40Ar/39Ar Ages and Geochemistry of Seamount Basalts from the Western Pacific Province
Abstract
:1. Introduction
2. Samples and Analytical Methods
3. Petrographic Characteristics
4. Results
4.1. 40Ar/39Ar Ages
4.2. Geochemistry
4.2.1. Major Elements
4.2.2. Trace and Rare-Earth Elements
5. Discussion
5.1. 40Ar/39Ar Age
5.2. Magma Source
6. Conclusions
- (1)
- The 40Ar/39A ages of seamounts samples MP3D21, MP5D11, and MP5D15A were found to be 62.4 ± 0.26, 95.43 ± 0.33, and 99.03 ± 0.4 Ma, respectively, placing the time of eruptions in a period ranging from the Late Cretaceous to the Paleocene. The age difference of 36.9~33.3 Ma between the samples may be due to the formation of independent seamounts in different periods by small independent plumes on the mantle plume under the Pacific plate.
- (2)
- The basalt samples from seamounts MP3D04, MP3D21, MP5D11, MP5D15A, MPID201, and MPID202 in the Western Pacific are low-silicon and high-alkali rocks that are weakly enriched in rare-earth elements and weakly depleted in LIL elements such as U, K, and Sr, with no Ce or Eu anomalies. These characteristics are typical of OIB, and the composition was likely influenced by a small degree of crustal mixing during the magmatic evolution of the plume volcanic system. The petrological characteristics and various geochemical diagrams of the samples indicate that seamounts MP3D04, MP3D21, MP5D11, MP5D15A, MPID201, and MPID202 formed from magma that originated in the deep mantle and resulted from the presence of a mantle plume in the Western Pacific.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Epp, D.; Smoot, N.C. Distribution of seamounts in the North Atlantic. Nature 1989, 337, 254–257. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, X. Some discussion about the character of the seamounts in South China Sea. Mar. Sci. 2001, 25, 31–34. [Google Scholar]
- Ma, J.; Song, J.; Li, X.; Li, N.; Wang, Q. Research progress on oceanic seamounts and their eco-environmental characteristics. Mar. Sci. 2018, 42, 150–160. [Google Scholar]
- Smith, W.H.; Staudigel, H.; Watts, A.B.; Pringle, M.S. The Magellan seamounts: Early Cretaceous record of the South Pacific isotopic and thermal anomaly. J. Geophys. Res. 1989, 94, 10501–10523. [Google Scholar] [CrossRef]
- Koppers, A.A.P.; Morgan, J.P.; Morgan, J.W.; Staudigel, H. Testing the fixed hotspot hypothesis using Ar-40/Ar-39 age progressions along seamount trails. Earth Planet. Sci. Lett. 2001, 185, 237–252. [Google Scholar] [CrossRef]
- Koppers, A.A.P.; Staudigel, H.; Pringle, M.S.; Wijbrans, J. Short-lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism? Geochem. Geophys. Geosystems 2003, 4. [Google Scholar] [CrossRef]
- White, S.M. Eatmounts. Encycl. Geol. 2005, 87, 475–484. [Google Scholar]
