A New Approach to Integrated Multi-Trophic Aquaculture System of the Sea Cucumber Apostichopus japonicus and the Sea Urchin Strongylocentrotus intermedius
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Experimental Design
2.3. Mortality and Morbidity
2.4. Growth
2.5. Aristotle’s Lantern Reflex of S. intermedius
2.6. Feeding and Crawling Behaviors of A. japonicus
2.7. Statistical Analysis
3. Results
3.1. Mortality and Morbidity
3.2. Growth
3.3. Aristotle’s Lantern Reflex of S. intermedius
3.4. Feeding and Crawling Behaviors of A. japonicus
4. Discussion
4.1. Growth Performance of A. japonicus at a High Biomass
4.2. Fitness-Related Behaviors and Growth in A. japonicus
4.3. Feeding Behavior and Body Size of S. intermedius
4.4. Survival of S. intermedius
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chary, K.; Aubin, J.; Sadoul, B.; Fiandrino, A.; Covès, D.; Callier, M.D. Integrated multi-trophic aquaculture of red drum (Sciaenops ocellatus) and sea cucumber (Holothuria scabra): Assessing bioremediation and life-cycle impacts. Aquaculture 2020, 516, 734621. [Google Scholar] [CrossRef]
- Neori, A.; Chopin, T.; Troell, M.; Buschmann, A.H.; Kraemer, G.P.; Halling, C.; Shpigel, M.; Yarish, C. Integrated aquaculture: Rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 2004, 231, 361–391. [Google Scholar] [CrossRef]
- Troell, M.; Joyce, A.; Chopin, T.; Neori, A.; Buschmann, A.H.; Fang, J.G. Ecological engineering in aquaculture potential for Integrated Multi-Trophic Aquaculture (IMTA) in marine offshore systems. Aquaculture 2009, 297, 1–9. [Google Scholar] [CrossRef]
- Yu, Y.; Sun, J.; Zhao, Z.; Ding, P.; Yang, M.; Hu, F.; Qiao, Y.; Wang, L.; Chang, Y.; Zhao, C. Effects of water temperature, age of feces, light intensity and shelter on the consumption of sea urchin feces by the sea cucumber Apostichopus japonicus. Aquaculture 2022, 554, 738134. [Google Scholar] [CrossRef]
- Shpigel, M.; Shauli, L.; Odintsov, V.; Ben-Ezra, D.; Neori, A.; Guttman, L. The sea urchin, Paracentrotus lividus, in an Integrated Multi-Trophic Aquaculture (IMTA) system with fish (Sparus aurata) and seaweed (Ulva lactuca): Nitrogen partitioning and proportional configurations. Aquaculture 2018, 490, 260–269. [Google Scholar] [CrossRef]
- Israel, D.; Lupatsch, I.; Angel, D.L. Testing the digestibility of seabream wastes in three candidates for integrated multi-trophic aquaculture: Grey mullet, sea urchin and sea cucumber. Aquaculture 2019, 510, 364–370. [Google Scholar] [CrossRef]
- Neofitou, N.; Lolas, A.; Ballios, I.; Skordas, K.; Tziantziou, L.; Vafidis, D. Contribution of sea cucumber Holothuria tubulosa on organic load reduction from fish farming operation. Aquaculture 2019, 501, 97–103. [Google Scholar] [CrossRef]
- Grosso, L.; Rakaj, A.; Fianchini, A.; Morroni, L.; Cataudella, S.; Scardi, M. Integrated Multi-Trophic Aquaculture (IMTA) system combining the sea urchin Paracentrotus lividus, as primary species, and the sea cucumber Holothuria tubulosa as extractive species. Aquaculture 2021, 534, 36268. [Google Scholar] [CrossRef]
- Zhang, X.L. China Fishery Statistical Yearbook 2019; China Agriculture Press: Beijing, China, 2021. (In Chinese) [Google Scholar]
