Ocean Fronts and Their Acoustic Effects: A Review
Abstract
:1. Introduction
2. Definition and Detection Method of the Ocean Front
2.1. Definition of the Ocean Front
2.2. Detection Methods of the Ocean Front
2.2.1. Traditional Oceanographic Methods
2.2.2. Artificial Intelligence Methods
2.2.3. Detection Methods Based on SSP
3. Theoretical Modeling of the Ocean Front
3.1. Oceanographic Modeling
3.2. Sound Speed Field Modeling for Acoustic Effect Research
4. Acoustic Effects of Ocean Fronts
4.1. Analysis of the Simulation
4.2. Experimental Study
5. Conclusions
6. Future Trends
6.1. Develop High Resolution and Accuracy Numerical Models
6.2. Conduct Extensive Ocean Environmental Observation and Acoustic Experiments
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, S.; Song, Y.; Huang, J.; Piao, S. Analysis of underwater acoustic propagation under the influence of mesoscale ocean vortices. J. Mar. Sci. Eng. 2021, 9, 799. [Google Scholar] [CrossRef]
- Levine, M.D. Internal waves in the ocean: A review. Rev. Geophys. 1983, 21, 1206–1216. [Google Scholar] [CrossRef]
- Belkin, I.M.; Cornillon, P.C.; Sherman, K.E. Fronts in large marine ecosystems. Prog. Oceanogr. 2009, 81, 223–236. [Google Scholar] [CrossRef]
- Cao, L.; Tang, R.; Huang, W.; Wang, Y. Seasonal variability and dynamics of coastal sea surface temperature fronts in the East China Sea. Ocean Dyn. 2021, 71, 237–249. [Google Scholar] [CrossRef]
- Chen, H.; Qi, Y.; Wang, Y.; Chai, F. Seasonal variability of SST fronts and winds on the southeastern continental shelf of Brazil. Ocean Dyn. 2019, 69, 1387–1399. [Google Scholar] [CrossRef] [Green Version]
- Mooers, C.N. Oceanic fronts and their effects on underwater acoustics. J. Acoust. Soc. Am. 1978, 63, S87. [Google Scholar] [CrossRef]
- Jin, G.; Lynch, J.F.; Chiu, C.; Miller, J.H. A theoretical and simulation study of acoustic normal mode coupling effects due to the Barents Sea Polar Front, with applications to acoustic tomography and matched-field processing. J. Acoust. Soc. Am. 1996, 100, 193–205. [Google Scholar] [CrossRef]
- Lohmann, R.; Belkin, I.M. Organic pollutants and ocean fronts across the Atlantic Ocean: A review. Prog. Oceanogr. 2014, 128, 172–184. [Google Scholar] [CrossRef] [Green Version]
- Xue, R.; Yang, Y.; Weng, J.; Wen, H.; Chen, H.; Lin, L. Modelling convergence zone propagation under the influence of Arctic Front. In Proceedings of the 2021 OES China Ocean Acoustics (COA), Harbin, China, 14–17 July 2021; pp. 229–233. [Google Scholar] [CrossRef]
- Lin, Y.; Newhall, A.E.; Lynch, J.F. The effect of an ocean front on sound propagation in shallow water. J. Acoust. Soc. Am. 2006, 120, 3182. [Google Scholar] [CrossRef]
- Liu, J.; Piao, S.; Zhang, M.; Zhang, S.; Guo, J.; Gong, L. Characteristics of three-dimensional sound propagation in Western North Pacific fronts. J. Mar. Sci. Eng. 2021, 9, 1035. [Google Scholar] [CrossRef]
- Heathershaw, A.D.; Stretch, C.E.; Maskell, S.J. Coupled ocean-acoustic model studies of sound propagation through a front. J. Acoust. Soc. Am. 1991, 89, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Lei, B.; Ma, Y.; Liu, Y.; Wang, Y. Diurnal fluctuation of shallow-water acoustic propagation in the cold dome off northeastern Taiwan in spring. IEEE J. Ocean. Eng. 2020, 45, 1099–1111. [Google Scholar] [CrossRef]
- Bost, C.A.; Cotté, C.; Bailleul, F.; Cherel, Y.; Charrassin, J.B.; Guinet, C. The importance of oceanographic fronts to marine birds and mammals of the southern oceans. J. Mar. Syst. 2009, 78, 363–376. [Google Scholar] [CrossRef]