- Hirano, N.; Takahashi, E.; Yamamoto, J.; Abe, N.; Ingle, S.P.; Kaneoka, I.; Hirata, T.; Kimura, J.; Ishii, T.; Ogawa, Y.; et al. Volcanism in response to plate flexure. Science 2006, 313, 1426–1428. [Google Scholar] [CrossRef] [Green Version]
- Dyment, J.; Lin, J.; Baker, E.T. Ridge-hotspot interactions: What mid-ocean ridges tell us about deep earth processes. Oceanography 2007, 20, 102–115. [Google Scholar] [CrossRef] [Green Version]
- Seton, M.; Müller, R.D.; Zahirovic, S.; Gaina, C.; Torsvik, T.; Shephard, G. Global continental and ocean basin reconstructions since 200 Ma. Earth-Sci. Rev. 2012, 113, 212–270. [Google Scholar] [CrossRef] [Green Version]
- Henderson, L.J. Motion of the Pacific Plate Relative to the Hotspots Since the Jurassic and Model of Oceanic Plateau. Ph.D. Thesis, Northwestern University, Evanston, IL, USA, 1985. [Google Scholar]
- Tarduno, J.A.; Gee, J. Large-scale motion between Pacific and Atlantic hotspots. Nature 1995, 378, 477–480. [Google Scholar] [CrossRef]
- Koppers, A.A.P.; Staudigel, H.; Wijbrans, J.R.; Pringle, M. The Magellan seamount trail: Implications for Cretaceous hotspot volcanism and absolute Pacific plate motion. Earth Planet. Sci. Lett. 1998, 163, 53–68. [Google Scholar] [CrossRef]
- Koppers, A.A.P.; Russell, J.A.; Jackson, M.G.; Hart, S.R. Samoa reinstated as a primary hotspot trail. Geology 2008, 36, 435–438. [Google Scholar] [CrossRef]
- Niu, Y. Generation and evolution of basaltic magmas: Some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in Eastern China. Geol. J. China Univ. 2005, 11, 9–46. [Google Scholar]
- Timm, C.; Hoernle, K.; Werner, R.; Hauff, F.; van den Bogaard, P.; Michael, P.; Coffin, M.F.; Koppers, A. Age and geochemistry of the oceanic Manihiki Plateau, SW Pacific: New evidence for a plume origin. Earth Planet. Sci. Lett. 2011, 304, 135–146. [Google Scholar] [CrossRef]
- Sager, W.W.; Zhang, J.; Korenaga, J.; Sano, T.; Koppers, A.A.; Widdowson, M.; Mahoney, J.J. An immense shield volcano within the Shatsky Rise oceanic plateau, northwest Pacific Ocean. Nat. Geosci. 2013, 6, 976–981. [Google Scholar] [CrossRef]
- Tang, L.; Dong, Y.; Chu, F.; Chen, L.; Ma, W.; Liu, Y. Geochemistry and age of seamounts in the West Pacific: Mantle processes and petrogenetic implications. Acta Oceanol. Sin. 2019, 38, 71–77. [Google Scholar] [CrossRef]
- Yan, Q.; Milan, L.; Saunders, J.E.; Shi, X. Petrogenesis of basaltic lavas from the West Pacific seamount province: Geochemical and Sr-Nd-Pb-Hf isotopic constraints. J. Geophys. Res.-Solid Earth 2021, 126, e2020JB021598. [Google Scholar] [CrossRef]
- Ke-chao, Z.H. Petrology of the substrate in seamounts MA, MC, MD, ME and MF from Magellan seamounts. Mar. Geol. Quat. Geol. 2002, 22, 8. [Google Scholar]
- Zhao, H.; Pham, T.; Wang, C.; Ding, X.; Mo, Z.; Li, C. Characteristics of the basaltic petrology from Western Pacific Ocean seamount and relation between overlying Co-rich crust and basalt. Geoscience 2007, 21, 352–360. [Google Scholar]