- Lawrence, J.M.; Zhao, C.; Chang, Y.Q. Large-scale production of sea urchin (Strongylocentrotus intermedius) seed in a hatchery in China. Aquac. Int. 2019, 27, 1–7. [Google Scholar] [CrossRef]
- Ru, X.S.; Zhang, L.B.; Li, X.N.; Liu, S.L.; Yang, H.S. Development strategies for the sea cucumber industry in China. J. Oceanol. Limnol. 2019, 37, 300–312. [Google Scholar] [CrossRef]
- Chang, Y.Q.; Ding, J.; Song, J.; Yang, W. Biology and Aquaculture of Sea Cucumbers and Sea Urchins; China Ocean Press: Beijing, China, 2004. (In Chinese) [Google Scholar]
- Su, Y.M.; Cai, X.X.; Sun, J.; Zhou, W. Effects of several kinds of feedstuff on growth and digestibility of Juvenile sea urchin Strongylocentrotus intermedius. J. Dalian Fish. Univ. 2008, 23, 242–246, (In Chinese with an English abstract). [Google Scholar]
- De Ridder, C.; Lawrence, J.M. Food and feeding mechanisms: Echinoidea. In Echinoderm Nutrition; Jangoux, M., Lawrence, J.M., Eds.; Balkema Press: Rotterdam, The Netherlands, 1982; pp. 57–115. [Google Scholar]
- Harrold, C.; Pearse, J.S. The ecological role of echinoderms in kelp forests. In Echinoderm Studies; Jangoux, M., Lawrence, J.M., Eds.; Balkema Press: Rotterdam, The Netherlands, 1987; pp. 137–233. [Google Scholar]
- Hagen, N.T. Enlarged lantern size in similar-sized, sympatric, sibling species of Strongylocentrotid sea urchins: From phenotypic accommodation to functional adaptation for durophagy. Mar. Biol. 2008, 153, 907–924. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Yang, H.; Zhou, Y.; Mao, Y.; Zhang, T.; Liu, Y. The influence of diets containing dried bivalve feces and/or powdered algae on growth and energy distribution in sea cucumber Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea). Aquaculture 2006, 256, 457–467. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, S.; Tian, X.; Wang, F.; Gao, Q. The effect of different macroalgae on the growth of sea cucumbers (Apostichopus japonicus Selenka). Aquac. Res. 2010, 2, e881–e885. [Google Scholar] [CrossRef]
- Seo, J.Y.; Shin, I.S.; Lee, S.M. Effect of dietary inclusion of various plant ingredients as an alternative for Sargassum thunbergii on growth and body composition of juvenile sea cucumber Apostichopus japonicaus. Aquac. Nutr. 2011, 17, 549–556. [Google Scholar] [CrossRef]
- Sun, J.; Yu, Y.; Zhao, Z.; Tian, R.; Li, X.; Chang, Y.; Zhao, C. Macroalgae and interspecific alarm cues regulate behavioral interactions between sea urchins and sea cucumbers. Sci. Rep. 2022, 12, 3971. [Google Scholar] [CrossRef]
- Wang, J.Q.; Cheng, X.; Yang, Y.; Wang, N.B. Polyculture of juvenile sea urchin (Strongylocentrotus intermedius) with juvenile sea cucumber (Apostichopus japonicus Selenka). J. Dalian Fish. Univ. 2007, 22, 102–108, (In Chinese with an English abstract). [Google Scholar]
- Hu, F.; Yang, M.; Chi, X.; Ding, P.; Sun, J.; Wang, H.; Yu, Y.; Chang, Y.; Zhao, C. Segregation in multi-layer culture avoids precocious puberty, improves thermal tolerance and decreases disease transmission in the juvenile sea urchin Strongylocentrotus intermedius: A new approach to longline culture. Aquaculture 2021, 543, 736956. [Google Scholar] [CrossRef]
