Disease Management and Estimated Effects on DON (Deoxynivalenol) Contamination in Fusarium Infested Barley
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Study Design and Sampling
2.2. Scab Management Survey
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McMullen, M.; Bergstrom, G.; De Wolf, E.; Dill-Macky, R.; Hershman, D.; Shaner, G.; Van Sanford, D. A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Dis. 2012, 96, 1712–1728. [Google Scholar] [CrossRef] [PubMed]
- Virkajärvi, V.; Sarlin, T.; Laitila, A. Fusarium profiling and barley malt gushing propensity. J. Am. Soc. Brew. Chem. 2017, 75, 181–192. [Google Scholar] [CrossRef]
- Steffenson, B.J. Fusarium Head Blight of Barley: Impact, Epidemics, Management, and Strategies for Identifying and Utilizing Genetic Resistance; Steffenson, B., Ed.; APS Press: St. Paul, MN, USA, 2003. [Google Scholar]
- Wilson, W.; Dahl, B.; Nganje, W. Economic Costs of Fusarium Head Blight, Scab and Deoxynialenol. World Mycotoxin J. 2018, 11, 291–302. [Google Scholar] [CrossRef]
- Wiersma, J. Growers’ needs and industry wants: A retrospective of two decades in the trenches in the battle with FHB. In Proceedings of the 2016 National Fusarium Head Blight Forum, St. Louis, MO, USA, 6 December 2016; p. 103. [Google Scholar]
- Hollingsworth, C.; Motteberg, C.; Wiersma, J.; Atkinson, L. Agronomic and economic responses of spring wheat to management of Fusarium head blight. Plant Dis. 2008, 92, 1339–1348. [Google Scholar] [CrossRef]
- Paul, P.; Salgado, J.; Bergstrom, G.; Bradley, C.; Byamukama, E.; Byrne, A.; Chapara, V.; Cummings, J.; Chilvers, M.; Dill-Macky, R. Integrated effects of genetic resistance and prothioconazole + tebuconazole application timing on Fusarium head blight in wheat. Plant Dis. 2018, 103, 223–237. [Google Scholar] [CrossRef]
- Salgado, J.; Madden, L.; Paul, P. Quantifying the effects of Fusarium head blight on grain yield and test weight in soft red winter wheat. Phytopathology 2015, 105, 295–306. [Google Scholar] [CrossRef]
- Geißinger, C.; Whitehead, I.; Hofer, K.; Heß, M.; Habler, K.; Becker, T.; Gastl, M. Influence of Fusarium avenaceum infections on barley malt: Monitoring changes in the albumin fraction of barley during the malting process. Int. J. Food Microbiol. 2019, 293, 7–16. [Google Scholar] [CrossRef]
- Martin, C.; Schöneberg, T.; Vogelgsang, S.; Morisoli, R.; Bertossa, M.; Mauch-Mani, B.; Mascher, F. Resistance against Fusarium graminearum and the relationship to β-glucan content in barley grains. Eur. J. Plant Pathol. 2018, 152, 621–634. [Google Scholar] [CrossRef]
- Schwarz, P.; Horsley, R.; Steffenson, B.; Salas, B.; Barr, J. Quality risks associated with the utilization of Fusarium head blight infected malting barley. J. Am. Soc. Brew. Chem. 2006, 64, 1–7. [Google Scholar] [CrossRef]
- Salgado, J.; Madden, L.; Paul, P. Efficacy and economics of integrating in-field and harvesting strategies to manage Fusarium head blight of wheat. Plant Dis. 2014, 98, 1407–1421. [Google Scholar] [CrossRef]
- Wegulo, S.N.; Baenziger, P.S.; Nopsa, J.H.; Bockus, W.W.; Hallen-Adams, H. Management of Fusarium head blight of wheat and barley. Crop Protect. 2015, 73, 100–107. [Google Scholar] [CrossRef]
- Beddow, J.M.; Hurley, T.M.; Kriticos, D.J.; Pardey, P.G. Measuring the Global Occurrence and Probabilistic Consequences of Wheat Stem Rust. Available online: http://harvestchoice.org/sites/default/files/downloads/publications/Beddow_et_al_2013HC-Stem_Rust_Tech_Note(3-19-2013).pdf (accessed on 12 July 2019).
