On the Influence of Cavitation Volume Variations on Propeller Broadband Noise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nomenclature and Software
2.2. Data Basis
2.3. Analytical Model for Systematic Manipulation
2.4. Evaluation of Shape Parameters
- (A)
- at t > 0.05 s: pressure peak occurs at the beginning of the subsequent bubble growth
- (B)
- at 0.02 s < t < 0.05 s: pressure peak occurs near the end of the collapse phase
- (C)
- at t < 0.02 s: pressure peak occurs near the volume maximum (beginning of sequence)
- Volume amplitude , taken at the start of each sequence;
- Length of each sequence , reciprocal to the blade passing frequency;
- Volume at the pressure peak at the collapse region , i.e., the 10th control point of the polynomial function;
- Volume in the middle between the pressure peak and the only or second volume minimum , i.e., the 11th control point.
2.5. Monte Carlo Simulations
- Volume amplitude–scaling with a constant factor
- Sequence length–scaling and resampling
- Volume at control point
- Volume at control point
3. Results
3.1. Systematically Varied Signal
3.2. Application of Stochastic Parameters from Measured Sequences
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Bft | Beaufort scale |
measured sound pressure | |
rpm | rotations per minute |
T | length of one blade passage |
TEU | twenty foot equivalent unit |
mean volume signal | |
cavitation volume at control point of the polynomial function | |
cavitation volume calculated from the measured pressure | |
cavitation volume modelled by polynomial function | |
cavitation volume modelled by manipulated polynomial function | |
WMO | world meteorological organisation |
References
- Hildebrand, J.A. Anthropogenic and natural sources of ambient noise in the ocean. Mar. Ecol. Prog. Ser. 2009, 395, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Andrew, R.K.; Howe, B.M.; Mercier, J.A.; Dzieciuch, M.A. Ocean ambient sound: Comparing the 1960s with the 1990s for a receiver off the California coast. Acoust. Res. Lett. Online 2002, 3, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Committee on Potential Impacts of Ambient Noise in the Ocean on Marine Mammals. Ocean Noise and Marine Mammals; National Academies Press: Washington, DC, USA, 2003. [Google Scholar]
- Veirs, S.; Veirs, V.; Wood, J.D.; Johnson, M. Ship noise extends to frequencies used for echolocation by endangered killer whales. PeerJ 2016, 4, e1657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, D. Mechanics of Underwater Noise; Peninsula Publishing: Westport, CT, USA, 1987. [Google Scholar]
- Gassmann, M.; Wiggins, S.M.; Hildebrand, J.A. Deep-water measurements of container ship radiated noise signatures and directionality. J. Acoust. Soc. Am. 2017, 142, 1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arveson, P.T.; Vendittis, D.J. Radiated noise characteristics of a modern cargo ship. J. Acoust. Soc. Am. 2000, 107, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Wittekind, D.K.; Schuster, M. Propeller cavitation noise and background noise in the sea. Ocean Eng. 2016, 120, 116–121. [Google Scholar] [CrossRef]
- Matusiak, J. Pressure and Noise Induced by a Cavitating Marine Screw Propeller. Ph.D. Thesis, Helsinki University of Technology, Helsinki, Finland, 17 February 1992. [Google Scholar]
- Baiter, H.J. Advanced views of cavitation noise. In International Symposium on Propulsors and Cavitation; Schiffbautechnische Gesellschaft e.V.: Hamburg, Germany, 1992. [Google Scholar]
- Bosschers, J. On the relation between tonal and broadband content of hull pressure spectra due to cavitating ship propellers. J. Phys. Conf. Ser. 2015, 656, 12101. [Google Scholar] [CrossRef] [Green Version]
- Aktas, B.; Atlar, M.; Fitzsimmons, P.; Shi, W. An advanced joint time-frequency analysis procedure to study cavitation-induced noise by using standard series propeller data. Ocean Eng. 2018, 170, 329–350. [Google Scholar] [CrossRef] [Green Version]