- Hu, F.; Chi, X.; Yang, M.; Ding, P.; Yin, D.; Ding, J.; Huang, X.; Luo, J.; Chang, Y.; Zhao, C. Effects of eliminating interactions in multi-layer culture on survival, food utilization and growth of small sea urchins Strongylocentrotus intermedius at high temperatures. Sci. Rep. 2021, 11, 15116. [Google Scholar] [CrossRef]
- Hu, F.; Yang, M.; Ding, P.; Zhang, X.; Chen, Z.; Ding, J.; Chi, X.; Luo, J.; Zhao, C.; Chang, Y. Effects of the brown algae Sargassum horneri and Saccharina japonica on survival, growth and resistance of small sea urchins Strongylocentrotus intermedius. Sci. Rep. 2020, 10, 12495. [Google Scholar] [CrossRef]
- Deng, H.; He, C.; Zhou, Z.; Liu, C.; Tan, K.; Wang, N.; Jiang, B.; Gao, X.; Liu, W. Isolation and pathogenicity of pathogens from skin ulceration disease and viscera ejection syndrome of the sea cucumber Apostichopus japonicus. Aquaculture 2009, 287, 18–27. [Google Scholar] [CrossRef]
- Broeke, J.; Perez, J.; Pascau, J. Image Processing with ImageJ, 2nd ed.; Packt Publishing Ltd.: Birmingham, UK, 2015. [Google Scholar]
- Ding, J.Y.; Zheng, D.F.; Sun, J.N.; Hu, F.Y.; Yu, Y.S.; Zhao, C.; Chang, Y.Q. Effects of water temperature on survival, behaviors and growth of the sea urchin Mesocentrotus nudus: New insights into the stock enhancement. Aquaculture 2020, 519, 734873. [Google Scholar] [CrossRef]
- Holtz, E.; MacDonald, B.A. Feeding behavior of the sea cucumber Cucumaria frondosa (Echinodermata: Holothuroidea) in the laboratory and the field: Relationships between tentacle insertion rate, flow speed, and ingestion. Mar. Biol. 2009, 156, 1389–1398. [Google Scholar] [CrossRef]
- Sun, J.M.; Zhang, L.B.; Pan, Y.; Lin, C.G.; Wang, F.; Kan, R.T.; Yang, H.S. Feeding behavior and digestive physiology in sea cucumber Apostichopus japonicas. Physiol. Behav. 2015, 139, 336–343. [Google Scholar] [CrossRef]
- Navarro, P.; García-Sanz, S.; Barrio, J.; Tuya, F. Feeding and movement patterns of the sea cucumber Holothuria sanctori. Mar. Biol. 2013, 160, 2957–2966. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L.B.; Lin, C.G.; Sun, J.M.; Kan, R.T.; Yang, H.S. Influence of flow velocity on motor behavior of sea cucumber Apostichopus japonicus. Physiol. Behav. 2015, 144, 52–59. [Google Scholar] [CrossRef]
- Lin, C.G. Effects of Four Physical Environment Factors on the Movement and Feeding Behavior of Sea Cucumber Apostichopus japonicas (Selenka). Master’s Thesis, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China, 2014. (In Chinese). [Google Scholar]
- Chen, J. Overview of sea cucumber farming and sea ranching practices in China. SPC Beche-De-Mer Inf. Bull. 2003, 18, 18–23. [Google Scholar]
- Siikavuopio, S.I.; Dale, T.; Mortensen, A. The effects of stocking density on gonad growth, survival and feed intake of adult green sea urchin (Strongylocentrotus droebachiensis). Aquaculture 2007, 262, 78–85. [Google Scholar] [CrossRef]
- Qi, S.B.; Zhang, W.J.; Jing, C.C.; Wang, H.F.; Zhao, S.; Zhou, M.; Chang, Y.Q. Long-term effects of stocking density on survival, growth performance and marketable production of the sea urchin Strongylocentrotus intermedius. Aquac. Int. 2016, 24, 1323–1339. [Google Scholar] [CrossRef]