- Dan, H.; Lin, X.; Liu, J. Ferromanganese metallogenic system and ore-forming processes of seamounts in the Pacific. Earth Sci. Front. 2009, 16, 55–65. [Google Scholar]
- Tang, L.; Yu, X.; Dong, Y.; Chu, F. Study on the formation and evolution of seamounts in the Western Pacific and their control on cobalt mineralization. Acta Mineral. Sin. 2011, 31, 700–701. [Google Scholar] [CrossRef]
- Hirano, N.; Koppers, A.A.; Takahashi, A.; Fujiwara, T.; Nakanishi, M. Seamounts, knolls and petit-spot monogenetic volcanoes on the subducting Pacific plate. Basin Res. 2008, 20, 543–553. [Google Scholar] [CrossRef]
- Koppers, A.A.P.; Staudigel, H.; Wijbrans, J.R. Dating crystalline groundmass separates of altered Cretaceous seamount basalts by the 40Ar/39Ar incremental heating technique. Chem. Geol. 2000, 166, 139–158. [Google Scholar] [CrossRef]
- Koppers, A.A.P. ArArCALC-Software for 40Ar/39Ar age calculations. Comput. Geosci. 2002, 28, 605–619. [Google Scholar] [CrossRef]
- Winchester, J.A.; Floyd, P.A. Geological discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.Z. Geochemical Characteristics of Emeishan Basalt and Mineralization of Native Copper Deposit in Junction Area of Yunnan-Guizhou Province China. Ph.D. Thesis, Graduate School of Chinese Academy of Sciences (Institute of Geochemistry), Shanzhen, China, 2006. [Google Scholar]
- Rogers, N.W.; Huang, J.-J. Potassium magmatism: The key to the enrichment of trace elements in the upper mantle. Int. Volcanol. 1993, 1, 37–46. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processe. In Magmatism in the Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Geological Society Special Publications: London, UK, 1989; Volume 42. [Google Scholar]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks; Blackwell Scientifific: Oxford, UK, 1985; Volume 312. [Google Scholar]
- Taylor, S.R.; McLennan, S.M. Encylopedia of Physical Sciences and Technology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2002; Volume 2, pp. 697–719. [Google Scholar]
- Klein, E.M. Geochemistry of the igneous oceanic crust. In The Crust, Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 3, pp. 433–463. [Google Scholar]
- Long, X.; Geldmacher, J.; Hoernle, K.; Hauff, F.; Wartho, J.A.; Garbe-Schönberg, C.D. Origin of Isolated Seamounts in the Canary Basin (East Atlantic): The Role of Plume Material in the Origin of Seamounts not Associated with Hotspot Tracks. Terra Nova 2020, 32, 390–398. [Google Scholar] [CrossRef]
- Sun, W.; Langmuir, C.H.; Ribe, N.M.; Zhang, L.; Sun, S.; Li, H. Plume-ridge interaction induced migration of the Hawaiian-Emperor seamounts. Sci. Bull. 2021, 66, 1691–1697. [Google Scholar] [CrossRef]
