Shifting the Paradigm: An Ecological Systems Approach to Weed Management
Abstract
:1. Introduction
2. New Angles on Ecological Solutions
2.1. Prevention of Contamination and Propagule Spread
2.2. Seedbank Management
2.3. Crop Rotation
2.4. Tillage
2.5. Cover Crops
2.6. Competitive Ability of Crops
3. Biological Weed Control
3.1. Microbes and Viruses
3.2. Animals
4. New (Currently Proposed) Solutions
4.1. Technological Advancements
4.2. Altering Sex Ratios of Amaranthus Spp.
4.3. Endless Possibilities
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Baker, H.G. The continuing evolution of weeds. Econ. Bot. 1991, 45, 445–449. [Google Scholar] [CrossRef]
- Vigueira, C.; Olsen, K.; Caicedo, A. The red queen in the corn: Agricultural weeds as models of rapid adaptive evolution. Heredity 2013, 110, 303. [Google Scholar] [CrossRef] [PubMed]
- Zimdahl, R.L. Weed-Crop Competition: A Review; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Murphy, C.E.; Lemerle, D. Continuous cropping systems and weed selection. Euphytica 2006, 148, 61–73. [Google Scholar] [CrossRef]
- Bravo, W.; Leon, R.G.; Ferrell, J.A.; Mulvaney, M.J.; Wood, C.W. Differentiation of life-history traits among Palmer amaranth populations (Amaranthus palmeri) and its relation to cropping systems and glyphosate sensitivity. Weed Sci. 2017, 65, 339–349. [Google Scholar] [CrossRef]
- Bagavathiannan, M.V.; Davis, A.S. An ecological perspective on managing weeds during the great selection for herbicide resistance. Pest Manag. Sci. 2018, 74, 2277–2286. [Google Scholar] [CrossRef]
- Neve, P.; Vila-Aiub, M.; Roux, F. Evolutionary-thinking in agricultural weed management. New Phytol. 2009, 184, 783–793. [Google Scholar] [CrossRef]
- Liebman, M.; Mohler, C.L.; Staver, C.P. Ecological Management of Agricultural Weeds; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Lingenfelter, D.; Curran, W.S. Integrated Weed Management Guide for Mid-Atlantic Grain Crops; Brown, E., Ed.; Elise Brown, Root 61 Communications: West Lafayette, IN, USA, 2018. [Google Scholar]
- Currie, D.J. Where Newton might have taken ecology. Glob. Ecol. Biogeogr. 2019, 28, 18–27. [Google Scholar] [CrossRef]
- Davis, A.S.; Hill, J.D.; Chase, C.A.; Johanns, A.M.; Liebman, M. Increasing cropping system diversity balances productivity, profitability and environmental health. PLoS ONE 2012, 7, e47149. [Google Scholar] [CrossRef]
- Schroeder, J.; Barrett, M.; Shaw, D.R.; Asmus, A.B.; Coble, H.; Ervin, D.; Jussaume, R.A.; Owen, M.D.; Burke, I.; Creech, C.F. Managing wicked herbicide-resistance: Lessons from the field. Weed Technol. 2018, 32, 475–488. [Google Scholar] [CrossRef]
- Owen, M.D. Diverse approaches to herbicide-resistant weed management. Weed Sci. 2016, 64, 570–584. [Google Scholar] [CrossRef]
- Frisvold, G.B.; Hurley, T.M.; Mitchell, P.D. Adoption of best management practices to control weed resistance by corn, cotton, and soybean growers. AgBioForum 2009, 12, 370–381. [Google Scholar]
- Fleming, J. Vehicle Cleaning Technology for Controlling the Spread of Noxious Weeds and Invasive Species; USDA and FHWA: Washington, DC, USA, 2005. [Google Scholar]
- Murphy, B.P.; Plewa, D.E.; Phillippi, E.; Bissonnette, S.M.; Tranel, P.J. A quantitative assay for Amaranthus palmeri identification. Pest Manag. Sci. 2017, 73, 2221–2224. [Google Scholar] [CrossRef]
- Farmer, J.A.; Webb, E.B.; Pierce, R.A.; Bradley, K.W. Evaluating the potential for weed seed dispersal based on waterfowl consumption and seed viability. Pest Manag. Sci. 2017, 73, 2592–2603. [Google Scholar] [CrossRef]