- Paul, P.; McMullen, M.; Hershman, D.; Madden, L. Meta-analysis of the effects of triazole-based fungicides on wheat yield and test weight as influenced by Fusarium head blight intensity. Phytopathology 2010, 100, 160–171. [Google Scholar] [CrossRef]
- Madden, L.; Paul, P. Assessing heterogeneity in the relationship between wheat yield and fusarium head blight intensity using random-coefficient mixed models. Phytopathology 2009, 99, 850–860. [Google Scholar] [CrossRef]
- Paul, P.; Lipps, P.; Madden, L. Relationship between visual estimates of Fusarium head blight intensity and deoxynivalenol accumulation in harvested wheat grain: A meta-analysis. Phytopathology 2005, 95, 1225–1236. [Google Scholar] [CrossRef]
- Paul, P.; Lipps, P.; Hershman, D.; McMullen, M.; Draper, M.; Madden, L. A quantitative synthesis of the relative efficacy of triazole-based fungicides for FHB and DON control in wheat. In Proceedings of the 2007 National Fusarium Head Blight Forum, The Westin Crown Center Kansas City, MO, USA, 2–4 December 2007; p. 115. [Google Scholar]
- Schöneberg, T.; Musa, T.; Forrer, H.-R.; Mascher, F.; Bucheli, T.D.; Bertossa, M.; Keller, B.; Vogelgsang, S. Infection conditions of Fusarium graminearum in barley are variety specific and different from those in wheat. Eur. J. Plant Pathol. 2018, 151, 975–989. [Google Scholar] [CrossRef]
- Bondalapati, K.; Stein, J.; Neate, S.; Halley, S.; Osborne, L.; Hollingsworth, C. Development of weather-based predictive models for Fusarium head blight and deoxynivalenol accumulation for spring malting barley. Plant Dis. 2012, 96, 673–680. [Google Scholar] [CrossRef]
- Janssen, E.; Liu, C.; Van der Fels-Klerx, H. Fusarium infection and trichothecenes in barley and its comparison with wheat. World Mycotoxin J. 2018, 11, 33–46. [Google Scholar] [CrossRef]
- Windels, C.E. Economic and social impacts of Fusarium head blight: changing farms and rural communities in the Northern Great Plains. Phytopathology 2000, 90, 17–21. [Google Scholar] [CrossRef]
- Nganje, W.E.; Bangsund, D.A.; Leistritz, F.L.; Wilson, W.W.; Tiapo, N.M. Regional economic impacts of Fusarium head blight in wheat and barley. Rev. Agric. Econ. 2004, 26, 332–347. [Google Scholar] [CrossRef]
- Wilson, W.; McKee, G.; Nganje, W.; Dahl, B.; Bangsund, D. Economic Impact of USWBSI’s Impact on Reducing FHB; Department of Agribusiness and Applied Economics, North Dakota State University: Fargo, ND, USA, 2017. [Google Scholar]
- Bhathal, J.S.; Loughman, R.; Speijers, J. Yield reduction in wheat in relation to leaf disease from yellow (tan) spot and Septoria nodorum blotch. Eur. J. Plant Pathol. 2003, 109, 435–443. [Google Scholar] [CrossRef]
- Mehra, L.; Cowger, C.; Ojiambo, P. A model for predicting onset of Stagonospora nodorum blotch in winter wheat based on preplanting and weather factors. Phytopathology 2017, 107, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Rios, J.A.; Rios, V.S.; Paul, P.A.; Souza, M.A.; Araujo, L.; Rodrigues, F.A. Fungicide and cultivar effects on the development and temporal progress of wheat blast under field conditions. Crop Protect. 2016, 89, 152–160. [Google Scholar] [CrossRef]
