Future Projection for Wave Climate around Taiwan Using Weather-Type Statistical Downscaling Method
Abstract
:1. Introduction
2. Statistical Downscaling Method
- The collection of historical reanalysis data, comprising atmospheric data and wave data.
- Using and evaluating the source and travel time of the wave energy reaching a local area (ESTELA) method proposed by Perez, Mendez [11]. Defining the spatial domain in the model and the predictor on a daily scale.
- Clustering the atmospheric conditions into several weather types using the k-means algorithm in the reference period.
- The association of weather types with the local wave data is based on their statistical relationship, which does not change over time.
- The validation or projection from reanalysis or measured data and GCMS data, respectively, obtaining the wave distribution in a unit of time (e.g., monthly, annual) from sea states and the occurrence probability, which is the only variable for each weather type.
3. Model Settings and Validation
3.1. Predictor
3.2. Predictand
3.3. Validation
4. Results
4.1. Selection of GCMs
4.2. Future Projection
5. Summary and Conclusions
- The validation results based on the reference period (1980–2004) are best in the west and south of Taiwan, where the correlation coefficients are up to 0.78–0.90. This difference is caused by the different travel times of the wave energy to local areas and the island shielding effect.
- Although the historical data of GCMs are consistent with each other in the reference period (1980~2004), as shown in Table 1, the future climate change results from GCMs show significant differences. Annual wave climate change does not have a significant relationship with the increase in climate change scenarios. It is speculated that the climate conditions in Taiwan are dominated by the monsoon, and the impact of climate change is only in specific seasons.
- More evident changes are observed due to the monsoon season in Taiwan. Notably, the changes near the west region increase dramatically in the spring.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Camus, P.; Losada, I.; Izaguirre, C.; Espejo, A.; Menéndez, M.; Pérez, J. Statistical wave climate projections for coastal impact assessments. Earth’s Future 2017, 5, 918–933. [Google Scholar] [CrossRef]
- Camus, P.; Méndez, F.J.; Losada, I.J.; Menéndez, M.; Espejo, A.; Pérez, J.; Rueda, A.; Guanche, Y. A method for finding the optimal predictor indices for local wave climate conditions. Ocean Dyn. 2014, 64, 1025–1038. [Google Scholar] [CrossRef]
- Camus, P.; Menendez, M.; Mendez, F.J.; Izaguirre, C.; Espejo, A.; Canovas, V.; Perez, J.; Rueda, A.; Losada, I.J.; Medina, R. A weather-type statistical downscaling framework for ocean wave climate. J. Geophys. Res. Ocean. 2014, 119, 7389–7405. [Google Scholar] [CrossRef]
- Chien, H.; Cheng, H.-Y.; Chiou, M.-D. Wave climate variability of Taiwan waters. J. Oceanogr. 2014, 70, 133–152. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J.H.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New York, NY, USA, 2009; Volume 2. [Google Scholar]
- Hegermiller, C.; Antolinez, J.A.; Rueda, A.; Camus, P.; Perez, J.; Erikson, L.H.; Barnard, P.L.; Mendez, F.J. A multimodal wave spectrum–based approach for statistical downscaling of local wave climate. J. Phys. Oceanogr. 2017, 47, 375–386. [Google Scholar] [CrossRef]
- Hemer, M.A.; Fan, Y.; Mori, N.; Semedo, A.; Wang, X.L. Projected changes in wave climate from a multi-model ensemble. Nat. Clim. Change 2013, 3, 471–476. [Google Scholar] [CrossRef]
- Hemer, M.A.; Wang, X.L.; Weisse, R.; Swail, V.R. Advancing wind-waves climate science: The COWCLIP project. Bull. Am. Meteorol. Soc. 2012, 93, 791–796. [Google Scholar] [CrossRef]
- Hsiao, S.-C.; Chiang, W.-S.; Jang, J.-H.; Wu, H.-L.; Lu, W.-S.; Chen, W.-B.; Wu, Y.-T. Flood risk influenced by the compound effect of storm surge and rainfall under climate change for low-lying coastal areas. Sci. Total Environ. 2021, 764, 144439. [Google Scholar] [CrossRef] [PubMed]
- Jolliffe, I.T. Principal Component Analysis for Special Types of Data; Springer: New York, NY, USA, 2002. [Google Scholar]
- Laugel, A.; Menendez, M.; Benoit, M.; Mattarolo, G.; Méndez, F. Wave climate projections along the French coastline: Dynamical versus statistical downscaling methods. Ocean. Model. 2014, 84, 35–50. [Google Scholar] [CrossRef]
