interpretation Guide; Micro-Macro Publishing, Inc.: Athens, GA, USA, 1991. [Google Scholar]
- Kloss, S.; Zehetner, F.; Dellantonio, A.; Hamid, R.; Ottner, F.; Liedtke, V.; Schwanninger, M.; Gerzabek, M.H.; Soja, G. Characterization of slow pyrolysis biochars: Effects of feedstocks and pyrolysis temperature on biochar properties. J. Environ. Qual. 2012, 41, 990–1000. [Google Scholar] [CrossRef] [PubMed]
- Noor, N.M.; Shariff, A.; Abdullah, N. Slow pyrolysis of cassava wastes for biochar production and characterization. Iran. J. Energy Environ. 2012, 3, 60–65. [Google Scholar]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kirk, J.; Allen, R. Dependence of chloroplast pigment synthesis on protein synthesis: Effect of actidione. Biochem. Biophys. Res. Commun. 1965, 21, 523–530. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Rao, A.; Waseem, Z.; Agarwal, S. Lycopene content of tomatoes and tomato products and their contribution to dietary lycopene. Food Res. Int. 1998, 31, 737–741. [Google Scholar] [CrossRef]
- Antonious, G.; Turley, E.; Dawood, M. Ascorbic acid, sugars, phenols, and nitrates concentrations in tomato grown in animal manure amended soil. Agriculture 2019, 9, 94. [Google Scholar] [CrossRef]
- Ippolito, J.; Stromberger, M.; Lentz, R.; Dungan, R. Hardwood biochar influences calcareous soil physicochemical and microbiological status. J. Environ. Qual. 2014, 43, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Mary, G.S.; Sugumaran, P.; Niveditha, S.; Ramalakshmi, B.; Ravichandran, P.; Seshadri, S. Production, characterization and evaluation of biochar from pod (pisum sativum), leaf (brassica oleracea) and peel (citrus sinensis) wastes. Int. J. Recycl. Org. Waste Agric. 2016, 5, 43–53. [Google Scholar] [CrossRef]
- Ippolito, J.; Novak, J.; Busscher, W.; Ahmedna, M.; Rehrah, D.; Watts, D. Switchgrass biochar affects two aridisols. J. Environ. Qual. 2012, 41, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Lentz, R.D.; Ippolito, J.A. Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake. J. Environ. Qual. 2012, 41, 1033–1043. [Google Scholar] [CrossRef] [PubMed]
- Novak, J.M.; Lima, I.; Xing, B.; Gaskin, J.W.; Steiner, C.; Das, K.; Ahmedna, M.; Rehrah, D.; Watts, D.W.; Busscher, W.J. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann. Agric. Sci. 2009, 3, 195–206. [Google Scholar]
- Roberts, T.L. Improving nutrient use efficiency. Turk. J. Agric. For. 2008, 32, 177–182. [Google Scholar]
- Uzoma, K.C.; Inoue, M.; Andry, H.; Fujimaki, H.; Zahoor, A.; Nishihara, E. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. 2011, 27, 205–212. [Google Scholar] [CrossRef]
- Foti, C.; Khah, E.M.; Pavli, O.I. Germination profiling of lentil genotypes subjected to salinity stress. Plant Biol. 2019, 21, 480–486. [Google Scholar] [CrossRef]
- Prendergast-Miller, M.T.; Duvall, M.; Sohi, S.P. Localisation of nitrate in the rhizosphere of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 2243–2246. [Google Scholar] [CrossRef]
