Towards Fuel Consumption Reduction Based on the Optimum Contra-Rotating Propeller
Abstract
:1. Introduction
2. Numerical Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ηH | Hull efficiency |
ηo | Open-water propeller efficiency |
ηRR | Relative-rotative efficiency |
3D | Three dimensional |
API | Application programming interface |
BSFC | Brake-specific fuel consumption |
CA | Correlation allowance |
CAVAVG | Back cavitation |
CF | Frictional coefficient |
CFD | Computational fluid dynamics |
CO2 | Carbon dioxide |
CPP | Controllable pitch propeller |
CR | Residuary coefficient |
CRP | Contra-rotating propeller |
CT | Total resistance coefficient |
D | Propeller diameter |
DHP | Delivered horsepower |
EAR | Expanded area ratio |
EARmin | Minimum expanded area ratio |
FC | Fuel consumption |
FPP | Fixed pitch propeller |
g | Penalty function |
GBR | Gearbox ratio |
ITTC | International Towing Tank Conference |
j | Number of constraints |
JA | Advance coefficient |
k | Form factor |
KQ | Torque coefficient |
KT | Thrust coefficient |
LR | Loading ratio |
N | Propeller speed |
NOx | Nitrogen oxides |
P/D | Pitch diameter ratio |
PB | Brake power |
PFC | Minimum pitch |
PRESS | Average loading pressure |
Q | Propeller torque |
R | Constant |
RPM | Engine speed |
SMGT | Super marine gas turbine |
SOx | Sulphur oxides |
t | Thrust deduction factor |
T | Propeller thrust |
VGFs | Vortex generator fins |
Vs | Ship design speed |
Vtip | Tip speed |
w | Wake fraction |
WFSV | Wind farm support vessel |
Z | Number of propeller blades |
ρfuel | Fuel density |
Appendix A
Main Characteristics | Parameters | Symbol | Unit | |||||
---|---|---|---|---|---|---|---|---|
Propeller type | [-] | FPP | CRP (6 m) | CRP with cup (6 m) | CRP (5.4 m) | CRP with cup (5.4 m) | ||
Ship characteristics | Ship speed | Vs | [kn] | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 |
Propeller characteristics | Series | [-] | [-] | Wageningen B-series | ||||
Cup | [-] | [%] | 0.00 | 0.00 | 1.50 | 0.00 | 1.50 | |
Diameter | D | [m] | 6.00 | 6.00 | 6.00 | 5.40 | 5.40 | |
Expanded area ratio | EAR | [-] | 0.47 | 0.70 | 0.59 | 0.47 | 0.45 | |
Pitch | P | [m] | 6.58 | 5.55 | 8.08 | 6.76 | 7.06 | |
Speed | N | [RPM] | 75 | 73 | 48 | 70 | 58 | |
Thrust | T | [kN] | 576.49 | 576.49 | 576.49 | 576.49 | 576.49 | |
Torque | Q | [kN·m] | 573.30 | 559.20 | 788.50 | 600.90 | 680.70 | |
Open water efficiency | ηo | [%] | 59 | 63 | 67 | 61 | 64 | |
Advance coefficient | JA | [-] | 0.62 | 0.64 | 0.96 | 0.74 | 0.88 | |
Thrust coefficient | KT | [-] | 0.28 | 0.30 | 0.67 | 0.49 | 0.70 | |
Torque coefficient | KQ | [-] | 0.05 | 0.05 | 0.15 | 0.09 | 0.15 | |
Wake fraction | w | [-] | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | |
Thrust deduction factor | t | [-] | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | |
Cavitation and noise criteria | Tip Speed | Vtip | [m/s] | 23.61 | 22.78 | 15.12 | 19.70 | 16.53 |
Minimum expanded area ratio | EARmin | [-] | 0.47 | 0.33 | 0.28 | 0.36 | 0.30 | |
Average loading pressure | PRESS | [kPa] | 43.56 | 14.62 | 10.30 | 26.57 | 17.32 | |
Back cavitation | CAVAVG | [%] | 7.40 | 2.00 | 2.00 | 3.60 | 2.00 | |
Minimum pitch | PFC | [m] | 4.98 | 5.16 | 7.77 | 5.62 | 6.69 | |