- Ervin, D.E.; Frisvold, G.B. Community-based approaches to herbicide-resistant weed management: Lessons from science and practice. Weed Sci. 2016, 64, 609–626. [Google Scholar] [CrossRef]
- Bagavathiannan, M.V.; Graham, S.; Ma, Z.; Barney, J.N.; Coutts, S.R.; Caicedo, A.L.; De Clerck-Floate, R.; West, N.M.; Blank, L.; Metcalf, A.L. Considering weed management as a social dilemma bridges individual and collective interests. Nat. Plants 2019, 5, 343. [Google Scholar] [CrossRef]
- Livingston, M.; Fernandez-Cornejo, J.; Frisvold, G.B. Economic returns to herbicide resistance management in the short and long run: The role of neighbor effects. Weed Sci. 2016, 64, 595–608. [Google Scholar] [CrossRef]
- Livingston, M.; Fernandez-Cornejo, J.; Unger, J.; Osteen, C.; Schimmelpfennig, D.; Park, T.; Lambert, D.M. The economics of glyphosate resistance management in corn and soybean production. In Economic Research Report No. ERR-184; United States Department of Agriculture: Washington, DC, USA, 2015. [Google Scholar]
- Barber, L.; Smith, K.; Scott, R.; Norsworthy, J.; Vangilder, A. Zero Tolerance: A Community-Based Program for Glyphosate-Resistant Palmer Amaranth Management; University of Arkansas Cooperative Extension Service Bulletin FSA2177: Fayetteville, AR, USA, 2015. [Google Scholar]
- Phelan, P.L. Ecology-based agriculture and the next green revolution: Is modern agriculture exempt from the Laws of Ecology? CRC Press Taylor Francis Group: Boca Raton, FL, USA, 2009; pp. 97–135. [Google Scholar]
- Norsworthy, J.K.; Ward, S.M.; Shaw, D.R.; Llewellyn, R.S.; Nichols, R.L.; Webster, T.M.; Bradley, K.W.; Frisvold, G.; Powles, S.B.; Burgos, N.R.; et al. Reducing the risks of herbicide resistance: Best management practices and recommendations. Weed Sci. 2012, 60, 31–62. [Google Scholar] [CrossRef]
- Schwartz-Lazaro, L.M.; Norsworthy, J.K.; Walsh, M.J.; Bagavathiannan, M.V. Efficacy of the Integrated Harrington Seed Destructor on weeds of soybean and rice production systems in the Southern United States. Crop Sci. 2017, 57, 2812–2818. [Google Scholar] [CrossRef]
- Somerville, G.J.; Powles, S.B.; Walsh, M.J.; Renton, M. Modeling the Impact of Harvest Weed Seed Control on Herbicide-Resistance Evolution. Weed Sci. 2018, 66, 395–403. [Google Scholar] [CrossRef]
- Schwartz, L.M.; Norsworthy, J.K.; Young, B.G.; Bradley, K.W.; Kruger, G.R.; Davis, V.M.; Steckel, L.E.; Walsh, M.J. Tall waterhemp (Amaranthus tuberculatus) and Palmer amaranth (Amaranthus palmeri) seed production and retention at soybean maturity. Weed Technol. 2016, 30, 284–290. [Google Scholar] [CrossRef]
- Walsh, M.J.; Powles, S.B. High seed retention at maturity of annual weeds infesting crop fields highlights the potential for harvest weed seed control. Weed Technol. 2014, 28, 486–493. [Google Scholar] [CrossRef]
- Walsh, M.J.; Broster, J.C.; Schwartz-Lazaro, L.M.; Norsworthy, J.K.; Davis, A.S.; Tidemann, B.D.; Beckie, H.J.; Lyon, D.J.; Soni, N.; Neve, P. Opportunities and challenges for harvest weed seed control in global cropping systems. Pest Manag. Sci. 2018, 74, 2235–2245. [Google Scholar] [CrossRef]
- Izquierdo, J.; Blanco-Moreno, J.; Chamorro, L.; Gonzalez-Andujar, J.; Sans, F. Spatial distribution of weed diversity within a cereal field. Agron. Sustain. Dev. 2009, 29, 491–496. [Google Scholar] [CrossRef]
- Walsh, M.; Newman, P.; Powles, S. Targeting weed seeds in-crop: A new weed control paradigm for global agriculture. Weed Technol. 2013, 27, 431–436. [Google Scholar] [CrossRef]