- Tsai, W.-T.; Hsu, C.-H.; Lin, Y.-Q. Highly porous and nutrients-rich biochar derived from dairy cattle manure and its potential for removal of cationic compound from water. Agriculture 2019, 9, 114. [Google Scholar] [CrossRef]
- Arya, L.M.; Paris, J.F. A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data 1. Soil Sci. Soc. Am. J. 1981, 45, 1023–1030. [Google Scholar] [CrossRef]
- Lehmann, J.; Pereira da Silva, J.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Laird, D.; Fleming, P.; Wang, B.; Horton, R.; Karlen, D. Biochar impact on nutrient leaching from a midwestern agricultural soil. Geoderma 2010, 158, 436–442. [Google Scholar] [CrossRef]
- Cheng, C.H.; Lehmann, J.; Engelhard, M.H. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochim. Cosmochim. Acta 2008, 72, 1598–1610. [Google Scholar] [CrossRef]
- Suppadit, T.; Kitikoon, V.; Phubphol, A.; Neumnoi, P. Effect of quail litter biochar on productivity of four new physic nut varieties planted in cadmium-contaminated soil. Chil. J. Agric. Res. 2012, 72, 125–132. [Google Scholar] [CrossRef]
- Hossain, M.K.; Strezov, V.; Chan, K.Y.; Nelson, P.F. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (lycopersicon esculentum). Chemosphere 2010, 78, 1167–1171. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.W.I.; Noack, A.G. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Glob. Biogeochem. Cycle 2000, 14, 777–793. [Google Scholar] [CrossRef]
- O’Toole, A.; Moni, C.; Weldon, S.; Schols, A.; Carnol, M.; Bosman, B.; Rasse, D.P. Miscanthus biochar had limited effects on soil physical properties, microbial biomass, and grain yield in a four-year field experiment in norway. Agriculture 2018, 8, 171. [Google Scholar] [CrossRef]
- Speratti, A.B.; Romanyà, J.; Garcia-Pausas, J.; Johnson, M.S. Determining the stability of sugarcane filtercake biochar in soils with contrasting levels of organic matter. Agriculture 2018, 8, 71. [Google Scholar] [CrossRef]
- Danish, S.; Zafar-ul-Hye, M. Co-application of acc-deaminase producing pgpr and timber-waste biochar improves pigments formation, growth and yield of wheat under drought stress. Sci. Rep. 2019, 9, 5999. [Google Scholar] [CrossRef] [PubMed]
Soil Parameters | Units | Values | Water Parameters | Units | Values | PLB | Units | Values |
---|---|---|---|---|---|---|---|---|
pH | - | 7.50 | Carbonates | meq L−1 | 0 | pH | - | 8.15 |
EC | dS m−1 | 0.89 | Bicarbonates | meq L−1 | 5.6 | EC | dS m−1 | 0.74 |
OM | % | 0.45 | Chloride | meq L−1 | 1.7 | Total Phosphorus | µg g−1 | 7.31 |
ON | % | 0.02 | Sulphate | meq L−1 | 0.8 | Total Potassium | µg g−1 | 56 |
Extractable P | µg g−1 | 8.91 | Ca + Mg | meq L−1 | 4.7 | Ash content | % | 66.18 |
Extractable K | µg g−1 | 101 | Na | meq L−1 | 3.4 | Volatile matter | % | 14.39 |
SAR | (mmol L−1)−1/2 | 2.22 | Fixed C | % | 19.43 | |||
RSE | meq L−1 | 0.90 | Total N | % | 0.83 | |||
CEC | mmolc kg−1 | 249.21 |
Biochar Levels | Two Levels of Fertilizers | |||||
---|---|---|---|---|---|---|
Soil pH | Soil ECe (dSm−1) | |||||