- Sevastos, A.; Kalampokis, I.F.; Panagiotopoulou, A.; Pelecanou, M.; Aliferis, K.A. Implication of Fusarium graminearum primary metabolism in its resistance to benzimidazole fungicides as revealed by 1H NMR metabolomics. Pesticide Biochem. Physiol. 2018, 148, 50–61. [Google Scholar] [CrossRef]
- Salgado, J.D.; Lindsey, L.E.; Paul, P.A. Effects of row spacing and nitrogen rate on wheat grain yield and profitability as influenced by diseases. Plant Dis. 2017, 101, 1998–2011. [Google Scholar] [CrossRef] [PubMed]
- Paul, P.A.; Bradley, C.; Madden, L.V.; Lana, F.D.; Bergstrom, G.C.; Dill-Macky, R.; Esker, P.; Wise, K.A.; McMullen, M.; Grybauskas, A. Meta-analysis of the effects of QoI and DMI fungicide combinations on Fusarium head blight and deoxynivalenol in wheat. Plant Dis. 2018, 102, 2602–2615. [Google Scholar] [CrossRef] [PubMed]
- Willyerd, K.; Bradley, C.; Chapara, V.; Conley, S.; Esker, P.; Madden, L.; Wise, K.; Paul, P. Revisiting fungicide-based management guidelines for leaf blotch diseases in soft red winter wheat. Plant Dis. 2015, 99, 1434–1444. [Google Scholar] [CrossRef] [PubMed]
- Alisaac, E.; Behmann, J.; Kuska, M.T.; Dehne, H.W.; Mahlein, A.K. Hyperspectral quantification of wheat resistance to Fusarium head blight: comparison of two Fusarium species. Eur. J. Plant Pathol. 2018, 152, 869–884. [Google Scholar] [CrossRef]
- Prom, L.; Horsley, R.; Steffenson, B.; Schwarz, P. Development of Fusarium head blight and accumulation of deoxynivalenol in barley sampled at different growth stages. J. Am. Soc. Brew. Chem. 1999, 57, 60–63. [Google Scholar] [CrossRef]
- Abramson, D.; Clear, R.; Usleber, E.; Gessler, R.; Nowicki, T.; Märtlbauer, E. Fusarium species and 8-keto-trichothecene mycotoxins in Manitoba barley. Cereal Chem. 1998, 75, 137–141. [Google Scholar] [CrossRef]
- Chaussalet, T.; Mann, J.; Perry, J.; Francos-Rodriguez, J. A nearest neighbour approach to the simulation of spread of barley yellow dwarf virus. Comput. Electron. Agric. 2000, 28, 51–65. [Google Scholar] [CrossRef]
- Lescourret, F.; Blecher, N.; Habib, R.; Chadoeuf, J.; Agostini, D.; Pailly, O.; Vaissière, B.; Poggi, I. Development of a simulation model for studying kiwi fruit orchard management. Agric. Syst. 1999, 59, 215–239. [Google Scholar] [CrossRef]
- Passey, T.; Robinson, J.; Shaw, M.; Xu, X. The relative importance of conidia and ascospores as primary inoculum of Venturia inaequalis in a southeast England orchard. Plant Pathol. 2017, 66, 1445–1451. [Google Scholar] [CrossRef]
- Mercader, R.; Siegert, N.; McCullough, D. Estimating the influence of population density and dispersal behavior on the ability to detect and monitor Agrilus planipennis (Coleoptera: Buprestidae) populations. J. Econ. Entomol. 2012, 105, 272–281. [Google Scholar] [CrossRef]
- Van Maanen, A.; Xu, X. Modelling plant disease epidemics. Eur. J. Plant Pathol. 2003, 109, 669–682. [Google Scholar] [CrossRef]
- Bai, G.; Shaner, G. Management and resistance in wheat and barley to Fusarium head blight. Annu. Rev. Phytopathol. 2004, 42, 135–161. [Google Scholar] [CrossRef]
