Simulation Study of the Transport Characteristics of the Ice Core in Ice Drilling with Air Reverse Circulation
Abstract
:1. Introduction
2. Experimental Apparatus
3. Numerical Method
3.1. Governing Equations of Fluid Motion and Ice Core Motion
3.2. Physical Model and Boundary Conditions
3.3. Computational Mesh
3.4. Dynamic Mesh Strategy
4. Results and Discussion
4.1. Validation of the Numerical Model
4.2. The Transport Process of Ice Core
4.3. Effect of the Diameter Ratio on the Ice Core’s Maximum Velocity
4.4. Effect of the Length-to-Diameter Ratio on the Ice Core’s Maximum Velocity
4.5. Effect of the Eccentricity on the Ice Core’s Maximum Velocity
4.6. Prediction of the Ice Core’s Maximum Velocity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoffmann, H.M.; Grieman, M.M.; King, A.C.F.; Epifanio, J.A.; Martin, K.; Vladimirova, D.; Pryer, H.V.; Doyle, E.; Schmidt, A.; Humby, J.D.; et al. The ST22 chronology for the Skytrain Ice Rise ice core—Part 1: A stratigraphic chronology of the last 2000 years. Clim. Past 2022, 18, 1831–1847. [Google Scholar] [CrossRef]
- Újvári, G.; Klötzli, U.; Stevens, T.; Svensson, A.; Ludwig, P.; Vennemann, T.; Gier, S.; Horschinegg, M.; Palcsu, L.; Hippler, D.; et al. Greenland ice core record of recent glacial dust sources and atmospheric circulation. J. Geophys. Res. Atmos. 2022, 127, e2022JD036597. [Google Scholar] [CrossRef] [PubMed]
- Talalay, P. Mechanical Ice Drilling Technology; Springer: Singapore, 2016. [Google Scholar]
- Talalay, P. Thermal Ice Drilling Technology; Springer: Singapore, 2020. [Google Scholar]
- Talalay, P.; Li, X.; Gong, D.; Fan, X.; Zhang, N.; Yang, Y. Design and experiment of clamper used in Antarctic subglacial bedrock drilling. J. Mar. Sci. Eng. 2019, 7, 153. [Google Scholar] [CrossRef] [Green Version]
- Talalay, P. Perspectives for development of ice-core drilling technology: A discussion. Ann. Glaciol. 2014, 55, 339–350. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; He, W.; Wang, M.; Cao, J.; Cao, P. Numerical Simulation Study of a Swirling Drill Bit Used for Ice Core Drilling. J. Mar. Sci. Eng. 2022, 10, 296. [Google Scholar] [CrossRef]
- Talalay, P.; Yang, C.; Cao, P.; Wang, R.; Zhang, N.; Fan, X.; Yang, Y.; Sun, Y. Ice-core drilling problems and solutions. Cold Reg. Sci. Technol. 2015, 120, 1–20. [Google Scholar] [CrossRef]
- Wang, R.; An, L.; Cao, P.; Chen, B.; Sysoev, M.; Fan, D.; Talalay, P. Rapid ice drilling with continual air transport of cuttings and cores: General concept. Polar Sci. 2017, 14, 21–29. [Google Scholar] [CrossRef]
- Hu, Z.; Talalay, P.; Zheng, Z.; Cao, P.; Shi, G.; Li, Y.; Fan, X.; Ma, H. Air reverse circulation at the hole bottom in ice-core drilling. J. Glaciol. 2019, 65, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Gibson, C.; Boeckmann, G.; Meulemans, Z.; Kuhl, T.; Koehler, J.; Johnson, J.; Slawny, K. RAM-2 Drill system development: An upgrade of the Rapid Air Movement Drill. Ann. Glaciol. 2021, 62, 99–108. [Google Scholar] [CrossRef]
- Bolshunov, A.V.; Vasilev, D.A.; Ignatiev, S.A.; Dmitriev, A.N.; Vasilev, N.I. Mechanical drilling of glaciers with bottom-hole scavenging with compressed air. Led I Sneg. Ice Snow 2022, 62, 35–46. [Google Scholar] [CrossRef]
- Cao, P.; Liu, M.; Chen, Z.; Chen, B.; Zhao, Q. Theory calculation and testing of air injection parameters in ice core drilling with air reverse circulation. Polar Sci. 2018, 17, 23–32. [Google Scholar] [CrossRef]
- Cao, P.; Cao, H.; Cao, J.; Liu, M.; Chen, B. Studies on pneumatic transport of ice cores in reverse circulation air drilling. Powder Technol. 2019, 356, 50–59. [Google Scholar] [CrossRef]
- Jägers, J.; Wirtz, S.; Scherer, V.; Behr, M. Experimental analysis of wood pellet degradation during pneumatic conveying processes. Powder Technol. 2020, 359, 282–291. [Google Scholar] [CrossRef]
- Unnikrishnan, A.; Chhabra, R.P. An experimental study of motion of cylinders in newtonian fluids: Wall effects and drag coefficient. Can. J. Chem. Eng. 1991, 69, 729–735. [Google Scholar] [CrossRef]