IE (PLB × F) | ME (PLB) | IE (PLB × F) | ME (PLB) | |||
HF | FF | HF | FF | |||
No PLB (0 g/5 kg soil) | 7.2 ns | 7.5 ns | 7.4 B | 0.20 ns | 0.23 ns | 0.22 C |
1%PLB (50 g/5 kg soil) | 8.2 ns | 8.3 ns | 8.3 A | 0.40 ns | 0.50 ns | 0.45 B |
2%PLB (100 g/5 kg soil) | 8.4 ns | 8.4 ns | 8.4 A | 0.50 ns | 0.60 ns | 0.55 A |
ME (F) | 7.9 B | 8.1 A | 0.36 B | 0.43 A |
Various Levels of Biochar | Various Levels of Fertilizers | |||||
---|---|---|---|---|---|---|
Chlorophyll a (mg/g) | Chlorophyll b (mg/g) | |||||
IE (PLB × F) | ME (PLB) | IE (PLB × F) | ME (PLB) | |||
HF | FF | HF | FF | |||
No PLB (0 g/5 kg soil) | 0.058 ± 0.005 d | 0.116 ± 0.003 c | 0.087 C | 0.051 ± 0.007 d | 0.106 ± 0.003 c | 0.079 C |
1%PLB (50 g/5 kg soil) | 0.129 ± 0.003 c | 0.146 ± 0.005 b | 0.138 B | 0.119 ± 0.003 c | 0.139 ± 0.007 b | 0.129 B |
2%PLB (100 g/5 kg soil) | 0.158 ± 0.002 ab | 0.169 ± 0.013 a | 0.163 A | 0.150 ± 0.003 ab | 0.159 ± 0.011 a | 0.154 A |
ME (F) | 0.115 B | 0.143 A | 0.107 B | 0.135 A | ||
Total chlorophyll (mg/g) | Carotenoids (mg/g) | |||||
No PLB (0 g/5 kg soil) | 0.109 ± 0.012 e | 0.222 ± 0.006 d | 0.166 C | 0.090 ± 0.010 f | 0.191 ± 0.005 e | 0.141 C |
1%PLB (50 g/5 kg soil) | 0.248 ± 0.006 c | 0.285 ± 0.012 b | 0.267 B | 0.220 ± 0.004 d | 0.278 ± 0.010 c | 0.249 B |
2%PLB (100 g/5 kg soil) | 0.317 ± 0.005 ab | 0.328 ± 0.024 a | 0.323 A | 0.251 ± 0.004 b | 0.306 ± 0.016 a | 0.278 A |
ME (F) | 0.225 B | 0.278 A | 0.187 B | 0.258 A | ||
Anthocyanin (µmol/mL) | Lycopene (mg/g) | |||||
No PLB (0 g/5 kg soil) | 0.012 ± 0.0010 d | 0.015 ± 0.0005 c | 0.014 C | 0.066 ± 0.0018 a | 0.054 ± 0.0005 b | 0.060 A |
1%PLB (50 g/5 kg soil) | 0.014 ± 0.0004 c | 0.017 ± 0.0001 b | 0.015 B | 0.046 ± 0.0011 b | 0.027 ± 0.0004 c | 0.036 B |
2%PLB (100 g/5 kg soil) | 0.018 ± 0.0004 b | 0.020 ± 0.0002 a | 0.019 A | 0.024 ± 0.0005 c | 0.012 ± 0.0011 d | 0.018 C |
ME (F) | 0.015 B | 0.017 A | 0.031 B | 0.045 A |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashmi, S.; Younis, U.; Danish, S.; Munir, T.M. Pongamia pinnata L. Leaves Biochar Increased Growth and Pigments Syntheses in Pisum sativum L. Exposed to Nutritional Stress. Agriculture 2019, 9, 153. https://doi.org/10.3390/agriculture9070153
Hashmi S, Younis U, Danish S, Munir TM. Pongamia pinnata L. Leaves Biochar Increased Growth and Pigments Syntheses in Pisum sativum L. Exposed to Nutritional Stress. Agriculture. 2019; 9(7):153. https://doi.org/10.3390/agriculture9070153
Chicago/Turabian StyleHashmi, Sadaf, Uzma Younis, Subhan Danish, and Tariq Muhammad Munir. 2019. "Pongamia pinnata L. Leaves Biochar Increased Growth and Pigments Syntheses in Pisum sativum L. Exposed to Nutritional Stress" Agriculture 9, no. 7: 153. https://doi.org/10.3390/agriculture9070153
APA StyleHashmi, S., Younis, U., Danish, S., & Munir, T. M. (2019). Pongamia pinnata L. Leaves Biochar Increased Growth and Pigments Syntheses in Pisum sativum L. Exposed to Nutritional Stress. Agriculture, 9(7), 153. https://doi.org/10.3390/agriculture9070153