- Llewellyn, R.; Ronning, D.; Clarke, M.; Mayfield, A.; Walker, S.; Ouzman, J. Impact of Weeds in Australian Grain Production; Grains Research and Development Corporation: Canberra, Australia, 2016. [Google Scholar]
- Harrington, R.B.; Powles, S.B. Harrington seed destructor: A new nonchemical weed control tool for global grain crops. Crop Sci. 2012, 52, 1343–1347. [Google Scholar]
- Broster, J. Herbicide Resistance Testing Report; Charles Sturt University: Wagga Wagga, Australia, 2016. [Google Scholar]
- Mayerová, M.; Madaras, M.; Soukup, J. Effect of chemical weed control on crop yields in different crop rotations in a long-term field trial. Crop Prot. 2018, 114, 215–222. [Google Scholar] [CrossRef]
- Owen, M.D.; Beckie, H.J.; Leeson, J.Y.; Norsworthy, J.K.; Steckel, L.E. Integrated pest management and weed management in the United States and Canada. Pest Manag. Sci. 2015, 71, 357–376. [Google Scholar] [CrossRef]
- Nichols, V.; Verhulst, N.; Cox, R.; Govaerts, B. Weed dynamics and conservation agriculture principles: A review. Field Crop. Res. 2015, 183, 56–68. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.; Mundell, R. An Introduction to Industrial Hemp and Hemp Agronomy. Available online: https://hemp.ca.uky.edu/sites/hemp.ca.uky.edu/files/hemp_history_and_agronomy_2018.pdf (accessed on 4 January 2019).
- Sandler, L.; Gibson, K. A call for weed research in industrial hemp (Cannabis sativa L). Weed Res. 2019. [Google Scholar] [CrossRef]
- Norsworthy, J.K.; Brandenberger, L.; Burgos, N.R.; Riley, M. Weed suppression in Vigna unguiculata with a spring-seeded Brassicaceae green manure. Crop Prot. 2005, 24, 441–447. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Coffman, C.B.; Mangum, R.W. Potential long-term benefits of no-tillage and organic cropping systems for grain production and soil improvement. Agron. J. 2007, 99, 1297–1305. [Google Scholar] [CrossRef]
- Kabir, Z. Tillage or no-tillage: Impact on mycorrhizae. Can. J. Plant Sci. 2005, 85, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Halvorson, A.D.; Wienhold, B.J.; Black, A.L. Tillage, Nitrogen, and Cropping System Effects on Soil Carbon Sequestration Contribution from USDA-ARS. The USDA offers its programs to all eligible persons regardless of race, color, age, sex, or national origin, and is an equal opportunity employer. Soil Sci. Soc. Am. J. 2002, 66, 906–912. [Google Scholar] [CrossRef]
- Kettler, T.A.; Lyon, D.J.; Doran, J.W.; Powers, W.; Stroup, W.W. Soil quality assessment after weed-control tillage in a no-till wheat–fallow cropping system. Soil Sci. Soc. Am. J. 2000, 64, 339–346. [Google Scholar] [CrossRef]
- King, A.E.; Hofmockel, K.S. Diversified cropping systems support greater microbial cycling and retention of carbon and nitrogen. Agric. Ecosyst. Environ. 2017, 240, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Venterea, R.T.; Baker, J.M.; Dolan, M.S.; Spokas, K.A. Carbon and nitrogen storage are greater under biennial tillage in a Minnesota corn–soybean rotation. Soil Sci. Soc. Am. J. 2006, 70, 1752–1762. [Google Scholar] [CrossRef]
- Bajwa, A.A.; Mahajan, G.; Chauhan, B.S. Nonconventional weed management strategies for modern agriculture. Weed Sci. 2015, 63, 723–747. [Google Scholar] [CrossRef]
- Peruzzi, A.; Martelloni, L.; Frasconi, C.; Fontanelli, M.; Pirchio, M.; Raffaelli, M. Machines for non-chemical intra-row weed control in narrow and wide-row crops: A review. J. Agric. Eng. 2017, 48, 57–70. [Google Scholar] [CrossRef]
- Kunz, C.; Weber, J.F.; Peteinatos, G.G.; Sökefeld, M.; Gerhards, R. Camera steered mechanical weed control in sugar beet, maize and soybean. Precis. Agric. 2018, 19, 708–720. [Google Scholar] [CrossRef]