- Belkin, I.M. Front. In Interdisciplinary Encyclopedia of Marine Sciences; Nybakken, J.W., Broenkow, W.W., Vallier, T.L., Eds.; Grolier: Danbury, CT, USA, 2002; pp. 433–436. [Google Scholar]
- Wu, S.; Li, Z.; Qin, J.; Wang, M.; Li, W. The effects of sound speed profile to the convergence zone in deep water. J. Mar. Sci. Eng. 2022, 10, 424. [Google Scholar] [CrossRef]
- Huang, J.; Luo, Y.; Li, Y.; Shi, J.; Zheng, X.; Wang, J. Analysis of sound speed profile in the South China Sea based on empirical orthogonal function algorithm. In Proceedings of the 2021 OES China Ocean Acoustics (COA), Harbin, China, 14–17 July 2021; pp. 229–233. [Google Scholar] [CrossRef]
- Kiryanov, A.V.; Salnikov, B.A.; Salnikova, E.N.; Slesarev, N.Y. Regional variability of influence of small-scale sound-speed fluctuation levels on the acoustic field’s formation in the ocean. IOP Conf. Ser. Earth Environ. Sci. 2019, 272, 022144. [Google Scholar] [CrossRef]
- Xu, W.; Schmidt, H.R. System-orthogonal functions for sound speed profile perturbation. IEEE J. Ocean. Eng. 2006, 31, 156–169. [Google Scholar] [CrossRef]
- Chen, C.; Yang, K.; Duan, R.; Ma, Y. Acoustic propagation analysis with a sound speed feature model in the front area of Kuroshio Extension. Appl. Ocean Res. 2017, 68, 1–10. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, K.; Xue, R.; Huang, C.; Chen, C. Convergence zone analysis for a source in the front area of Kuroshio Extension based on Argo data. In Proceedings of the OCEANS 2019–Marseille, Marseille, France, 17–20 June 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Gangopadhyay, A.; Robinson, A.R. Circulation and dynamics of the western north Atlantic. Part III: Forecasting the meanders and rings. J. Atmos. Ocean. Technol. 1997, 14, 1352–1365. [Google Scholar] [CrossRef]
- Oram, J.; McWilliams, J.C.; Stolzenbach, K.D. Gradient-based edge detection and feature classification of sea-surface images of the Southern California Bight. Remote Sens. Environ. 2008, 112, 2397–2415. [Google Scholar] [CrossRef]
- Ping, B.; Su, F.; Meng, Y.; Fang, S.; Du, Y. A model of sea surface temperature front detection based on a threshold interval. Acta Oceanol. Sin. 2014, 33, 65–71. [Google Scholar] [CrossRef]
- Holyer, R.J.; Peckinpaugh, S.H. Edge detection applied to satellite imagery of the oceans. IEEE Trans. Geosci. Remote 1989, 27, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Dong, J.; Sun, X.; Lguensat, R.; Jian, M.; Wang, X. Ocean front detection from instant remote sensing SST images. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1960–1964. [Google Scholar] [CrossRef]
- Ullman, D.S.; Cornillon, P.C. Evaluation of front detection methods for satellite-derived SST data using in situ observations. J. Atmos. Ocean. Technol. 2000, 17, 1667–1675. [Google Scholar] [CrossRef]
- Kahru, M.; Håkansson, B.; Rud, O.E. Distributions of the sea-surface temperature fronts in the Baltic Sea as derived from satellite imagery. Cont. Shelf Res. 1995, 15, 663–679. [Google Scholar] [CrossRef]
- Moore, J.K.; Abbott, M.R.; Richman, J.G. Location and dynamics of the Antarctic Polar Front from satellite sea surface temperature data. J. Geophys. Res. 1999, 104, 3059–3073. [Google Scholar] [CrossRef]
- Ullman, D.S.; Cornillon, P.C. Satellite-derived Sea surface temperature fronts on the continental shelf off the northeast U.S. coast. J. Geophys. Res. 1999, 104, 23459–23478. [Google Scholar] [CrossRef]
- Ullman, D.S.; Cornillon, P.C. Continental shelf surface thermal fronts in winter off the northeast US coast. Cont. Shelf Res. 2001, 21, 1139–1156. [Google Scholar] [CrossRef]
