Dynamic Modeling of Underwater Snake Robot by Hybrid Rigid-Soft Actuation
Abstract
:1. Introduction
2. Methodology
2.1. Notation
- Inertial frame FI is fixed with the earth.
- Rigid propulsion body frames are attached to the centerline on the side closest to the tail, which is represented by Fi ‘.
- The rigid propulsion module of the tail is the robot base, so the frame F0 ‘ is defined as the base frame Fb.
- The body frames of the soft joints are fixed at the end closest to the tail, which is the same as the definition of a rigid propulsion frame, denoted by Fi.
- There is an additional end frame Fe at the robot head.
- The coordinate of the propeller is described by the frames Ft,i,j, where the subscript i and j are the rigid propulsion index and propeller index, respectively. The origin of the frame Ft,i,j is at the attack point of the propeller, and the thrust direction coincides with the x-axis.
2.2. Kinematic Analysis
2.3. Dynamic Formulation
3. Results
3.1. Robot Prototype Overview
- Modular: The modular design of the robot is adopted, and the rigid propulsion and soft joint modules have universal mechanical and electrical interfaces.
- Flexible: Compared to rigid joint, The soft one can be bent in all directions, which greatly improves flexibility, especially in a few modules.
- Waterproof: All modules of the robot are waterproof at water depths down to at least 5 m.
3.2. Numerical Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Zhou, Z.; Liu, J.; Yu, J. A Survey of Underwater Multi-Robot Systems. IEEE/CAA J. Autom. Sin. 2021, 9, 1–18. [Google Scholar] [CrossRef]
- Yoerger, D.R.; Govindarajan, A.; Howland, J.C.; Llopiz, J.K.; Wiebe, P.H.; Curran, M.; Fujii, J.; Gomez-Ibanez, D.; Katija, K.; Robison, B.H.; et al. A hybrid underwater robot for multidisciplinary investigation of the ocean twilight zone. Sci. Robot. 2021, 6, eabe1901. [Google Scholar] [CrossRef] [PubMed]
- Huvenne, V.A.; Robert, K.; Marsh, L.; Iacono, C.L.; le Bas, T.; Wynn, R.B. ROVs and AUVs. In Submarine Geomorphology; Springer: Cham, Switzerland, 2018; pp. 93–108. [Google Scholar]
- Teague, J.; Allen, M.J.; Scott, T.B. The potential of low-cost ROV for use in deep-sea mineral, ore prospecting and monitoring. Ocean. Eng. 2018, 147, 333–339. [Google Scholar] [CrossRef]
- Carreras, M.; Hernández, J.D.; Vidal, E.; Palomeras, N.; Ribas, D.; Ridao, P. Sparus II AUV—A hovering vehicle for seabed inspection. IEEE J. Ocean. Eng. 2018, 43, 344–355. [Google Scholar] [CrossRef]
- Katzschmann, R.K.; DelPreto, J.; MacCurdy, R.; Rus, D. Exploration of underwater life with an acoustically controlled soft robotic fish. Sci. Robot. 2018, 3, eaar3449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Dai, X.; Li, L.; Gheneti, B.H.; Ding, Y.; Yu, J.; Xie, G. Three-dimensional modeling of a fin-actuated robotic fish with multimodal swimming. IEEE/ASME Trans. Mechatron. 2018, 23, 1641–1652. [Google Scholar] [CrossRef]
- Kelasidi, E.; Liljeback, P.; Pettersen, K.Y.; Gravdahl, J.T. Innovation in underwater robots: Biologically inspired swimming snake robots. IEEE Robot. Autom. Mag. 2016, 23, 44–62. [Google Scholar] [CrossRef] [Green Version]
- Huo, X.; Wang, X.; Ge, T. Impulse control method for hydraulic propulsion system used in 3500 m work-class ROV. Appl. Ocean. Res. 2016, 60, 75–83. [Google Scholar] [CrossRef]