- Mirsky, S.B.; Ryan, M.R.; Teasdale, J.R.; Curran, W.S.; Reberg-Horton, C.S.; Spargo, J.T.; Wells, M.S.; Keene, C.L.; Moyer, J.W. Overcoming weed management challenges in cover crop–based organic rotational no-till soybean production in the eastern United States. Weed Technol. 2013, 27, 193–203. [Google Scholar] [CrossRef]
- Lemerle, D.; Luckett, D.J.; Lockley, P.; Koetz, E.; Wu, H. Competitive ability of Australian canola (Brassica napus) genotypes for weed management. Crop Pasture Sci. 2014, 65, 1300–1310. [Google Scholar] [CrossRef]
- Walker, S.; Medd, R.; Robinson, G.; Cullis, B. Improved management of Avena ludoviciana and Phalaris paradoxa with more densely sown wheat and less herbicide. Weed Res. 2002, 42, 257–270. [Google Scholar] [CrossRef]
- Pathan, S.; Hashem, A.; Borger, C. Crop row orientation induced photo-sensory effect on the competitive interactions of crops and weeds. In Proceedings of the 15th Australian Weeds Conference, Adelaide, Australia, 24–28 September 2006; pp. 24–28. [Google Scholar]
- Steckel, L.E.; Sprague, C.L. Late-season common waterhemp (Amaranthus rudis) interference in narrow-and wide-row soybean. Weed Technol. 2004, 18, 947–952. [Google Scholar] [CrossRef]
- Smith, R. Competition of barnyardgrass by rice cultivars. Weed Sci. 1974, 22, 423–426. [Google Scholar] [CrossRef]
- Watson, P.; Derksen, D.; Van Acker, R. The ability of 29 barley cultivars to compete and withstand competition. Weed Sci. 2006, 54, 783–792. [Google Scholar] [CrossRef]
- Lemerle, D.; Verbeek, B.; Cousens, R.; Coombes, N. The potential for selecting wheat varieties strongly competitive against weeds. Weed Res. 1996, 36, 505–513. [Google Scholar] [CrossRef]
- Zhao, D.; Atlin, G.; Bastiaans, L.; Spiertz, J. Cultivar weed-competitiveness in aerobic rice: Heritability, correlated traits, and the potential for indirect selection in weed-free environments. Crop Sci. 2006, 46, 372–380. [Google Scholar] [CrossRef]
- Groff, S. The past, present, and future of the cover crop industry. J. Soil Water Conserv. 2015, 70, 130A–133A. [Google Scholar] [CrossRef]
- Saraiva, A.S.; Erasmo, E.A.L.; Mata, J.F.; Dornelas, B.F.; Dornelas, D.F.; SILVA, J.I.C. Density and sowing season of two Brachiaria species on the soybean culture. Planta Daninha 2013, 31, 569–576. [Google Scholar] [CrossRef] [Green Version]
- Crusciol, C.A.C.; Nascente, A.S.; Mateus, G.P.; Pariz, C.M.; Martins, P.O.; Borghi, E. Intercropping soybean and palisade grass for enhanced land use efficiency and revenue in a no till system. Eur. J. Agron. 2014, 58, 53–62. [Google Scholar] [CrossRef]
- Silva, A.C.; Ferreira, L.R.; Silva, A.A.; Paiva, T.W.B.; Sediyama, C.S. Efeitos de doses reduzidas de fluazifop-p-butil no consórcio entre soja e Brachiaria brizantha. Planta Daninha 2004, 22, 429–435. [Google Scholar] [CrossRef]
- Harding, D.P.; Raizada, M.N. Controlling weeds with fungi, bacteria and viruses: A review. Front. Plant Sci. 2015, 6, 659. [Google Scholar] [CrossRef]
- Hokkanen, H.M.; Sailer, R.I. Success in classical biological control. Crit. Rev. Plant Sci. 1985, 3, 35–72. [Google Scholar] [CrossRef]
- Watson, A.K. Microbial Herbicides. In Weed Control: Sustainability, Hazards, and Risks in Cropping Systems Worldwide; CRC Press: Boca Raton, FL, USA, 2018; p. 133. [Google Scholar]
- Wolfe, J.C.; Neal, J.C.; Harlow, C.D. Selective broadleaf weed control in turfgrass with the bioherbicides Phoma macrostoma and thaxtomin A. Weed Technol. 2016, 30, 688–700. [Google Scholar] [CrossRef]