- Kostianoy, A.G.; Ginzburg, A.; Frankignoulle, M.; Delille, B. Fronts in the Southern Indian Ocean as inferred from satellite sea surface temperature data. J. Mar. Syst. 2004, 45, 55–73. [Google Scholar] [CrossRef] [Green Version]
- Park, K.; Ullman, D.S.; Kim, K.; Chung, J.Y.; Kim, K. Spatial and temporal variability of satellite-observed Subpolar Front in the East/Japan Sea. Deep Sea Res. 2007, 54, 453–470. [Google Scholar] [CrossRef]
- Hickox, R.C.; Belkin, I.M.; Cornillon, P.C.; Shan, Z. Climatology and seasonal variability of ocean fronts in the East China, Yellow and Bohai seas from satellite SST data. Geophys. Res. Lett. 2000, 27, 2945–2948. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Liu, Y.; Qi, Y.; Shi, P. Seasonal variability of thermal fronts in the northern South China Sea from satellite data. Geophys. Res. Lett. 2001, 28, 3963–3966. [Google Scholar] [CrossRef]
- Chu, P.C.; Guihua, W. Seasonal variability of thermohaline front in the central South China Sea. J. Oceanogr. 2003, 59, 65–78. [Google Scholar] [CrossRef]
- Chen, C.A. Chemical and physical fronts in the Bohai, Yellow and East China seas. J. Mar. Syst. 2009, 78, 394–410. [Google Scholar] [CrossRef]
- Zhu, K.; Chen, X.; Mao, K.; Hu, D.; Hong, S.; Li, Y. Mixing characteristics of the subarctic front in the Kuroshio-Oyashio confluence region. Oceanologia 2019, 61, 103–113. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, R.; Bilal, M.; Yang, X.; Wang, J.; Li, W. Multilevel cloud detection for high-resolution remote sensing imagery using multiple convolutional neural networks. ISPRS Int. J. Geo Inf. 2018, 7, 181. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Tang, L.; Kan, Z.; Bilal, M.; Li, Q. A novel water body extraction neural network (WBE-NN) for optical high-resolution multispectral imagery. J. Hydrol. 2020, 588, 125092. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Lima, E.B.; Sun, X.; Dong, J.; Wang, H.; Yang, Y.; Liu, L. Learning and transferring convolutional neural network knowledge to ocean front recognition. EEE Geosci. Remote Sens. Lett. 2017, 14, 354–358. [Google Scholar] [CrossRef]
- Sun, X.; Wang, C.; Dong, J.; Lima, E.B.; Yang, Y. A multiscale deep framework for ocean fronts detection and fine-grained location. IEEE Geosci. Remote Sens. Lett. 2019, 16, 178–182. [Google Scholar] [CrossRef]
- Li, Y.; Liang, J.; Da, H.; Chang, L.; Li, H. A deep learning method for ocean front extraction in remote sensing imagery. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Li, Q.; Fan, Z.; Zhong, G. BEDNet: Bi-directional edge detection network for ocean front detection. Iconip 2020, 1332, 312–319. [Google Scholar] [CrossRef]
- Lima, E.B.; Sun, X.; Yang, Y.; Dong, J. Application of deep convolutional neural networks for ocean front recognition. J. Appl. Remote Sens. 2017, 11, 1. [Google Scholar] [CrossRef]
- Li, Q.; Zhong, G.; Xie, C. Hedjam, R. Weak edge identification network for ocean front detection. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Xie, C.; Guo, H.; Dong, J. LSENet: Location and seasonality enhanced network for multi-class ocean front detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–9. [Google Scholar] [CrossRef]
- Sun, J.; Zhong, G.; Dong, J.; Saeeda, H.; Zhang, Q. Cooperative profit random forests with application in ocean front recognition. IEEE Access 2017, 5, 1398–1408. [Google Scholar] [CrossRef]
- Yang, Y.; Lam, K.; Sun, X.; Dong, J.; Lguensat, R. An efficient algorithm for ocean-front evolution trend recognition. Remote Sens. 2022, 14, 259. [Google Scholar] [CrossRef]