Gearbox characteristics | Gearbox ratio | GBR | [-] | 9.50 | 9.50 | 13.88 | 9.73 | 11.54 |
Engine characteristics | Speed | RPM | [RPM] | 714 | 688 | 668 | 678 | 675 |
Brake power | PB | [kW] | 4682 | 4465 | 4151 | 4551 | 4321 | |
Loading ratio | LR | [%] | 65.6 | 62.5 | 58.1 | 63.7 | 60.5 | |
BSFC | BSFC | [g/kW·h] | 192 | 189 | 191 | 187 | 189 | |
Fuel consumption | FC | [l/nm] | 74.17 | 69.56 | 65.48 | 70.28 | 67.38 | |
Exhaust emissions | Carbon dioxide | CO2 | [g/kW·h] | 608 | 598 | 605 | 593 | 598 |
Nitrogen oxides | NOx | [g/kW·h] | 6.68 | 6.28 | 4.85 | 6.90 | 5.68 | |
Sulphur oxides | SOx | [g/kW·h] | 9.59 | 9.43 | 9.55 | 9.35 | 9.44 |
References
- Bouman, E.A.; Lindstad, E.; Rialland, A.I.; Strømman, A.H. State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping—A review. Transp. Res. D Transp. Environ. 2017, 52, 408–421. [Google Scholar] [CrossRef]
- Green Ship of the Future. 2019 Retrofit Project. Available online: https://greenship.org/project/2019-retrofit-series/ (accessed on 8 December 2021).
- Karatuğ, Ç.; Arslanoğlu, Y.; Guedes Soares, C. Evaluation of decarbonization strategies for existing ships. In Trends in Maritime Technology and Engineering; Guedes Soares, C., Santos, T.A., Eds.; Taylor & Francis Group: London, UK, 2022; pp. 45–54. [Google Scholar]
- DNV. Maritime Forecast to 2050: Energy Transition Outlook 2020; DNV: Bærum, Norway, 2020. [Google Scholar]
- Tadros, M.; Vettor, R.; Ventura, M.; Guedes Soares, C. Effect of different speed reduction strategies on ship fuel consumption in realistic weather conditions. In Trends in Maritime Technology and Engineering; Guedes Soares, C., Santos, T.A., Eds.; Taylor & Francis Group: London, UK, 2022; pp. 553–561. [Google Scholar]
- Vettor, R.; Tadros, M.; Ventura, M.; Guedes Soares, C. Route planning of a fishing vessel in coastal waters with fuel consumption restraint. In Maritime Technology and Engineering 3; Guedes Soares, C., Santos, T.A., Eds.; Taylor & Francis Group: London, UK, 2016; pp. 167–173. [Google Scholar]
- Ventura, M. Ship dimensioning in the initial design. In Developments in Maritime Transportation and Exploitation of Sea Resources; Guedes Soares, C., López Peña, F., Eds.; Taylor & Francis Group: London, UK, 2014; pp. 531–539. [Google Scholar]
- Feng, Y.; el Moctar, O.; Schellin, T.E. Parametric Hull Form Optimization of Containerships for Minimum Resistance in Calm Water and in Waves. J. Mar. Sci. Appl. 2021, 20, 670–693. [Google Scholar] [CrossRef]
- Stark, C.; Xu, Y.; Zhang, M.; Yuan, Z.; Tao, L.; Shi, W. Study on Applicability of Energy-Saving Devices to Hydrogen Fuel Cell-Powered Ships. J. Mar. Sci. Eng. 2022, 10, 388. [Google Scholar] [CrossRef]
- Andersson, J.; Shiri, A.A.; Bensow, R.E.; Yixing, J.; Chengsheng, W.; Gengyao, Q.; Deng, G.; Queutey, P.; Xing-Kaeding, Y.; Horn, P.; et al. Ship-scale CFD benchmark study of a pre-swirl duct on KVLCC2. Appl. Ocean Res. 2022, 123, 103134. [Google Scholar] [CrossRef]
- Gaggero, S.; Martinelli, M. Pre-swirl fins design for improved propulsive performances: Application to fast twin-screw passenger ships. J. Ocean Eng. Mar. Energy 2022. [Google Scholar] [CrossRef]
- Seol, H. Virtue and Function. The Naval Architect. Available online: https://www.rina.org.uk/Virtue_and_function.html (accessed on 8 September 2022).