- An, Y.; Yang, J.; Chen, W.; Wang, J.; Zhang, Q.; Pan, Z.; Jiao, S. The revelation of big data: Differences between N-MORB, E-MORB and OIB and their possible causes. Sci. Geol. Sin. 2017, 52, 727–742. [Google Scholar]
- Weaver, J.S.; Langmuir, C.H. Calculation of phase equilibrium in mineral-melt systems. Comput. Geosci. 1990, 16, 1–19. [Google Scholar] [CrossRef]
- Zindler, A.; Hart, S.R. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 1986, 14, 493–571. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, B.; Shen, X.; Du, Q.; Su, J.; Jia, W. Geochemical features and geological significance of late Ladinian-Norian meta-basalt in Tabai area of Gejiu, Yunnan, China. J. Earth Sci. Environ. 2021, 43, 829–849. [Google Scholar]
- Sun, S.; Zhang, C.; Zhao, S. Identification of the tectonic settings for continental intraplate by trace elements. Geotecton. Metallog. 2007, 31, 104–109. [Google Scholar]
- Li, Y.; Li, G.; Tong, L.; Yang, G.; Wang, R. Discrimination of ratios of Ta, Hf, Th, La, Zr and Nb for tectonic settings in basalt. J. Earth Sci. Environ. 2015, 37, 8. [Google Scholar]
- Xu, Y.; Ma, J.; Frey, F.; Feigenson, M.; Liu, J. Role of lithosphere–asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chem. Geol. 2005, 224, 247–271. [Google Scholar] [CrossRef]
- Tang, L.; Chen, H.; Dong, C.; Yang, S.; Shen, Z.; Cheng, X.; Fu, L. Middle Triassic post-orogenic extension on Hainan Island: Chronology and geochemistry constraints of bimodal intrusive rocks. Sci. China Earth Sci. 2013, 56, 783–793. [Google Scholar] [CrossRef]
- Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2007, 100, 14–48. [Google Scholar] [CrossRef]
- Barbero, E.; Zaccarini, F.; Delavari, M.; Dolati, A.; Saccani, E.; Marroni, M.; Pandolfi, L. New evidence for Late Cretaceous plume-related seamounts in the Middle East sector of the Neo-Tethys: Constraints from geochemistry, petrology, and mineral chemistry of the magmatic rocks from the western Durkan Complex (Makran Accretionary Prism, SE Iran). Lithos 2021, 396, 106228. [Google Scholar] [CrossRef]
- Wu, L.; Wang, Z.; Wang, Y. On the application of La, Nb and Zr in identifying the tectonic settings. J. East China Geol. Inst. 2003, 26, 343–348. [Google Scholar]
Samples | LON | LAT |
---|---|---|
MP3D21 | −165.8769 | 14.1453 |
MP5D15A | −168.0404 | 10.6113 |
MP5D11 | −168.2445 | 10.5086 |
MP3D04 | −165.4146 | 13.6551 |
MPID201-020 | −160.0526 | 19.5635 |
Sample | MP3D04 | MP3D21 | MP5D11 | MP5D15A | MPID201 | MPID202 |
---|---|---|---|---|---|---|
Al2O3 | 14.3 | 15.6 | 13.4 | 12.3 | 13.8 | 13.8 |
CaO | 9.6 | 6.1 | 9.1 | 10.3 | 7.9 | 7.9 |
Fe2O3 | 14.6 | 14.7 | 15.5 | 13.6 | 14.3 | 14.2 |
K2O | 0.8 | 2.5 | 0.9 | 1.5 | 1.8 | 1.8 |
MgO | 5.1 | 1.4 | 3.9 | 9.3 | 2.9 | 2.9 |
MnO | 0.2 | 0.2 | 0.2 | 0.6 | 0.1 | 0.1 |
Na2O | 2.3 | 4.5 | 3.2 | 1.5 | 3.2 | 3.2 |
P2O5 | 0.4 | 1.1 | 0.7 | 0.4 | 2.0 | 2.0 |