- Mandelberg, M.D.; Frizzell-Makowski, L.J. Acoustic provincing of ocean basins. In Proceedings of the Oceans 2000 MTS/IEEE Conference and Exhibition, Providence, RI, USA, 11–14 September 2000; pp. 105–108. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Li, Q.; Yu, X. Cluster analysis of deep-water sound speed profiles in Indian Ocean. IOP Conf. Ser. Earth Environ. Sci. 2019, 310, 052048. [Google Scholar] [CrossRef] [Green Version]
- Abiva, J.; Fabbri, T.; Vicen-Bueno, R. Automatic classification of sound speed profiles using PCA and self-organizing map techniques. In Proceedings of the Oceans Marseille, Marseille, France, 17–20 June 2019; pp. 1–10. [Google Scholar] [CrossRef]
- Dubberley, J.; Zingerelli, R. Fuzzy clustering of oceanographic sound speed profiles for acoustic characterization. J. Acoust. Soc. Am. 2008, 123, 8665–8669. [Google Scholar] [CrossRef]
- Meredith, R.W.; Mensi, B.; Gendron, M.L. Hierarchical clustering of historic sound speed profiles. In Proceedings of the OCEANS 2008, Quebec City, QC, Canada, 15–18 September 2008; pp. 1–7. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Chen, C. Clustering sound speed profiles in the East China Sea. In Proceedings of the 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, Japan, 28–31 May 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, W.; Chen, W.; Chen, Y.; Ma, L.; Meng, Z. Sound field distribution characteristics of typical Kuroshio Front in different seasons. In Proceedings of the 2021 4th International Conference on Information Communication and Signal Processing (ICICSP), Shanghai, China, 24–26 September 2021; pp. 219–223. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, W.; Chen, W.; Chen, Y.; Ma, L.; Meng, Z. Reconstruction of ocean front model based on sound speed clustering and its effectiveness in ocean acoustic forecasting. Appl. Sci. 2021, 11, 8461. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, W.; Chen, W.; Chen, Y.; Ma, L.; Meng, Z. Reconstruction method of ocean front model based on fuzzy cluster analysis of sound speed profile. IEEE Access 2021, 9, 112714–112725. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, W.; Chen, Y.; Chen, W.; Ma, L.; Meng, Z. Ocean front reconstruction method based on K-means algorithm iterative hierarchical clustering sound speed profile. J. Mar. Sci. Eng. 2021, 9, 1233. [Google Scholar] [CrossRef]
- Gangopadhyay, A.; Robinson, A.R. Feature oriented regional modeling of oceanic fronts. Dyn. Atmos. Ocean 2002, 36, 201–232. [Google Scholar] [CrossRef]
- Gangopadhyay, A.; Robinson, A.R.; Haley, P.J.; Leslie, W.G.; Yu, Z. Feature-oriented regional modeling and simulations in the Gulf of Maine and Georges Bank. Cont. Shelf Res. 2003, 23, 317–353. [Google Scholar] [CrossRef]
- Carriere, O.; Hermand, J.P. Feature-oriented acoustic tomography for coastal ocean observatories. IEEE J. Ocean. Eng. 2013, 38, 534–546. [Google Scholar] [CrossRef]
- Smeed, D.A.; Alderson, S.G. Inference of deep ocean structure from upper-ocean measurements. J. Atmos. Ocean Technol. 1997, 14, 604–615. [Google Scholar] [CrossRef]
- Wilson, W.D. Equation for the speed of sound in seawater. J. Acoust. Soc. Am. 1960, 32, 1357. [Google Scholar] [CrossRef]
- Rousseau, T.H.; Siegmann, W.L.; Jacobson, M.J. Acoustic propagation through a model of shallow fronts in the deep ocean. J. Acoust. Soc. Am. 1982, 72, 924–936. [Google Scholar] [CrossRef]
- Rousseau, T.H.; Jacobson, M.J.; Siegmann, W.L. Shallow-ocean fronts: Effects on array performance and acoustic prediction of properties. J. Acoust. Soc. Am. 1983, 74, S97. [Google Scholar] [CrossRef] [Green Version]