- Capocci, R.; Dooly, G.; Omerdić, E.; Coleman, J.; Newe, T.; Toal, D. Inspection-class remotely operated vehicles—A review. J. Mar. Sci. Eng. 2017, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Ridao, P.; Carreras, M.; Ribas, D.; Sanz, P.J.; Oliver, G. Intervention AUVs: The next challenge. Annu. Rev. Control 2015, 40, 227–241. [Google Scholar] [CrossRef]
- Yamada, H. Development of Amphibious Snake-like Robot ACM-R5. In Proceedings of the the 36th International Symposium on Robotics (ISR 2005), Tokyo, Japan, 29 November–1 December 2005. [Google Scholar]
- Porez, M.; Boyer, F.; Ijspeert, A.J. Improved Lighthill fish swimming model for bio-inspired robots: Modeling, computational aspects and experimental comparisons. Int. J. Robot. Res. 2014, 33, 1322–1341. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Fei, F. The Development Status and Trend of Commercial Bionic Robots. In Proceedings of the 2021 5th International Conference on Electronic Information Technology and Computer Engineering, Xiamen, China, 22–24 October 2021; pp. 1377–1381. [Google Scholar]
- Sverdrup-Thygeson, J.; Kelasidi, E.; Pettersen, K.Y.; Gravdahl, J.T. The underwater swimming manipulator—A bioinspired solution for subsea operations. IEEE J. Ocean. Eng. 2017, 43, 402–417. [Google Scholar] [CrossRef] [Green Version]
- Liljebäck, P.; Stavdahl, Ø.; Pettersen, K.Y.; Gravdahl, J.T. Mamba-A waterproof snake robot with tactile sensing. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 294–301. [Google Scholar]
- Liljebäck, P.; Mills, R. Eelume: A flexible and subsea resident IMR vehicle. In Proceedings of the OCEANS 2017—Aberdeen Conference, Aberdeen, UK, 19–22 June 2017; pp. 1–4. [Google Scholar]
- Zwilgmeyer, G.O. Creating a Synthetic Underwater Dataset for Egomotion Estimation and 3D Reconstruction. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2021. [Google Scholar]
- Xu, F.; Wang, H.; Au, K.W.S.; Chen, W.; Miao, Y. Underwater dynamic modeling for a cable-driven soft robot arm. IEEE/ASME Trans. Mechatron. 2018, 23, 2726–2738. [Google Scholar] [CrossRef]
- Xu, F.; Wang, H.; Wang, J.; Au, K.W.S.; Chen, W. Underwater dynamic visual servoing for a soft robot arm with online distortion correction. IEEE/ASME Trans. Mechatron. 2019, 24, 979–989. [Google Scholar] [CrossRef]
- Gong, Z.; Fang, X.; Chen, X.; Cheng, J.; Xie, Z.; Liu, J.; Chen, B.; Yang, H.; Kong, S.; Hao, Y.; et al. A soft manipulator for efficient delicate grasping in shallow water: Modeling, control, and real-world experiments. Int. J. Robot. Res. 2021, 40, 449–469. [Google Scholar] [CrossRef]
- Wang, Z.; Cui, W. For safe and compliant interaction: An outlook of soft underwater manipulators. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2021, 235, 3–14. [Google Scholar] [CrossRef]
- Li, G.; Chen, X.; Zhou, F.; Liang, Y.; Xiao, Y.; Cao, X.; Zhang, Z.; Zhang, M.; Wu, B.; Yin, S.; et al. Self-powered soft robot in the Mariana Trench. Nature 2021, 591, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Kelasidi, E.; Pettersen, K.Y.; Gravdahl, J.T.; Liljebäck, P. Modeling of underwater snake robots. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 4540–4547. [Google Scholar]
- Tanaka, M.; Sawabe, H.; Nakajima, M.; Ariizumi, R. Redundant Control of a Planar Snake Robot with Prismatic Joints. Int. J. Control Autom. Syst. 2021, 19, 3475–3486. [Google Scholar] [CrossRef]