- Richardson, C.M.; Lawrence, J.M.; Watts, S.A. Factors leading to cannibalism in Lytechinus variegatus (Echinodermata: Echinoidia) held in intensive culture. J. Exp. Mar. Biol. Ecol. 2011, 399, 68–75. [Google Scholar] [CrossRef]
- Mos, B.; Byrne, M.; Cowden, K.L.; Dworjanyn, S.A. Biogenic acidification drives density-dependent growth of a calcifying invertebrate in culture. Mar. Biol. 2015, 162, 1541–1558. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.; Ding, P.; Yu, Y.; Wen, B.; Cui, Z.; Yang, M.; Chi, X.; Sun, J.; Luo, J.; Sun, Z.; et al. Effects of artificial reefs on selectivity and behaviors of the sea cucumber Apostichopus japonicas: New insights into the pond culture. Aquac. Rep. 2021, 21, 100842. [Google Scholar] [CrossRef]
- Roberts, D.; Moore, H. Tentacular diversity in deep-sea deposit-feeding holothurians: Implications for biodiversity in the deep sea. Biodivers. Conserv. 1997, 6, 1487–1505. [Google Scholar] [CrossRef]
- Hudson, I.R.; Wigham, B.D.; Solan, M.; Rosenberg, R. Feeding behaviour of deep-sea dwelling holothurians: Inferences from a laboratory investigation of shallow fjordic specie. J. Mar. Syst. 2005, 57, 201–218. [Google Scholar] [CrossRef]
- Zhou, S.; Shirley, T.C. Habitat and depth distribution of the red sea cucumber Parastichopus californicus in a Southeast Alaska bay. Alsk. Fish. Res. Bull. 1996, 3, 23–131. [Google Scholar]
- Dissanayake, D.C.T.; Stefansson, G. Habitat preference of sea cucumbers: Holothuria atra and Holothuria edulis in the coastal waters of Sri Lanka. J. Mar. Biol. Assoc. UK 2012, 92, 581–590. [Google Scholar] [CrossRef]
- Qiu, T.L.; Zhang, L.B.; Zhang, T.; Yang, H.S. Effects of mud substrate and water current on the behavioral characteristics and growth of the sea cucumber Apostichopus japonicus in the Yuehu lagoon of northern China. Aquac. Int. 2014, 22, 423–433. [Google Scholar] [CrossRef]
- Agustina, Y. Effect of the covering behavior of the juvenile sea urchin Strongylocentrotus intermedius on pral characteristics and growth of the sea cucumber Apostichopus japonicus in the Yuredation by the spider crab Pugettia quadriceps. Fish. Sci. 2001, 67, 1181–1183. [Google Scholar]
- Lawrence, J.M.; Lawrence, A.L.; McBride, S.; George, S.B.; Watts, S.A.; Plank, L.R. Developments in the use of prepared feeds in sea-urchin aquaculture. J. World Aquac. Soc. 2001, 32, 34–39. [Google Scholar]
- Kelly, M.S. Survivorship and growth rates of hatchery-reared sea urchins. Aquac. Int. 2002, 10, 309–316. [Google Scholar] [CrossRef]
- Schlosser, S.C.; Lupatsch, I.; Lawrence, J.M.; Lawrence, A.L.; Shpigel, M. Protein and energy digestibility and gonad development of the European sea urchin, Paracentrotus lividus (Lamarck), fed algal and prepared diets during spring and fall. Aquac. Res. 2005, 36, 972–982. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, T.; Unuma, T.; Yamamoto, T. Optimum protein level in a purified diet for young red sea urchin, Pseudocentrotus depressus. Fish. Sci. 2001, 67, 361–363. [Google Scholar] [CrossRef]