- De Courcy, B.J.; Lin, Y.; Siegmann, W.L. Effects of front width on acoustic ducting by a continuous curved front over a sloping bottom. J. Acoust. Soc. Am. 2019, 146, 1923. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Chen, W.; Chen, W.; Chen, Y.; Ma, L.; Meng, Z. Ocean front model based on sound speed profile and its influence on sound propagation. In Proceedings of the 2021 OES China Ocean Acoustics (COA), Harbin, China, 14–17 July 2021; pp. 172–177. [Google Scholar] [CrossRef]
- Lin, Y.; Newhall, A.E.; Lynch, J.F. Impact of a shelfbreak front on array processing in shallow water. J. Acoust. Soc. Am. 2007, 121, 3203. [Google Scholar] [CrossRef]
- Weinberg, N.L.; Clark, J.G. Horizontal acoustic refraction through ocean mesoscale eddies and fronts. J. Acoust. Soc. Am. 1980, 68, 703–705. [Google Scholar] [CrossRef]
- Mellberg, L.E.; Johannessen, O.M.; Connors, D.N.; Botseas, G.; Browning, D.G. Acoustic propagation in the western Greenland Sea frontal zone. J. Acoust. Soc. Am. 1991, 89, 2144–2156. [Google Scholar] [CrossRef]
- Shapiro, G.I.; Chen, F.; Thain, R. The effect of ocean fronts on acoustic wave propagation in the Celtic Sea. J. Mar. Syst. 2014, 139, 217–226. [Google Scholar] [CrossRef]
- Lynch, J.F.; Newhall, A.E.; Sperry, B.J.; Gawarkiewicz, G.G.; Fredricks, A.; Tyack, P.L.; Chiu, C.; Abbot, P.A. Spatial and temporal variations in acoustic propagation characteristics at the New England shelfbreak front. IEEE J. Ocean. Eng. 2003, 28, 129–150. [Google Scholar] [CrossRef]
- Ramp, S.R.; Chiu, C.; Bahr, F.; Qi, Y.; Dahl, P.H.; Miller, J.F.; Lynch, J.F.; Zhang, R.; Zhou, J. The shelf-edge frontal structure in the central East China Sea and its impact on low-frequency acoustic propagation. IEEE J. Ocean. Eng. 2004, 29, 1011–1031. [Google Scholar] [CrossRef]
- Moore, K.A.; Miller, J.H.; Potty, G.R.; Lynch, J.F.; Newhall, A.E. Investigation of three-dimensional propagation effects at the New Jersey shelf break front. J. Acoust. Soc. Am. 2007, 121, 3126. [Google Scholar] [CrossRef]
- Deferrari, H.A. Effects of offshore mesoscale eddies and fronts on inshore shallow water acoustic propagation. J. Acoust. Soc. Am. 2007, 122, 3006. [Google Scholar] [CrossRef]
- Moore, K.A.; Miller, J.H.; Potty, G.R.; Dossot, G.A.; Glenn, S.; Lynch, J.F. Measurements of 3-D propagation effects at a shelfbreak front. J. Acoust. Soc. Am. 2006, 120, 3222. [Google Scholar] [CrossRef]
- Jensen, F.B.; Dreini, G.; Prior, M.K. Acoustic effects of the Iceland-Faeroe Front. In Ocean Variability & Acoustic Propagation; Potter, J., Warn-Varnas, A., Eds.; Springer: New York, NY, USA, 1991. [Google Scholar] [CrossRef]
- Kravchun, P.N. Influence of the benthic front on the mode structure of acoustic field in the ocean. Acoust. Phys. 2008, 54, 371–374. [Google Scholar] [CrossRef]
- Chiu, C.; Lynch, J.F.; Gawarkiewicz, G.G. Shallow-water tomography: Acoustic maps of the New England shelfbreak front. J. Acoust. Soc. Am. 1999, 105, 1176. [Google Scholar] [CrossRef]
- Xuehong, Z.; Xinzhong, L. A numerical world ocean general circulation model. Adv. Atmos. Sci. 1989, 6, 44–61. [Google Scholar] [CrossRef]
- Shu, Q.; Qiao, F.; Song, Z.; Yin, X. A comparison of two global ocean-ice coupled models with different horizontal resolutions. Acta Oceanol. Sin. 2013, 32, 1–11. [Google Scholar] [CrossRef]
- Dongarra, J.J.; Beckman, P.H.; Moore, T.L.; Aerts, P.; Aloisio, G.; André, J.; Barkai, D.; Berthou, J.; Boku, T.; Braunschweig, B.; et al. The international exascale software project roadmap. Int. J. High Perform. Comput. Appl. 2011, 25, 3–60. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Sandoval, L.; Crystal-Ornelas, R.; Mousavi, S.M.; Wang, J.; Lin, C.; Cristea, N.C.; Tong, D.Q.; Carande, W.H.; Ma, X.; et al. A review of Earth Artificial Intelligence. Comput. Geosci. 2022, 159, 105034. [Google Scholar] [CrossRef]