- Boyette, C.D.; Hoagland, R.E. Bioherbicidal potential of Xanthomonas campestris for controlling Conyza canadensis. Biocontrol Sci. Technol. 2015, 25, 229–237. [Google Scholar] [CrossRef]
- Thirkell, T.J.; Charters, M.D.; Elliott, A.J.; Sait, S.M.; Field, K.J. Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security. J. Ecol. 2017, 105, 921–929. [Google Scholar] [CrossRef] [Green Version]
- Lin, G.; McCormack, M.L.; Guo, D. Arbuscular mycorrhizal fungal effects on plant competition and community structure. J. Ecol. 2015, 103, 1224–1232. [Google Scholar] [CrossRef]
- Li, X.; Zeng, R.; Liao, H. Improving crop nutrient efficiency through root architecture modifications. J. Integr. Plant Biol. 2016, 58, 193–202. [Google Scholar] [CrossRef]
- Qiao, X.; Bei, S.; Li, H.; Christie, P.; Zhang, F.; Zhang, J. Arbuscular mycorrhizal fungi contribute to overyielding by enhancing crop biomass while suppressing weed biomass in intercropping systems. Plant Soil 2016, 406, 173–185. [Google Scholar] [CrossRef]
- Varga, S.; Kytöviita, M.M. Gender dimorphism and mycorrhizal symbiosis affect floral visitors and reproductive output in Geranium sylvaticum. Funct. Ecol. 2010, 24, 750–758. [Google Scholar] [CrossRef]
- Cromar, H.E.; Murphy, S.D.; Swanton, C.J. Influence of tillage and crop residue on postdispersal predation of weed seeds. Weed Sci. 1999, 47, 184–194. [Google Scholar] [CrossRef]
- Honek, A.; Martinova, Z.; Jarosik, V. Ground beetles (Carabidae) as seed predators. EJE 2013, 100, 531–544. [Google Scholar] [CrossRef]
- O’Rourke, M.E.; Heggenstaller, A.H.; Liebman, M.; Rice, M.E. Post-dispersal weed seed predation by invertebrates in conventional and low-external-input crop rotation systems. Agric., Ecosyst. Environ. 2006, 116, 280–288. [Google Scholar] [CrossRef]
- Law, J.J.; Gallagher, R.S. Seed Distribution and Invertebrate Seed Predation in No-Till and Minimum-Till Maize Systems. Agron. J. 2018, 110, 2488–2495. [Google Scholar] [CrossRef]
- Birthisel, S.K.; Gallandt, E.R.; Jabbour, R. Habitat effects on second-order predation of the seed predator Harpalus rufipes and implications for weed seedbank management. Biol. Control 2014, 70, 65–72. [Google Scholar] [CrossRef]
- Gallandt, E.R.; Molloy, T.; Lynch, R.P.; Drummond, F.A. Effect of cover-cropping systems on invertebrate seed predation. Weed Sci. 2005, 53, 69–76. [Google Scholar] [CrossRef]
- MacLeod, A.; Wratten, S.; Sotherton, N.; Thomas, M. ‘Beetle banks’ as refuges for beneficial arthropods in farmland: Long-term changes in predator communities and habitat. Agric. For. Entomol. 2004, 6, 147–154. [Google Scholar] [CrossRef]
- Bianchi, F.J.; Booij, C.; Tscharntke, T. Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B: Biol. Sci. 2006, 273, 1715–1727. [Google Scholar] [CrossRef]
- Fox, A.F.; Orr, D.B.; Cardoza, Y.J. The Influence of Habitat Manipulations on Beneficial Ground-Dwelling Arthropods in a Southeast US Organic Cropping System. Environ. Entomol. 2015, 44, 114–121. [Google Scholar] [CrossRef]
- Douglas, M.R.; Rohr, J.R.; Tooker, J.F. Neonicotinoid insecticide travels through a soil food chain, disrupting biological control of non-target pests and decreasing soya bean yield. J. Appl. Ecol. 2015, 52, 250–260. [Google Scholar] [CrossRef]
- Mullin, C.A.; Saunders, M.C., II; Leslie, T.W.; Biddinger, D.J.; Fleischer, S.J. Toxic and Behavioral Effects to Carabidae of Seed Treatments Used on Cry3Bb1- and Cry1Ab/c-Protected Corn. Environ. Entomol. 2005, 34, 1626–1636. [Google Scholar] [CrossRef] [Green Version]
- Parabug. Available online: https://www.parabug.solutions/ (accessed on 4 April 2019).