- Cowger, C.; Arellano, C.; Marshall, D.; Fitzgerald, J. Managing Fusarium head blight in winter barley with cultivar resistance and fungicide. Plant Dis. 2019, in press. [Google Scholar] [CrossRef]
- Kumar, A.; Karre, S.; Dhokane, D.; Kage, U.; Hukkeri, S.; Kushalappa, A.C. Real-time quantitative PCR based method for the quantification of fungal biomass to discriminate quantitative resistance in barley and wheat genotypes to Fusarium head blight. J. Cereal Sci. 2015, 64, 16–22. [Google Scholar] [CrossRef]
- Johnson, D.; Nganje, W. Impacts of DON in the Malting Barley Supply Chain: Aggregate Costs and Firm-Level Risks; Department of Agricultural Economics, Agricultural Experiment Station, North Dakota State University: Fargo, ND, USA, 2000. [Google Scholar]
Cultivar | Scab Resistance Category | Barley Type |
---|---|---|
2ND25276 | S | 2 row |
ACMetcalf | MS | 2 row |
CDC Meredith | MS | 2 row |
CDC Mindon | MS | 2 row |
Celebration | S | 6 row |
Conlon | MS | 2 row |
Eslick | S | 2 row |
Excel | MS | 6 row |
FEG65-02 | MR | 6 row |
Innovation | MS | 6 row |
Lacey | MS | 6 row |
Legacy | MS | 6 row |
M122 | MS | 6 row |
Merit | S | 2 row |
ND Genesis | MS | 2 row |
ND20448 | MS | 6 row |
ND22421 | S | 6 row |
ND26036 | S | 6 row |
Pinnacle | MS | 2 row |
Quest | MR | 6 row |
Rasmusson | S | 6 row |
Rawson | S | 2 row |
Robust | S | 6 row |
Scarlet | MR | 2 row |
Stellar-ND | MS | 6 row |
Tradition | S | 6 row |
Location | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
---|---|---|---|---|---|---|---|---|
St. Paul, MN | 64 | |||||||
Fargo, ND | 192 | 192 | 192 | 192 | 60 | 60 | ||
Finley, ND | 48 | 48 | 60 | |||||
Langdon, ND | 288 | 288 | 318 | 144 | 36 | 36 | ||
Brookings, SD | 16 | 16 | 24 | |||||
Volga, SD | 36 | 72 |
Parameter 1 | Estimate | Std. Error | t Value | p-Value |
---|---|---|---|---|
Fungicide | −0.2103 | 0.0100 | −21.10 | <0.0001 |
Resistance | 0.0463 | 0.0017 | 26.77 | <0.0001 |
Incidence | 0.1839 | 0.0016 | 113.39 | <0.0001 |
Severity | 0.0446 | 0.0019 | 23.55 | <0.0001 |
PreCrop | 0.1109 | 0.0013 | 86.08 | <0.0001 |
Brookings fixed effect | −0.6362 | 0.0045 | −142.32 | <0.0001 |
Fargo fixed effect | −0.3019 | 0.0028 | −109.37 | <0.0001 |
Finley fixed effect | −0.6309 | 0.0029 | −215.49 | <0.0001 |
Langdon fixed effect | −0.5996 | 0.0029 | −206.44 | <0.0001 |
St Paul fixed effect | 0.9114 | 0.0047 | 194.23 | <0.0001 |
Volga fixed effect | 1.4299 | 0.0056 | 257.06 | <0.0001 |
2008 fixed effect | 0.0097 | 0.0033 | 2.94 | 0.0033 |
2009 fixed effect | 0.1566 | 0.0031 | 50.57 | <0.0001 |
2010 fixed effect | 0.4417 | 0.0030 | 146.56 | <0.0001 |
2011 fixed effect | 0.5547 | 0.0030 | 182.87 | <0.0001 |
2012 fixed effect | 0.1207 | 0.0030 | 39.95 | <0.0001 |
2013 fixed effect | 0.0281 | 0.0063 | 4.43 | <0.0001 |
2014 fixed effect | 0.0078 | 0.0033 | 2.35 | 0.0189 |
Parameter 1 | Estimate | Std. Error | t Value | p-Value |
---|---|---|---|---|
2ND25276 | −0.4148 | 0.0164 | −25.35 | <0.0001 |
ACMetcalf | 0.2684 | 0.0110 | 24.44 | <0.0001 |
CDC Meredith | −0.0013 | 0.0229 | −0.06 | 0.9541 |