- Semtner, A.; Chervin, R. Ocean general circulation from a global eddy-resolving model. J. Geophys. Res. 1992, 97, 5493–5550. [Google Scholar] [CrossRef] [Green Version]
- Parsons, A.R.; Bourke, R.H.; Muench, R.D.; Chiu, C.; Lynch, J.F.; Miller, J.H.; Plueddemann, A.J.; Pawlowicz, R. The Barents Sea Polar Front in summer. J. Geophys. Res. 1996, 101, 14201–14221. [Google Scholar] [CrossRef]
- Apel, J.R.; Badiey, M.; Chiu, C.; Finette, S.; Headrick, R.H.; Kemp, J.N.; Lynch, J.F.; Newhall, A.E.; Orr, M.H.; Pasewark, B.H.; et al. An overview of the 1995 SWARM shallow-water internal wave acoustic scattering experiment. IEEE J. Ocean. Eng. 1997, 22, 465–500. [Google Scholar] [CrossRef]
- Duda, T.F.; Lynch, J.F.; Newhall, A.E.; Wu, L.; Chiu, C. Fluctuation of 400-Hz sound intensity in the 2001 ASIAEX South China Sea experiment. IEEE J. Ocean. Eng. 2004, 29, 1264–1279. [Google Scholar] [CrossRef]
- Wang, N.; Liu, J.; Gao, D.; Gao, W.; Wang, H.Z. An overview of the 2005 YFIAE: Yellow Sea oceanic front and internal waves acoustic experiment. J. Acoust. Soc. Am. 2008, 124, 2444. [Google Scholar] [CrossRef]
- Tang, D.; Moum, J.N.; Lynch, J.F.; Abbot, P.A.; Chapman, R.; Dahl, P.H.; Duda, T.F.; Gawarkiewicz, G.G.; Glenn, S.; Goff, J.A.; et al. Shallow Water ’06: A joint acoustic propagation/nonlinear internal wave physics experiment. Oceanography 2007, 20, 156–167. [Google Scholar] [CrossRef]
- Flatteé, S.M.; Duda, T.F.; Colosi, J.A.; Hildebrand, J.A.; Hodgkiss, W.S.; Worcester, P.F.; Cornuelle, B.D.; Howe, B.; Mercer, J.A.; Spindel, R.C.; et al. Wave-front fluctuations in the 1000-km SLICE89 experiment. J. Acoust. Soc. Am. 1991, 89, 1962. [Google Scholar] [CrossRef] [Green Version]
- Dzieciuch, M.A.; Vera, M.D.; Colosi, J.A.; Cornuelle, B.D.; Dushaw, B.; Howe, B.; Mercer, J.A.; Munk, W.H.; Spindel, R.C.; Worcester, P.F. Horizontal coherence of tracked arrivals in the North Pacific Acoustic Laboratory98 (NPAL98). J. Acoust. Soc. Am. 2006, 120, 3022. [Google Scholar] [CrossRef]
- Brown, M.G.; Colosi, J.A.; Virovlyansky, A.L.; Zaslavsky, G.; Tomsovic, S.; Wolfson, M.A. Ray dynamics in the AET experiment. J. Acoust. Soc. Am. 2000, 108, 2578. [Google Scholar] [CrossRef]
- Heaney, K.D. Internal wave strength inversion and localization using long-range acoustic signals. J. Acoust. Soc. Am. 1997, 102, 3142. [Google Scholar] [CrossRef]
- Mercer, J.A.; Colosi, J.A.; Howe, B.M.; Dzieciuch, M.A.; Stephen, R.; Worcester, P.F. LOAPEX: The long-range ocean acoustic propagation experiment. IEEE J. Ocean. Eng. 2009, 34, 1–11. [Google Scholar] [CrossRef]
- Wage, K.E.; Farrokhrooz, M.; Dzieciuch, M.A.; Worcester, P.F. Analysis of the vertical structure of deep ocean noise using measurements from the SPICEX and PhilSea experiments. J. Acoust. Soc. Am. 2013, 133, 070041. [Google Scholar] [CrossRef]
Researchers | Models/Methods | Effects/Objectives | Datasets/Resources |
---|---|---|---|
Lima et al. [42] | Convolutional neural networks (CNNs) | Determination of ocean fronts | National Oceanic and Atmospheric Administration (NOAA) |
Lima et al. [43] | Multiscale deep framework (MDF) | Location and reflection of ocean fronts | Global satellite SST images |
Li et al. [44] | A deep learning model with U-Net architecture | Better frontal ridge extraction of ocean fronts | Grayscale SST images |
Li et al. [45] | Bi-directional edge detection network (BEDNet) | Fine-grained detection of ocean fronts | 365 images based on the gradient of SST |