- Sammons, D.; Navarro, S.; Croon, K.; Schmuke, J.; Wang, D.; Rana, N.; Griffith, G.; Godara, R. BIODIRECTTM and Managing Herbicide Resistant Amaranths; Weed Science Society of America: Lexington, KY, USA, 2014. [Google Scholar]
- Zotti, M.; dos Santos, E.A.; Cagliari, D.; Christiaens, O.; Taning, C.N.T.; Smagghe, G. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Pest Manag. Sci. 2018, 74, 1239–1250. [Google Scholar] [CrossRef]
- Leftwich, P.T.; Bolton, M.; Chapman, T. Evolutionary biology and genetic techniques for insect control. Evol. Appl. 2016, 9, 212–230. [Google Scholar] [CrossRef]
- NASEM. Gene Drives on the Horizon: Advancing Science, Navigating Uncertainty, and Aligning Research with Public Values; National Academies of Sciences, Engineering, and Medicine; National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- Westwood, J.H.; Charudattan, R.; Duke, S.O.; Fennimore, S.A.; Marrone, P.; Slaughter, D.C.; Swanton, C.; Zollinger, R. Weed Management in 2050: Perspectives on the Future of Weed Science. Weed Sci. 2018, 66, 275–285. [Google Scholar] [CrossRef] [Green Version]
- Neve, P. Gene drive systems: Do they have a place in agricultural weed management? Pest Manag. Sci. 2018, 74, 2671–2679. [Google Scholar] [CrossRef]
- Comont, D.; Hicks, H.; Crook, L.; Hull, R.; Cocciantelli, E.; Hadfield, J.; Childs, D.; Freckleton, R.; Neve, P. Evolutionary epidemiology predicts the emergence of glyphosate resistance in a major agricultural weed. New Phytol. 2019, 223, 1584–1594. [Google Scholar] [CrossRef]
- Fisher, R.A. The Genetic Theory of Natural Selection; Oxford University Press: Oxford, UK, 1958. [Google Scholar]
- Rumpa, M.M.; Krausz, R.F.; Gibson, D.J.; Gage, K.L. Effect of PPO-Inhibiting Herbicides on the Growth and Sex Ratio of a Dioecious Weed Species Amaranthus palmeri (Palmer Amaranth). Agronomy 2019, 9, 275. [Google Scholar] [CrossRef]
- Mesgaran, M.; Ohadi, S.; Matzrafi, M. Exploitation of Sex for Weed Management; Weed Science Society of America: New Orleans, LA, USA, 2019. [Google Scholar]
- Sadeque, A.; Brown, P.; Tranel, P. Towards a Novel Control Strategy for Dioecious Amaranths: Identification of Gender-Specific DNA Sequences; Weed Science Society of America: New Orleans, LA, USA, 2019. [Google Scholar]
- Montgomery, J.S.; Sadeque, A.; Giacomini, D.A.; Brown, P.J.; Tranel, P.J. Sex-specific markers for waterhemp (Amaranthus tuberculatus) and Palmer amaranth (Amaranthus palmeri). Weed Sci. 2019, 67, 412–418. [Google Scholar] [CrossRef] [Green Version]
- Hicks, H.L.; Comont, D.; Coutts, S.R.; Crook, L.; Hull, R.; Norris, K.; Neve, P.; Childs, D.Z.; Freckleton, R.P. The factors driving evolved herbicide resistance at a national scale. Nat. Ecol. Evol. 2018, 2, 529. [Google Scholar] [CrossRef]
- Chostner, B. See Spray: The next generation of weed control. Resour. Mag. 2017, 24, 4–5. [Google Scholar]
- Chang, C.-L.; Lin, K.-M. Smart agricultural machine with a computer vision-based weeding and variable-rate irrigation scheme. Robotics 2018, 7, 38. [Google Scholar] [CrossRef]
- Lambert, D.; Lowenberg-De Boer, J. Precision Agriculture Profitability Review; Purdue University: West Lafayette, IN, USA, 2000. [Google Scholar]
- O’Keeffe, S. Targeted Tillage with Automated Weed Kicker. Available online: https://www.farmonline.com.au/story/6007754/weed-it-and-reap (accessed on 11 April 2019).