- Mohammadi, A.; Rezapour, E.; Maggiore, M.; Pettersen, K.Y. Maneuvering control of planar snake robots using virtual holonomic constraints. IEEE Trans. Control Syst. Technol. 2015, 24, 884–899. [Google Scholar] [CrossRef] [Green Version]
- Ariizumi, R.; Matsuno, F. Dynamic analysis of three snake robot gaits. IEEE Trans. Robot. 2017, 33, 1075–1087. [Google Scholar] [CrossRef]
- Kohl, A.M.; Pettersen, K.Y.; Kelasidi, E.; Gravdahl, J.T. Planar path following of underwater snake robots in the presence of ocean currents. IEEE Robot. Autom. Lett. 2016, 1, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, W.; Liang, W.; Li, C.; Zheng, H.; Ren, Q.; Li, P. Steering motion control of a snake robot via a biomimetic approach. Front. Inf. Technol. Electron. Eng. 2019, 20, 32–44. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y.; Yang, S.; Li, J.; Song, F.; Gong, Y. Dynamic modeling and analysis of underwater swimming snake robot with soft joint. In Proceedings of the 31st International Ocean and Polar Engineering Conference, Rhodes, Greece, 20–25 June 2021. [Google Scholar]
- Billah, M.M.; Khan, M.R.; Shafie, A.A. Autonomous flexible snake robot for 3D motion. In Proceedings of the 2015 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), Langkawi, Malaysia, 18–20 October 2015; pp. 105–110. [Google Scholar]
- Fu, Q.; Gart, S.W.; Mitchel, T.W.; Kim, J.S.; Chirikjian, G.S.; Li, C. Lateral oscillation and body compliance help snakes and snake robots stably traverse large, smooth obstacles. Integr. Comp. Biol. 2020, 60, 171–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malayjerdi, M.; Akbarzadeh, A. Analytical modeling of a 3-D snake robot based on sidewinding locomotion. Int. J. Dyn. Control 2019, 7, 83–93. [Google Scholar] [CrossRef]
- From, P.J.; Gravdahl, J.T.; Pettersen, K.Y. Vehicle-Manipulator Systems; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Rolf, M.; Steil, J.J. Constant curvature continuum kinematics as fast approximate model for the Bionic Handling Assistant. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 3440–3446. [Google Scholar]
- Jazar, R.N. Theory of Applied Robotics: Kinematics, Dynamics, and Control; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Webster, R.H., III; Jones, B.A. Design and kinematic modeling of constant curvature continuum robots: A review. Int. J. Robot. Res. 2010, 29, 1661–1683. [Google Scholar] [CrossRef]
- Mustaza, S.M.; Elsayed, Y.; Lekakou, C.; Saaj, C.; Fras, J. Dynamic modeling of fiber-reinforced soft manipulator: A visco-hyperelastic material-based continuum mechanics approach. Soft Robot. 2019, 6, 305–317. [Google Scholar] [CrossRef] [Green Version]
- Godage, I.S.; Medrano-Cerda, G.A.; Branson, D.T.; Guglielmino, E.; Caldwell, D.G. Dynamics for variable length multisection continuum arms. Int. J. Robot. Res. 2016, 35, 695–722. [Google Scholar] [CrossRef] [Green Version]
- Peters, S.T. Handbook of Composites; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Banks, H.T.; Hu, S.; Kenz, Z.R. A brief review of elasticity and viscoelasticity for solids. Adv. Appl. Math. Mech. 2011, 3, 1–51. [Google Scholar] [CrossRef] [Green Version]
- Rackl, M. Curve fitting for Ogden, Yeoh and polynomial models. ScilabTEC Conf. 2015, 2015, 1–11. [Google Scholar]
- Winter, H. Viscous dissipation term in energy equations. Calc. Meas. Tech. Momentum Energy Mass Transf. 1987, 7, 27–34. [Google Scholar]