SiO2 | 44.9 | 49.6 | 47.5 | 39.9 | 47.3 | 47.3 |
TiO2 | 3.2 | 2.1 | 4.3 | 3.1 | 3.0 | 3.0 |
L.O.I | 4.0 | 1.5 | 0.8 | 6.7 | 3.2 | 3.1 |
Total | 99.4 | 99.4 | 99.4 | 99.4 | 99.4 | 99.4 |
Sc | 37.6 | 14.3 | 32.8 | 32.9 | 23.9 | 24.5 |
Ti | 19,202.3 | 13,012.5 | 27,014.0 | 17,140.3 | 18,301.1 | 18,356.2 |
V | 336.6 | 122.6 | 343.8 | 173.1 | 107.1 | 108.9 |
Cr | 90.6 | 19.3 | 12.7 | 76.8 | 4.3 | 5.5 |
Mn | 1958.9 | 1768.3 | 1730.2 | 2307.1 | 997.6 | 1047.1 |
Co | 68.9 | 28.1 | 51.9 | 62.7 | 47.2 | 25.9 |
Ni | 116.3 | 40.9 | 27.6 | 148.1 | 19.2 | 20.8 |
Cu | 93.4 | 402.5 | 110.1 | 151.6 | 82.5 | 87.9 |
Zn | 147.5 | 430.7 | 243.1 | 194.1 | 263.7 | 269.8 |
Ga | 23.5 | 31.2 | 29.2 | 21.6 | 31.1 | 31.5 |
Ge | 1.6 | 2.0 | 2.1 | 1.6 | 1.9 | 2.0 |
Rb | 12.0 | 41.1 | 14.4 | 53.5 | 64.9 | 67.1 |
Sr | 274.2 | 463.1 | 378.1 | 377.9 | 408.3 | 411.1 |
Y | 34.1 | 60.4 | 55.0 | 40.9 | 81.7 | 82.7 |
Zr | 203.8 | 498.2 | 372.7 | 189.7 | 458.2 | 469.6 |
Nb | 31.0 | 66.7 | 48.2 | 24.3 | 55.9 | 57.2 |
Cs | 0.6 | 0.5 | 0.8 | 1.9 | 3.9 | 3.9 |
Ba | 349.8 | 316.5 | 138.5 | 394.0 | 117.3 | 123.4 |
La | 23.8 | 51.9 | 35.7 | 25.4 | 59.4 | 59.6 |
Ce | 53.1 | 115.4 | 82.8 | 51.1 | 125.9 | 129.3 |
Pr | 6.9 | 16.2 | 11.5 | 6.5 | 16.8 | 16.7 |
Nd | 29.9 | 68.7 | 50.7 | 28.2 | 72.9 | 73.6 |
Sm | 7.0 | 15.7 | 12.2 | 6.7 | 17.1 | 16.6 |
Eu | 2.3 | 4.9 | 3.8 | 2.3 | 5.4 | 5.4 |
Gd | 7.3 | 15.1 | 12.4 | 7.3 | 17.2 | 17.2 |
Tb | 1.1 | 2.3 | 1.9 | 1.1 | 2.5 | 2.6 |
Dy | 6.7 | 12.8 | 10.5 | 6.4 | 14.8 | 15.0 |
Ho | 1.3 | 2.4 | 2.1 | 1.3 | 3.0 | 2.9 |
Er | 3.3 | 6.0 | 5.2 | 3.4 | 7.6 | 7.7 |
Tm | 0.5 | 0.8 | 0.7 | 0.5 | 1.0 | 1.0 |
Yb | 2.9 | 5.0 | 4.4 | 2.9 | 6.5 | 6.4 |
Lu | 0.4 | 0.7 | 0.6 | 0.4 | 0.9 | 1.0 |
Hf | 4.9 | 11.3 | 8.5 | 4.4 | 9.7 | 9.9 |
Ta | 2.1 | 4.2 | 3.0 | 1.7 | 3.8 | 3.8 |
Pb | 4.7 | 22.8 | 5.0 | 2.4 | 2.8 | 3.0 |
Th | 2.5 | 5.5 | 3.1 | 1.6 | 3.9 | 3.9 |
U | 0.4 | 0.6 | 0.7 | 0.9 | 2.0 | 2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Tang, L.; Chen, L.; Gao, P. 40Ar/39Ar Ages and Geochemistry of Seamount Basalts from the Western Pacific Province. J. Mar. Sci. Eng. 2022, 10, 54. https://doi.org/10.3390/jmse10010054
Liu Q, Tang L, Chen L, Gao P. 40Ar/39Ar Ages and Geochemistry of Seamount Basalts from the Western Pacific Province. Journal of Marine Science and Engineering. 2022; 10(1):54. https://doi.org/10.3390/jmse10010054
Chicago/Turabian StyleLiu, Qian, Limei Tang, Ling Chen, and Peng Gao. 2022. "40Ar/39Ar Ages and Geochemistry of Seamount Basalts from the Western Pacific Province" Journal of Marine Science and Engineering 10, no. 1: 54. https://doi.org/10.3390/jmse10010054
APA StyleLiu, Q., Tang, L., Chen, L., & Gao, P. (2022). 40Ar/39Ar Ages and Geochemistry of Seamount Basalts from the Western Pacific Province. Journal of Marine Science and Engineering, 10(1), 54. https://doi.org/10.3390/jmse10010054