- Torres-Sánchez, J.; López-Granados, F.; De Castro, A.I.; Peña-Barragán, J.M. Configuration and specifications of an unmanned aerial vehicle (UAV) for early site specific weed management. PloS ONE 2013, 8, e58210. [Google Scholar] [CrossRef]
- Åstrand, B.; Baerveldt, A.-J. An agricultural mobile robot with vision-based perception for mechanical weed control. Auton. Robot. 2002, 13, 21–35. [Google Scholar] [CrossRef]
- Reiser, D.; Sehsah, E.-S.; Bumann, O.; Morhard, J.; Griepentrog, H.W. Development of an Autonomous Electric Robot Implement for Intra-Row Weeding in Vineyards. Agriculture 2019, 9, 18. [Google Scholar] [CrossRef]
- Nørremark, M.; Griepentrog, H.W.; Nielsen, J.; Søgaard, H.T. The development and assessment of the accuracy of an autonomous GPS-based system for intra-row mechanical weed control in row crops. Biosyst. Eng. 2008, 101, 396–410. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J.; Huang, X.; Li, N.; Chen, Z.; Li, W. System integration design of intra-row weeding robot. In Proceedings of the American Society of Agricultural and Biological Engineers, Kansas City, MO, USA, 21–24 July 2013; p. 1. [Google Scholar]
- Partel, V.; Kakarla, S.C.; Ampatzidis, Y. Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence. Comput. Electron. Agric. 2019, 157, 339–350. [Google Scholar] [CrossRef]
- Søgaard, H.T. Weed classification by active shape models. Biosyst. Eng. 2005, 91, 271–281. [Google Scholar] [CrossRef]
- Heisel, T.; Schou, J.; Andreasen, C.; Christensen, S. Using laser to measure stem thickness and cut weed stems. Weed Res. 2002, 42, 242–248. [Google Scholar] [CrossRef]
- Mathiassen, S.K.; Bak, T.; Christensen, S.; Kudsk, P. The effect of laser treatment as a weed control method. Biosyst. Eng. 2006, 95, 497–505. [Google Scholar] [CrossRef]
- Langsenkamp, F.; Sellmann, F.; Kohlbrecher, M.; Kielhorn, A.; Strothmann, W.; Michaels, A.; Ruckelshausen, A.; Trautz, D. Tube Stamp for mechanical intra-row individual Plant Weed Control. In Proceedings of the 18th World Congress of CIGR, Beijing, China, 16–19 September 2014; pp. 16–19. [Google Scholar]
- Brodie, G.; Ryan, C.; Lancaster, C. Microwave technologies as part of an integrated weed management strategy: A review. Int. J. Agron. 2012, 2012, 636905. [Google Scholar] [CrossRef]
- Kurstjens, D. Overzicht van Mechanische en Fysische Technologie voor Onkruidbestrijding; IMAG-DLO: Wageningen, Netherlands, 1998. [Google Scholar]
- Rask, A.M.; Kristoffersen, P. A review of non-chemical weed control on hard surfaces. Weed Res. 2007, 47, 370–380. [Google Scholar] [CrossRef]
- Blasco, J.; Aleixos, N.; Roger, J.; Rabatel, G.; Molto, E. AE—Automation and emerging technologies: Robotic weed control using machine vision. Biosyst. Eng. 2002, 83, 149–157. [Google Scholar] [CrossRef]
- Ascard, J. Effects of flame weeding on weed species at different developmental stages. Weed Res. 1995, 35, 397–411. [Google Scholar] [CrossRef]
- Knežević, S.; Ulloa, S. Potential new tool for weed control in organically grown agronomic crops. J. Agric. Sci. 2007, 52, 95–104. [Google Scholar]
- Knezevic, S.; Datta, A.; Stepanovic, S.; Bruening, C.; Neilson, B.; Gogos, G. Weed control with flaming and cultivation in corn. Phytopathology 2011, 101, 81–92. [Google Scholar]
- Rask, A.M.; Kristoffersen, P.; Andreasen, C. Controlling grass weeds on hard surfaces: Effect of time intervals between flame treatments. Weed Technol. 2012, 26, 83–88. [Google Scholar] [CrossRef]
- Forcella, F. Air-propelled abrasive grit for postemergence in-row weed control in field corn. Weed Technol. 2012, 26, 161–164. [Google Scholar] [CrossRef]
- Lütkemeyer, L. Hydropneumatic weed control in rowcrops. In Proceedings of the 20th German Conference on Weed Biology and Weed Control, Stuttgart-Hohenheim, Germany, 14–16 March 2000; pp. 661–666. [Google Scholar]
- Haidar, M.; Sidahmed, M. Soil solarization and chicken manure for the control of Orobanche crenata and other weeds in Lebanon. Crop Prot. 2000, 19, 169–173. [Google Scholar] [CrossRef]
- Horowitz, M.; Regev, Y.; Herzlinger, G. Solarization for weed control. Weed Sci. 1983, 31, 170–179. [Google Scholar] [CrossRef]
- Mauromicale, G.; Monaco, A.L.; Longo, A.M.; Restuccia, A. Soil solarization, a nonchemical method to control branched broomrape (Orobanche ramosa) and improve the yield of greenhouse tomato. Weed Sci. 2005, 53, 877–883. [Google Scholar] [CrossRef]
- UKKO_Robotics. Available online: https://ukkorobotics.com/ (accessed on 4 April 2019).