- Tadros, M.; Ventura, M.; Guedes Soares, C. Design of Propeller Series Optimizing Fuel Consumption and Propeller Efficiency. J. Mar. Sci. Eng. 2021, 9, 1226. [Google Scholar] [CrossRef]
- Nelson, M.; Temple, D.W.; Hwang, J.T.; Young, Y.L.; Martins, J.R.R.A.; Collette, M. Simultaneous optimization of propeller–hull systems to minimize lifetime fuel consumption. Appl. Ocean Res. 2013, 43, 46–52. [Google Scholar] [CrossRef]
- Tadros, M.; Ventura, M.; Guedes Soares, C. Optimum design of a container ship’s propeller from Wageningen B-series at the minimum BSFC. In Sustainable Development and Innovations in Marine Technologies; Georgiev, P., Guedes Soares, C., Eds.; Taylor & Francis Group: London, UK, 2020; pp. 269–274. [Google Scholar]
- Tadros, M.; Vettor, R.; Ventura, M.; Guedes Soares, C. Coupled Engine-Propeller Selection Procedure to Minimize Fuel Consumption at a Specified Speed. J. Mar. Sci. Eng. 2021, 9, 59. [Google Scholar] [CrossRef]
- Jaurola, M.; Hedin, A.; Tikkanen, S.; Huhtala, K. A TOpti simulation for finding fuel saving by optimising propulsion control and power management. J. Mar. Sci. Technol. 2020, 25, 411–425. [Google Scholar] [CrossRef] [Green Version]
- Tadros, M.; Ventura, M.; Guedes Soares, C. Optimization procedures for a twin controllable pitch propeller of a ROPAX ship at minimum fuel consumption. J. Mar. Eng. Technol. 2022. [Google Scholar] [CrossRef]
- Makino, H.; Umeda, N.; Ohtsuka, T.; Ikejima, S.; Sekiguchi, H.; Tanizawa, K.; Suzuki, J.; Fukazawa, M. Energy savings for ship propulsion in waves based on real-time optimal control of propeller pitch and electric propulsion. J. Mar. Sci. Technol. 2017, 22, 546–558. [Google Scholar] [CrossRef]
- Tadros, M.; Vettor, R.; Ventura, M.; Guedes Soares, C. Effect of propeller cup on the reduction of fuel consumption in realistic weather conditions. J. Mar. Sci. Eng. 2022, 10, 1039. [Google Scholar] [CrossRef]
- Wagner, R. Rückblick und Ausblick auf die Entwicklung des Contrapropellers. In Jahrbuch der Schiffbautechnischen Gesellschaft: 30. Band; Springer: Berlin/Heidelberg, Germany, 1929; pp. 195–256. [Google Scholar]
- Min, K.-S.; Chang, B.-J.; Seo, H.-W. Study on the Contra-Rotating Propeller system design and full-scale performance prediction method. Int. J. Nav. Arch. Ocean Eng. 2009, 1, 29–38. [Google Scholar] [CrossRef] [Green Version]
- van Manen, J.D.; Oosterveld, M.W.C. Model Tests on Contra-Rotating Propellers. Int. Shipbuild. Prog. 1969, 15, 401–417. [Google Scholar] [CrossRef]
- Koronowicz, T.; Krzemianowski, Z.; Tuszkowska, T.; Szantyr, J. A complete design of contra-rotating propellers using the new computer system. Pol. Marit. Res. 2010, 17, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Ghassemi, H.; Taherinasab, M. Numerical calculations of the hydrodynamic performance of the contra-rotating propeller (CRP) for high speed vehicle. Pol. Marit. Res. 2013, 20, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Nouri, N.M.; Mohammadi, S.; Zarezadeh, M. Optimization of a marine contra-rotating propellers set. Ocean Eng. 2018, 167, 397–404. [Google Scholar] [CrossRef]
- Kayano, J.; Haraguchi, T.; Tsukada, Y.; Kano, T. On the ship maneuverability of tandem arrangement CRP pod propulsion system. In Maritime Transportation and Exploitation of Ocean and Coastal Resources; Guedes Soares, C., Garbatov, Y., Fonseca, N., Eds.; Taylor and Fransis: London, UK, 2005; pp. 189–193. [Google Scholar]