- Föhring, L.S.; Juhl, P.M.; Wittekind, D.K. Cavitation volume behaviour derived from full-scale pressure fluctuations. Ships Offshore Struct. 2022, 1–9. [Google Scholar] [CrossRef]
- Huse, E. Pressure Fluctuations on the Hull Induced by Propeller Cavitations; Norwegian Ship Model Experiment Tank Publication: Trondheim, Norway, 1972; Volume 111. [Google Scholar]
- Ji, B.; Luo, X.; Peng, X.; Wu, Y.; Xu, H.y. Numerical analysis of cavitation evolution and excited pressure fluctuation around a propeller in non-uniform wake. Int. J. Multiph. Flow 2012, 43, 13–21. [Google Scholar] [CrossRef]
- Ji, B.; Luo, X.; Wu, Y. Unsteady cavitation characteristics and alleviation of pressure fluctuations around marine propellers with different skew angles. J. Mech. Sci. Technol. 2014, 28, 1339–1348. [Google Scholar] [CrossRef]
- Carlton, J.S. Marine Propellers and Propulsion, 4th ed.; Butterworth-Heinemann: Oxford, UK, 2019. [Google Scholar]
- Pereira, F.A.; Di Felice, F.; Salvatore, F. Propeller Cavitation in Non-Uniform Flow and Correlation with the Near Pressure Field. J. Mar. Sci. Eng. 2016, 4, 70. [Google Scholar] [CrossRef] [Green Version]
- Testa, C.; Ianniello, S.; Salvatore, F. A Ffowcs Williams and Hawkings formulation for hydroacoustic analysis of propeller sheet cavitation. J. Sound Vib. 2018, 413, 421–441. [Google Scholar] [CrossRef]
- The Specialist Committee on Cavitation Induced Pressure Fluctuation. Final Report and Recommendations to the 22nd ITTC. In Proceedings of the 22nd International Towing Tank Conference, Seoul, Republic of Korea & Shanghai, China, 5–11 September 1999; International Towing Tank Conference: Zürich, Switzerland, 1999. [Google Scholar]
- Geest, C.D. Untersuchungen zum Zusammenhang Zwischen Kavitationsvolumen und Schalldruck bei Schiffspropellern. Bachelor’s Thesis, University of Applied Sciences Kiel, Kiel, Germany, 2021. [Google Scholar]
- Nau, P. Auswirkungen von Statistischen Schwankungen des Kavitationsvolumens auf den Wasserschallpegel von Schiffspropellern. Bachelor’s Thesis, University of Applied Sciences Kiel, Kiel, Germany, 2021. [Google Scholar]
- Brandt, A. Noise and Vibration Analysis: Signal Analysis and Experimental Procedures; Wiley: Chichester, UK, 2011. [Google Scholar]
Length between perpendiculars | 223.57 m |
Breadth | 32.20 m |
Maximum draught | 12.50 m |
Displacement | 63,581 t |
Engine rating at 104 rpm | 31,710 kW |
Propeller area ratio | 0.732 |
Propeller mean pitch | 0.936 |
Propeller diameter | 7.75 m |
Number of propeller blades | 5 |
Hull tip clearance | 2.45 m |
Nominal shaft speed | 96.5 rpm | 87.5 rpm |
Ship speed (over ground) | 22.2 kn | 20.1 kn |
Wind force | 2–3 Bft | |
Sea state (WMO sea state code) | –2 | |
Water depth | >1000 m | |
Draught forward / aft | 10.1 m/10.4 m |
Parameter | 96.5 rpm | 87.5 rpm | 96.5 rpm | 87.5 rpm | 96.5 rpm | 87.5 rpm | |||
---|---|---|---|---|---|---|---|---|---|
Amplitude | 0.23 | 0.26 | 0.096 | 0.065 | 0.094 | 0.057 | |||
Length | 0.023 | 0.029 | 0.12 | 0.14 | 0.12 | 0.14 | |||
10th control point | 0.55 | 0.43 | 0.013 | 0.015 | 0.0077 | 0.011 | |||
11th control point | 0.53 | 0.57 | 0.0066 | 0.0068 | 0.0049 | 0.0054 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Föhring, L.S.; Juhl, P.M.; Wittekind, D. On the Influence of Cavitation Volume Variations on Propeller Broadband Noise. J. Mar. Sci. Eng. 2022, 10, 1946. https://doi.org/10.3390/jmse10121946
Föhring LS, Juhl PM, Wittekind D. On the Influence of Cavitation Volume Variations on Propeller Broadband Noise. Journal of Marine Science and Engineering. 2022; 10(12):1946. https://doi.org/10.3390/jmse10121946
Chicago/Turabian StyleFöhring, Leonie S., Peter Møller Juhl, and Dietrich Wittekind. 2022. "On the Influence of Cavitation Volume Variations on Propeller Broadband Noise" Journal of Marine Science and Engineering 10, no. 12: 1946. https://doi.org/10.3390/jmse10121946
APA StyleFöhring, L. S., Juhl, P. M., & Wittekind, D. (2022). On the Influence of Cavitation Volume Variations on Propeller Broadband Noise. Journal of Marine Science and Engineering, 10(12), 1946. https://doi.org/10.3390/jmse10121946