- Perchonok, M.H.; Cooper, M.R.; Catauro, P.M. Mission to Mars: Food production and processing for the final frontier. Annu. Rev. Food Sci. Technol. 2012, 3, 311–330. [Google Scholar] [CrossRef]
- Slaughter, D.C.; Giles, D.K.; Fennimore, S.A.; Smith, R.F. Multispectral machine vision identification of lettuce and weed seedlings for automated weed control. Weed Technol. 2008, 22, 378–384. [Google Scholar] [CrossRef]
- Zhang, Y.; Slaughter, D. Influence of solar irradiance on hyperspectral imaging-based plant recognition for autonomous weed control. Biosyst. Eng. 2011, 110, 330–339. [Google Scholar] [CrossRef]
- Zhang, Y.; Slaughter, D.C.; Staab, E.S. Robust hyperspectral vision-based classification for multi-season weed mapping. ISPRS J. Photogramm. Remote Sens. 2012, 69, 65–73. [Google Scholar] [CrossRef]
- Zhang, Y.; Slaughter, D. Hyperspectral species mapping for automatic weed control in tomato under thermal environmental stress. Comput. Electron. Agric. 2011, 77, 95–104. [Google Scholar] [CrossRef]
- Hearn, D.J. Shape analysis for the automated identification of plants from images of leaves. Taxon 2009, 58, 934–954. [Google Scholar] [CrossRef]
- Ehsani, M.; Upadhyaya, S.; Mattson, M. Seed location mapping using RTK GPS. Trans. ASAE 2004, 47, 909. [Google Scholar] [CrossRef]
- Griepentrog, H.-W.; Nørremark, M.; Nielsen, H.; Blackmore, B. Seed mapping of sugar beet. Precis. Agric. 2005, 6, 157–165. [Google Scholar] [CrossRef]
- Perez-Ruiz, M.; Slaughter, D.C.; Gliever, C.; Upadhyaya, S.K. Tractor-based Real-time Kinematic-Global Positioning System (RTK-GPS) guidance system for geospatial mapping of row crop transplant. Biosyst. Eng. 2012, 111, 64–71. [Google Scholar] [CrossRef]
- Sun, H.; Slaughter, D.; Ruiz, M.P.; Gliever, C.; Upadhyaya, S.; Smith, R. RTK GPS mapping of transplanted row crops. Comput. Electron. Agric. 2010, 71, 32–37. [Google Scholar] [CrossRef]
Prevention |
|
Soil Seedbank Management |
|
Tillage, Cover Crops, and Intercrops |
|
Biological Weed Control |
|
New (Currently Proposed) Solutions to Integrate within an Agroecological Approach |
|
Overall Needs |
|
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gage, K.L.; Schwartz-Lazaro, L.M. Shifting the Paradigm: An Ecological Systems Approach to Weed Management. Agriculture 2019, 9, 179. https://doi.org/10.3390/agriculture9080179
Gage KL, Schwartz-Lazaro LM. Shifting the Paradigm: An Ecological Systems Approach to Weed Management. Agriculture. 2019; 9(8):179. https://doi.org/10.3390/agriculture9080179
Chicago/Turabian StyleGage, Karla L., and Lauren M. Schwartz-Lazaro. 2019. "Shifting the Paradigm: An Ecological Systems Approach to Weed Management" Agriculture 9, no. 8: 179. https://doi.org/10.3390/agriculture9080179
APA StyleGage, K. L., & Schwartz-Lazaro, L. M. (2019). Shifting the Paradigm: An Ecological Systems Approach to Weed Management. Agriculture, 9(8), 179. https://doi.org/10.3390/agriculture9080179