- Mori, N.; Yasuda, T.; Mase, H.; Tom, T.; Oku, Y. Projection of extreme wave climate change under global warming. Hydrol. Res. Lett. 2010, 4, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Perez, J.; Mendez, F.J.; Menendez, M.; Losada, I.J. ESTELA: A method for evaluating the source and travel time of the wave energy reaching a local area. Ocean. Dyn. 2014, 64, 1181–1191. [Google Scholar] [CrossRef]
- Perez, J.; Menendez, M.; Camus, P.; Mendez, F.J.; Losada, I.J. Statistical multi-model climate projections of surface ocean waves in Europe. Ocean. Model. 2015, 96, 161–170. [Google Scholar] [CrossRef]
- Perez, J.; Menendez, M.; Mendez, F.J.; Losada, I.J. Evaluating the performance of CMIP3 and CMIP5 global climate models over the north-east Atlantic region. Clim. Dyn. 2014, 43, 2663–2680. [Google Scholar] [CrossRef]
- Rueda, A.; Camus, P.; Méndez, F.J.; Tomás, A.; Luceño, A. An extreme value model for maximum wave heights based on weather types. J. Geophys. Res. Ocean. 2016, 121, 1262–1273. [Google Scholar] [CrossRef]
- Semedo, A.; Weisse, R.; Behrens, A.; Sterl, A.; Bengtsson, L.; Günther, H. Projection of global wave climate change toward the end of the twenty-first century. J. Clim. 2012, 26, 8269–8288. [Google Scholar] [CrossRef]
- Wang, X.L.; Feng, Y.; Swail, V. North Atlantic wave height trends as reconstructed from the 20th century reanalysis. Geophys. Res. Lett. 2012, 39, L18705. [Google Scholar] [CrossRef]
- Wang, X.L.; Feng, Y.; Swail, V.R. Changes in global ocean wave heights as projected using multimodel CMIP5 simulations. Geophys. Res. Lett. 2014, 41, 1026–1034. [Google Scholar] [CrossRef]
- Wang, X.L.; Swail, V.R.; Cox, A. Dynamical versus statistical downscaling methods for ocean wave heights. Int. J. Climatol. J. R. Meteorol. Soc. 2010, 30, 317–332. [Google Scholar] [CrossRef]
Number | Threshold/Model | SI | RE | Consist | Acceptable | ||||
---|---|---|---|---|---|---|---|---|---|
Threshold | 1.77 | 0.82 | 2.74 | 2.24 | 3.95 | 3.11 | Q1 − 1.5IQR Q3 + 1.5IQR | - | |
1 | ACCESS1.0 | 1.18 | 0.58 | 1.99 | 1.64 | 2.78 | 1.88 | V | V |
2 | ACCESS1.3 | 1.12 | 0.48 | 1.99 | 1.84 | 2.22 | 1.80 | V | V |
3 | BCC-CSM1.1 | 0.85 | 0.40 | 1.71 | 1.39 | 1.78 | 1.53 | V | V |
4 | BCC-CSM1.1 (m) | 0.98 | 0.45 | 1.97 | 1.64 | 2.22 | 1.33 | V | V |
5 | CSIRO-Mk3.6.0 | (1.94) | (0.92) | (2.81) | 1.84 | (4.36) | (3.29) | V | X |
6 | EC-EARTH | 1.49 | 0.66 | 2.02 | 1.72 | 3.23 | 2.54 | V | V |
7 | FGOALS-g2 | 1.56 | 0.62 | 2.64 | 1.47 | 3.76 | 2.16 | V | V |
8 | HadGEM2-CC | 1.12 | 0.56 | 2.14 | (2.90) | 2.33 | 2.31 | X | X |
9 | INMCM4.0 | (1.94) | (0.92) | (2.81) | 1.84 | (4.36) | (3.29) | V | X |
10 | IPSL-CM5A-LR | 1.73 | 0.83 | 2.25 | 2.20 | (4.25) | 2.40 | V | X |
11 | IPSL-CM5A-MR | (1.91) | 0.82 | 2.61 | (2.34) | (4.37) | 2.80 | V | X |
12 | IPSL-CM5B-LR | 1.39 | 0.61 | 1.78 | 1.97 | 3.74 | 1.98 | V | V |
13 | MIROC-ESM | 1.60 | 0.81 | 2.62 | 1.80 | 2.33 | (3.72) | V | X |
14 | MIROC-ESM-CHEM | 1.74 | 0.81 | (3.15) | (2.25) | 2.49 | (3.54) | V | X |
15 | MIROC5 | 1.37 | 0.62 | 2.67 | 1.43 | 2.88 | 2.36 | V | V |
16 | MPI-ESM-LR | 0.98 | 0.43 | 1.49 | 1.40 | 2.31 | 1.70 | V | V |
17 | MPI-ESM-MR | 1.11 | 0.49 | 1.81 | 1.39 | 2.53 | 2.05 | V | V |
2020~2039 | 2040~2059 | 2060~2079 | 2080~2099 | |||||
---|---|---|---|---|---|---|---|---|
RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | |
min | −0.20% | 0.00% | −0.07% | −0.04% | −0.45% | −0.67% | −0.63% | −0.92% |
max | 0.84% | 0.59% | 0.50% | 0.37% | 0.31% | 0.65% | 0.00% | 0.34% |
average | 0.44% | 0.25% | 0.20% | 0.18% | 0.08% | 0.21% | −0.30% | −0.32% |
Standard deviation | 0.16% | 0.12% | 0.11% | 0.07% | 0.09% | 0.19% | 0.10% | 0.28% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, W.-S.; Tseng, C.-H.; Hsiao, S.-C.; Chiang, W.-S.; Hu, K.-C. Future Projection for Wave Climate around Taiwan Using Weather-Type Statistical Downscaling Method. J. Mar. Sci. Eng. 2022, 10, 1823. https://doi.org/10.3390/jmse10121823
Lu W-S, Tseng C-H, Hsiao S-C, Chiang W-S, Hu K-C. Future Projection for Wave Climate around Taiwan Using Weather-Type Statistical Downscaling Method. Journal of Marine Science and Engineering. 2022; 10(12):1823. https://doi.org/10.3390/jmse10121823
Chicago/Turabian StyleLu, Wei-Shiun, Chi-Hsiang Tseng, Shih-Chun Hsiao, Wen-Son Chiang, and Kai-Cheng Hu. 2022. "Future Projection for Wave Climate around Taiwan Using Weather-Type Statistical Downscaling Method" Journal of Marine Science and Engineering 10, no. 12: 1823. https://doi.org/10.3390/jmse10121823
APA StyleLu, W. -S., Tseng, C. -H., Hsiao, S. -C., Chiang, W. -S., & Hu, K. -C. (2022). Future Projection for Wave Climate around Taiwan Using Weather-Type Statistical Downscaling Method. Journal of Marine Science and Engineering, 10(12), 1823. https://doi.org/10.3390/jmse10121823