- Torneman, G. Multiple pod units for efficient vessel handling in wind farm operations. In Design & Operation of Offshore Wind Farm Support Vessels; Royal Institution of Naval Architects: London, UK, 2015. [Google Scholar]
- Hou, L.; Yin, L.; Hu, A.; Chang, X.; Lin, Y.; Wang, S. Optimal matching investigation of marine contra-rotating propellers for energy consumption minimization. J. Mar. Sci. Technol. 2021, 26, 1184–1197. [Google Scholar] [CrossRef]
- Minami, Y.; Kano, T. Evaluation of the emissions from the super eco-ship and the corresponding conventional ship. In Maritime Transportation and Exploitation of Ocean and Coastal Resources; Guedes Soares, C., Garbatov, Y., Fonseca, N., Eds.; Taylor and Fransis: London, UK, 2005; pp. 1721–1727. [Google Scholar]
- MAN Diesel & Turbo. 32/44CR Project Guide—Marine Four-Stroke Diesel Engines Compliant with IMO Tier II; MAN Diesel & Turbo: Augsburg, Germany, 2017. [Google Scholar]
- HydroComp. NavCad: Reliable and Confident Performance Prediction. HydroComp Inc. Available online: https://www.hydrocompinc.com/solutions/navcad/ (accessed on 30 January 2019).
- Tadros, M.; Ventura, M.; Guedes Soares, C. Surrogate models of the performance and exhaust emissions of marine diesel engines for ship conceptual design. In Maritime Transportation and Harvesting of Sea Resources; Guedes Soares, C., Teixeira, A.P., Eds.; Taylor & Francis Group: London, UK, 2018; pp. 105–112. [Google Scholar]
- Tadros, M.; Ventura, M.; Guedes Soares, C. Optimization procedure to minimize fuel consumption of a four-stroke marine turbocharged diesel engine. Energy 2019, 168, 897–908. [Google Scholar] [CrossRef]
- Tadros, M.; Ventura, M.; Guedes Soares, C. Simulation of the performance of marine Genset based on double-Wiebe function. In Sustainable Development and Innovations in Marine Technologies; Georgiev, P., Guedes Soares, C., Eds.; Taylor & Francis Group: London, UK, 2020; pp. 292–299. [Google Scholar]
- The MathWorks Inc. Fmincon. Available online: https://www.mathworks.com/help/optim/ug/fmincon.html (accessed on 2 June 2017).
- Holtrop, J. A statistical re-analysis of resistance and propulsion data. Int. Shipbuild. Prog. 1984, 31, 272–276. [Google Scholar]
- Holtrop, J. A Statistical Resistance Prediction Method With a Speed Dependent Form Factor. In Proceedings of Scientific and Methodological Seminar on Ship Hydrodynamics (SMSSH’88); Bulgarian Ship Hydrodynamics Centre: Varna, Bulgaria, 1988; pp. 1–7. [Google Scholar]
- ITTC. Skin Friction and Turbulence Stimulation. In Proceedings of the 8th ITTC, Madrid, Spain, 15–23 September 1957. [Google Scholar]
- ITTC. 1978 ITTC Performance Prediction Method. In Proceedings of the 28th ITTC, Wuxi, China, 27 November–2 December 2017. [Google Scholar]
- Islam, H.; Ventura, M.; Guedes Soares, C.; Tadros, M.; Abdelwahab, H.S. Comparison between empirical and CFD based methods for ship resistance and power prediction. In Trends in Maritime Technology and Engineering; Guedes Soares, C., Santos, T.A., Eds.; Taylor & Francis Group: London, UK, 2022; pp. 347–357. [Google Scholar]
- Holtrop, J.; Mennen, G.G.J. An approximate power prediction method. Int. Shipbuild. Prog. 1982, 29, 166–170. [Google Scholar] [CrossRef]
- Oosterveld, M.; Van Oossanen, P. Further computer-analyzed data of the Wageningen B-screw series. Int. Shipbuild. Prog. 1975, 22, 251–262. [Google Scholar] [CrossRef] [Green Version]