- Lau, R.; Hassan, M.S.; Wong, W.; Chen, T. Revisit of the wall effect on the settling of cylindrical particles in the inertial regime. Ind. Eng. Chem. Res. 2010, 49, 8870–8876. [Google Scholar] [CrossRef] [Green Version]
- Latto, B.; Chow, K.W. Hydrodynamic transport of cylindrical capsules in a vertical pipeline. Can. J. Chem. Eng. 1982, 60, 713–722. [Google Scholar] [CrossRef]
- MysKa, J.; Vlasak, P. The dependence of coefficients in the relation of velocity ratio on parameters of a capsule. Chem. Eng. Sci. 1983, 38, 547–555. [Google Scholar] [CrossRef]
- Yao, B.; Ding, Q.; Zhang, K.; Yang, D.; Zhu, X. Translation simulation of a cylinder in a horizontal pipe. Eng. Appl. Comp. Fluid Mech. 2019, 13, 1106–1118. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Xing, B.S.; Li, J.; Wang, Y.; Hu, N.; Jiang, S. Experiment and simulation analysis of the suspension behavior of large (5–30 mm) nonspherical particles in vertical pneumatic conveying. Powder Technol. 2019, 354, 442–455. [Google Scholar] [CrossRef]
- Liu, M.; Zhu, C.; Cui, T.; Zhang, H.; Zheng, W.; You, S. An alternative algorithm of tunnel piston effect by replacing three-dimensional model with two-dimensional model. Build. Environ. 2018, 128, 55–67. [Google Scholar] [CrossRef]
- Xue, P.; You, S.; Chao, J.; Ye, T. Numerical investigation of unsteady airflow in subway influenced by piston effect based on dynamic mesh. Tunn. Undergr. Space Technol. 2014, 40, 174–181. [Google Scholar] [CrossRef]
- Ren, B.; Zhong, W.; Jin, B. Study on the Drag of a Cylinder-Shaped Particle in Steady Upward Gas Flow. Ind. Eng. Chem. Res. 2011, 50, 7593–7600. [Google Scholar] [CrossRef]
Ice Core Diameter d, mm | Simulated Parameters | ||
---|---|---|---|
Diameter Ratio, | Length-to-Diameter Ratio, | Eccentricity, | |
70 | 0.80 | 1 | 0 |
0.84 | 2 | 0.3 | |
0.88 | 3 | 0.6 | |
0.92 | 4 | 0.9 |
Temperature ° | Air Density kg/m3 | Dynamic Viscosity of Air | Air Velocity m/s |
---|---|---|---|
−30 | 1.45 | 1.57 × 10−5 | 15 |
18 | |||
21 | |||
24 | |||
27 | |||
30 |
No. of Elements | No. of Nodes | Cell Size m | Maximum Velocity m/s |
---|---|---|---|
392,985 | 401,813 | 0.008 | 17.16 |
449,165 | 459,243 | 0.007 | 17.30 |
524,030 | 535,774 | 0.006 | 17.53 |
629,010 | 643,090 | 0.005 | 17.59 |
786,265 | 803,845 | 0.004 | 17.61 |
Zone Names | Dynamic Mesh Type |
---|---|
Inlet | Stationary |
Outlet | Stationary |
Fluid Zone | Rigid Body |
Ice Core Wall | Rigid Body |
Tube Wall | Deforming |
Pipe Dimmeter mm | Ice Core Dimmeter mm | Ice Core Length mm | Experimental Data m/s | Calculated Data m/s | Error % | Average Error % |
---|---|---|---|---|---|---|
67 | 60 | 100 | 5.23 | 5.73 | 9.56 | 6.63 |
67 | 60 | 150 | 7.14 | 6.83 | −4.34 | |
67 | 60 | 200 | 8.04 | 7.24 | −9.95 | |
71 | 60 | 100 | 8.21 | 8.87 | 8.04 | |
71 | 60 | 150 | 10.64 | 10.64 | 0.00 | |
71 | 60 | 200 | 12.26 | 11.64 | −5.06 | |
89 | 80 | 100 | 5.01 | 5.47 | 9.18 | |
89 | 80 | 150 | 6.59 | 6.37 | −3.34 | |
89 | 80 | 200 | 7.83 | 7.19 | −8.17 | |
89 | 80 | 250 | 8.17 | 7.46 | −8.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; He, W.; Cao, J.; Qi, B.; Chen, J.; Cao, P. Simulation Study of the Transport Characteristics of the Ice Core in Ice Drilling with Air Reverse Circulation. J. Mar. Sci. Eng. 2022, 10, 1603. https://doi.org/10.3390/jmse10111603
Wang M, He W, Cao J, Qi B, Chen J, Cao P. Simulation Study of the Transport Characteristics of the Ice Core in Ice Drilling with Air Reverse Circulation. Journal of Marine Science and Engineering. 2022; 10(11):1603. https://doi.org/10.3390/jmse10111603
Chicago/Turabian StyleWang, Mengke, Wenbo He, Jine Cao, Bo Qi, Jingchao Chen, and Pinlu Cao. 2022. "Simulation Study of the Transport Characteristics of the Ice Core in Ice Drilling with Air Reverse Circulation" Journal of Marine Science and Engineering 10, no. 11: 1603. https://doi.org/10.3390/jmse10111603
APA StyleWang, M., He, W., Cao, J., Qi, B., Chen, J., & Cao, P. (2022). Simulation Study of the Transport Characteristics of the Ice Core in Ice Drilling with Air Reverse Circulation. Journal of Marine Science and Engineering, 10(11), 1603. https://doi.org/10.3390/jmse10111603