CDCMindon | 0.8849 | 0.0138 | 64.25 | <0.0001 |
Celebration | 0.5524 | 0.0116 | 47.62 | <0.0001 |
Conlon | −0.5959 | 0.0149 | −40.10 | <0.0001 |
Eslick | 0.7324 | 0.0140 | 52.35 | <0.0001 |
Excel | 0.7735 | 0.0142 | 54.37 | <0.0001 |
FEG65-02 | −0.2077 | 0.0139 | −14.95 | <0.0001 |
Innovation | 0.1675 | 0.0155 | 10.79 | <0.0001 |
Lacey | 0.2929 | 0.0121 | 24.11 | <0.0001 |
M122 | 0.3557 | 0.0124 | 28.65 | <0.0001 |
Merit | −0.5250 | 0.0135 | −39.00 | <0.0001 |
ND Genesis | −0.2618 | 0.0148 | −17.69 | <0.0001 |
ND20448 | 0.7481 | 0.0129 | 58.09 | <0.0001 |
ND22421 | 0.1132 | 0.0148 | 7.65 | <0.0001 |
ND26036 | −0.2394 | 0.0165 | −14.55 | <0.0001 |
Pinnacle | −0.5427 | 0.0147 | −36.90 | <0.0001 |
Quest | −0.0092 | 0.0107 | −0.86 | 0.388 |
Rasmusson | 0.4042 | 0.0121 | 33.50 | <0.0001 |
Rawson | −0.2009 | 0.0109 | −18.46 | <0.0001 |
Robust | 0.4789 | 0.0114 | 41.89 | <0.0001 |
Scarlet | −0.3118 | 0.0173 | −18.03 | <0.0001 |
Stellar-ND | 0.1484 | 0.0154 | 9.61 | <0.0001 |
Parameter 1 | Estimate | Std. Error | t Value | p-Value |
---|---|---|---|---|
Conlon X med. disease | 0.8833 | 0.0128 | 68.76 | <0.0001 |
Conlon X high disease | 0.5273 | 0.0120 | 43.94 | <0.0001 |
M122 X med. disease | −0.1175 | 0.0129 | −9.11 | <0.0001 |
Merit X med. disease | 1.5479 | 0.0139 | 111.07 | <0.0001 |
ND20448 X med. disease | −0.4564 | 0.0097 | −46.96 | <0.0001 |
Pinnacle X med. disease | 1.1052 | 0.0143 | 77.11 | <0.0001 |
Pinnacle X high disease | 1.7371 | 0.0154 | 112.93 | <0.0001 |
Quest X high disease | 0.1333 | 0.0093 | 14.30 | <0.0001 |
Rawson X high disease | 0.5649 | 0.0079 | 71.64 | <0.0001 |
Robust X med. disease | −0.4586 | 0.0070 | −65.27 | <0.0001 |
Scarlet X med. disease | 0.0769 | 0.0151 | 5.07 | <0.0001 |
Scarlet X high disease | 0.5941 | 0.0160 | 37.15 | <0.0001 |
Tradition X med. disease | 0.1453 | 0.0107 | 13.63 | <0.0001 |
Tradition X high disease | 0.8418 | 0.0129 | 65.10 | <0.0001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McKee, G.; Cowger, C.; Dill-Macky, R.; Friskop, A.; Gautam, P.; Ransom, J.; Wilson, W. Disease Management and Estimated Effects on DON (Deoxynivalenol) Contamination in Fusarium Infested Barley. Agriculture 2019, 9, 155. https://doi.org/10.3390/agriculture9070155
McKee G, Cowger C, Dill-Macky R, Friskop A, Gautam P, Ransom J, Wilson W. Disease Management and Estimated Effects on DON (Deoxynivalenol) Contamination in Fusarium Infested Barley. Agriculture. 2019; 9(7):155. https://doi.org/10.3390/agriculture9070155
Chicago/Turabian StyleMcKee, Gregory, Christina Cowger, Ruth Dill-Macky, Andrew Friskop, Pravin Gautam, Joel Ransom, and William Wilson. 2019. "Disease Management and Estimated Effects on DON (Deoxynivalenol) Contamination in Fusarium Infested Barley" Agriculture 9, no. 7: 155. https://doi.org/10.3390/agriculture9070155
APA StyleMcKee, G., Cowger, C., Dill-Macky, R., Friskop, A., Gautam, P., Ransom, J., & Wilson, W. (2019). Disease Management and Estimated Effects on DON (Deoxynivalenol) Contamination in Fusarium Infested Barley. Agriculture, 9(7), 155. https://doi.org/10.3390/agriculture9070155