- Lindgren, H.; Johnsson, C.-A.; Dyne, G. Studies of the Application of Ducted and Contrarotating Propellers on Merchant Ships. In Seventh ONR Symposium on Naval Hydrodynamics; Cooper, R.D., Doroff, S.W., Eds.; Office of Naval Research: Arlington, VA, USA, 1968. [Google Scholar]
- Bjarne, E. Systematic Studies of Contra-rotating Propellers for Merchant Ships. In Proceedings International Maritime and Shipping Conference (IMAS); Institute of Marine Engineers: London, UK, 1973. [Google Scholar]
- van Lammeren, W.P.A.; van Manen, J.D.; Oosterveld, M.W.C. The Wageningen B-screw series. Trans. SNAME 1969, 77, 269–317. [Google Scholar]
- Burrill, L.C.; Emerson, A. Propeller cavitation: Further tests on 16in. propeller models in the King’s College cavitation tunnel. Int. Shipbuild. Prog. 1963, 10, 119–131. [Google Scholar] [CrossRef]
- Blount, D.L.; Fox, D.L. Design Considerations for Propellers in a Cavitating Environment. Mar. Technol. 1978, 15, 144–178. [Google Scholar] [CrossRef]
- MacPherson, D.M. Reliable Propeller Selection for Work Boats and Pleasure Craft: Techniques Using a Personal Computer. In SNAME Fourth Biennial Power Boat Symposium; SNAME: Alexandria, VA, USA, 1991. [Google Scholar]
- Sasaki, N.; Kuroda, M.; Fujisawa, J.; Imoto, T.; Masaharu, S. On the Model Tests and Design Method of Hybrid CRP Podded Propulsion System of a Feeder Container Ship. In Proceedings of the First International Symposium on Marine Propulsors (SMP’09); Koushan, K., Steen, S., Eds.; Norwegian Marine Technology Research Institute (MARINTEK): Trondheim, Norway, 2009. [Google Scholar]
- Sasaki, N.; Murakami, M.; Nozawa, K.; Soejima, S.; Shikaki, A.; Aono, T. Design system for optimum contra-rotating propellers. J. Mar. Sci. Technol. 1998, 3, 3–21. [Google Scholar] [CrossRef]
Characteristics | Unit | Value | |
---|---|---|---|
Ship characteristics | Length waterline | m | 154.00 |
Breadth | m | 23.11 | |
Draft | m | 10.00 | |
Displacement | tonnes | 27,690 | |
Service speed | knots | 14.5 | |
Maximum speed | knots | 16.0 | |
Number of propellers | - | 1 | |
Type of propeller | - | FPP | |
Rated power | kW | 7140 | |
Engine characteristics | Engine builder | - | MAN Energy Solutions [31] |
Brand name | - | MAN | |
Bore | mm | 320 | |
Stroke | mm | 440 | |
Displacement | liters | 4954 | |
Number of cylinders | - | 14 | |
Rated speed | rpm | 750 | |
Rated power | kW | 7140 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tadros, M.; Ventura, M.; Guedes Soares, C. Towards Fuel Consumption Reduction Based on the Optimum Contra-Rotating Propeller. J. Mar. Sci. Eng. 2022, 10, 1657. https://doi.org/10.3390/jmse10111657
Tadros M, Ventura M, Guedes Soares C. Towards Fuel Consumption Reduction Based on the Optimum Contra-Rotating Propeller. Journal of Marine Science and Engineering. 2022; 10(11):1657. https://doi.org/10.3390/jmse10111657
Chicago/Turabian StyleTadros, Mina, Manuel Ventura, and C. Guedes Soares. 2022. "Towards Fuel Consumption Reduction Based on the Optimum Contra-Rotating Propeller" Journal of Marine Science and Engineering 10, no. 11: 1657. https://doi.org/10.3390/jmse10111657
APA StyleTadros, M., Ventura, M., & Guedes Soares, C. (2022). Towards Fuel Consumption Reduction Based on the Optimum Contra-Rotating Propeller. Journal of Marine Science and Engineering, 10(11), 1657. https://doi.org/10.3390/jmse10111657