- Witteveen, W.; Pichler, F. On the relevance of inertia related terms in the equations of motion of a flexible body in the floating frame of reference formulation. Multibody Syst. Dyn. 2019, 46, 77–105. [Google Scholar] [CrossRef] [Green Version]
- Antonelli, G. Modelling of underwater robots. In Underwater Robots; Springer: Berlin/Heidelberg, Germany, 2018; pp. 33–110. [Google Scholar]
- Kanso, E.; Marsden, J.E.; Rowley, C.W.; Melli-Huber, J.B. Locomotion of articulated bodies in a perfect fluid. J. Nonlinear Sci. 2005, 15, 255–289. [Google Scholar] [CrossRef]
- Schmidt-Didlaukies, H.M.; Sørensen, A.J.; Pettersen, K.Y. Modeling of articulated underwater robots for simulation and control. In Proceedings of the 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), Porto, Portugal, 6–9 November 2018; pp. 1–7. [Google Scholar]
- Faltinsen, O. Sea Loads on Ships and Offshore Structures; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Spong, M.W.; Hutchinson, S.; Vidyasagar, M. Robot Modeling and Control; John Wiley & Sons: New York, NY, USA, 2006. [Google Scholar]
- Chen, Y.-L.; Li, W.-S.; Guo, Q.; Gong, Y.-J. Kinematics Modeling of Soft Manipulator Interacting with Environment Using Segmented Variable Curvature Method. Int. J. Control Autom. Syst. 2022, 20, 255–267. [Google Scholar] [CrossRef]
- Kelasidi, E.; Pettersen, K.Y.; Gravdahl, J.T. Modeling and propulsion methods of underwater snake robots. In Proceedings of the 2017 IEEE Conference on Control Technology and Applications (CCTA), Maui, HI, USA, 27–30 August 2017; pp. 819–826. [Google Scholar]
Symbol | Meaning | Value |
---|---|---|
L0 | soft joint length | 200 mm |
Rs | soft joint radius | 90 mm |
ra | actuator radius | 8 mm |
rs | actuator to soft joint center | 24 mm |
hc | silicone wall thickness | 6 mm |
hs | fabric layer thickness | 2 mm |
C10~30 | silicone material parameters | 12,563 J/m3 −67.784 J/m3 2.7385 J/m3 |
η0 | consistency of the material | 22,263.8 Pa s0.3 |
k | power law index | 0.3 |
Em | elastic modulus | 2.048 × 105 Pa |
ms | soft joint mass | 158 g |
mR | rigid propulsion mass | 563 g |
χ | point of attack | 76 mm |
LR | rigid propulsion length | 200 mm |
Rr | rigid propulsion radius | 90 mm |
Symbol | Meaning | Value |
---|---|---|
Ca | added mass coefficient | 1 |
αi | added mass in the surge | 0.2 |
CD | drag coefficient | 1 |
βi | linear drag effects in surge | 0.2 |
Ωi | linear drag effects in roll | 0.5 |
ρ | Water density | 1000 kg/m3 |
e1 | Gravitational acceleration | [0.0–9.81] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Chen, Y.; Liu, Y.; Gong, Y. Dynamic Modeling of Underwater Snake Robot by Hybrid Rigid-Soft Actuation. J. Mar. Sci. Eng. 2022, 10, 1914. https://doi.org/10.3390/jmse10121914
Zhang J, Chen Y, Liu Y, Gong Y. Dynamic Modeling of Underwater Snake Robot by Hybrid Rigid-Soft Actuation. Journal of Marine Science and Engineering. 2022; 10(12):1914. https://doi.org/10.3390/jmse10121914
Chicago/Turabian StyleZhang, Junhao, Yinglong Chen, Yi Liu, and Yongjun Gong. 2022. "Dynamic Modeling of Underwater Snake Robot by Hybrid Rigid-Soft Actuation" Journal of Marine Science and Engineering 10, no. 12: 1914. https://doi.org/10.3390/jmse10121914
APA StyleZhang, J., Chen, Y., Liu, Y., & Gong, Y. (2022). Dynamic Modeling of Underwater Snake Robot by Hybrid Rigid-Soft Actuation. Journal of Marine Science and Engineering, 10(12), 1914. https://doi.org/10.3390/jmse10121914