- Kennedy, E.J.; Robinson, S.M.C.; Parson, G.J.; Castell, J.D. Effect of protein source and concentration on somatic growth of juvenile green sea urchins Strongylocentrotus droebachiensis. J. World Aquac. Soc. 2005, 36, 320–336. [Google Scholar] [CrossRef]
- Li, T.W.; Xu, S.L.; Wang, R.B.; Xu, S.F.; Su, X.R. Preliminary studies on the black mouth disease of sea urchin, Strongylocentrotus intermedius (Strongylocentrotidae Echinoidea). Mar. Sci. 2000, 24, 41–43, (In Chinese with an English abstract). [Google Scholar]
- Wang, C.; Hu, W.J.; Wang, L.S.; Qiao, H.J.; Wu, H.Y.; Xu, Z.G. Effects of dietary supplementation with Sargassum horneri meal on growth performance, body composition, and immune response of juvenile turbot. J. Appl. Phycol. 2019, 31, 771–778. [Google Scholar] [CrossRef]
- Hemmingson, J.A.; Falshaw, R.; Furneaux, R.H.; Thompson, K. Structure and antiviral activity of the galactofucan sulfates extracted from Undaria pinnatifida (Phaeophyta). J. Appl. Phycol. 2006, 18, 185–193. [Google Scholar] [CrossRef]
- Narasimhan, M.K.; Pavithra, S.K.; Krishnan, V.; Chandrasekaran, M. In vitro analysis of antioxidant, antimicrobial and antiproliferative activity of Enteromorpha antenna, Enteromorpha linza and Gracilaria corticata extracts. Jundishapur J. Nat. Pharm. Prod. 2013, 8, 151–159. [Google Scholar] [CrossRef]
- Kanimozhi, S.; Krishnaveni, M.; Deivasigmani, B.; Rajasekar, T.; Priyadarshni, P. Immunomo-stimulation effects of Sargassum whitti on Mugil cephalus against Pseudomonas fluorescence. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2, 93–103. [Google Scholar]
- Guo, Z.; Yang, N.; Wang, Z.; Lu, Q.; Wang, R.; Lin, Y. Optimal dietary Enteromorpha prolifera in turbot (Scophthalmus maximus). Fish. Sci. 2015, 34, 423–427. (In Chinese) [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, F.; Wang, H.; Tian, R.; Gao, J.; Wu, G.; Yin, D.; Zhao, C. A New Approach to Integrated Multi-Trophic Aquaculture System of the Sea Cucumber Apostichopus japonicus and the Sea Urchin Strongylocentrotus intermedius. J. Mar. Sci. Eng. 2022, 10, 1875. https://doi.org/10.3390/jmse10121875
Hu F, Wang H, Tian R, Gao J, Wu G, Yin D, Zhao C. A New Approach to Integrated Multi-Trophic Aquaculture System of the Sea Cucumber Apostichopus japonicus and the Sea Urchin Strongylocentrotus intermedius. Journal of Marine Science and Engineering. 2022; 10(12):1875. https://doi.org/10.3390/jmse10121875
Chicago/Turabian StyleHu, Fangyuan, Huiyan Wang, Ruihuan Tian, Jujie Gao, Guo Wu, Donghong Yin, and Chong Zhao. 2022. "A New Approach to Integrated Multi-Trophic Aquaculture System of the Sea Cucumber Apostichopus japonicus and the Sea Urchin Strongylocentrotus intermedius" Journal of Marine Science and Engineering 10, no. 12: 1875. https://doi.org/10.3390/jmse10121875
APA StyleHu, F., Wang, H., Tian, R., Gao, J., Wu, G., Yin, D., & Zhao, C. (2022). A New Approach to Integrated Multi-Trophic Aquaculture System of the Sea Cucumber Apostichopus japonicus and the Sea Urchin Strongylocentrotus intermedius. Journal of Marine Science and Engineering, 10(12), 1875. https://doi.org/10.3390/jmse10121875