Lima et al. [46] | Deep convolutional neural networks (deep CNNs) | Recognition and classification of ocean fronts | Remote sensing (RS) data |
Li et al. [47] | Weak edge identification network (WEIN) | Better recognition of ocean fronts | 365 RS images from satellite |
Xie et al. [48] | Location and seasonality enhanced network (LSENet) | Pixel level detection of multi-class of ocean fronts | the Advanced Very High-Resolution Radiometer (AVHRR) SST daily data |
Sun et al. [49] | Cooperative profit random forests (CPRF) | Better recognition of ocean fronts | Fourteen real-world datasets |
Yang et al. [50] | Evolution trend recognition (ETR) | Recognition of the trend of ocean fronts | OFTreD and OFTraD |
Researchers | Methods | Research Object | Data Source |
---|---|---|---|
Mandelberg et al. [51] | The hierarchical clustering method | The SSP of the North Atlantic and the Northeast Pacific | GDEM |
Wang et al. [52] | FCM | The SSP in the Indian Ocean | WOA13 |
Abiva et al. [53] | PCA and FOM | The SSP of the Strait of Gibraltar | Observation data |
Dubberley and Zingerelli [54] | Fuzzy clustering | Oceanographic parameters | WOD2005 |
Meredith et al. [55] | The hierarchical clustering method | The SSP | MOODS |
Liu and Chen [56] | PCA and SOM | The SSP in the East China Sea | FVCOM |
Chen et al. [20] | The K-means algorithm | The SSP of the KE | Argo WOA09 |
Liu et al. [57,58] | FCM | The SSP of the KE | HYCOM |
Liu et al. [59] | FCM and other methods | The SSP of the LS | HYCOM |
Liu et al. [60] | FCM | The SSP of the Gulf Stream-related Sea | HYCOM |
Region | Deep (Boundary Currents, Meanders, and Jets) | Coastal (Water Mass Fronts, Upwelling Fronts, Transition Regions, Tidal Fronts) |
---|---|---|
Western North Atlantic | Gulf Stream, deep western boundary current | Maine coastal current, Georges Bank tidal fronts, shelf-slope front |
Eastern North Atlantic | Azores current, Canary current, Portugal current | Upwelling fronts in northwest Africa |
Western Pacific | Kuroshio, deep western boundary current | Yellow Sea coastal current, Korean coastal current, ECSCC, SCSCC, Taiwan warm current, Tsushima current |
North Pacific | North Pacific current, California current system | Alaskan coastal current, Alaskan stream, Prince William sound circulation system |
South Pacific | East Australian current, Humbolt current | Upwelling fronts in central Chile |
Northwest European shelf and the Bering Sea | Labrador current, north Atlantic current | Norwegian current, tidal mixing fronts, Celtic Sea shelf-break front |
Equatorial Pacific | Equatorial current systems | Upwelling fronts, NEC, NECC, SEC, SECC |
Southern Ocean | Antarctic circumpolar current | Agulhas retroflection current, Weddell front, Antarctic circumpolar shelf front |
Indian Ocean | Somali current, Agulhas current, Western India undercurrent | North Indian coastal current, east African coastal current |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Meng, Z.; Chen, W.; Liang, Y.; Chen, W.; Chen, Y. Ocean Fronts and Their Acoustic Effects: A Review. J. Mar. Sci. Eng. 2022, 10, 2021. https://doi.org/10.3390/jmse10122021
Liu Y, Meng Z, Chen W, Liang Y, Chen W, Chen Y. Ocean Fronts and Their Acoustic Effects: A Review. Journal of Marine Science and Engineering. 2022; 10(12):2021. https://doi.org/10.3390/jmse10122021
Chicago/Turabian StyleLiu, Yuyao, Zhou Meng, Wen Chen, Yan Liang, Wei Chen, and Yu Chen. 2022. "Ocean Fronts and Their Acoustic Effects: A Review" Journal of Marine Science and Engineering 10, no. 12: 2021. https://doi.org/10.3390/jmse10122021
APA StyleLiu, Y., Meng, Z., Chen, W., Liang, Y., Chen, W., & Chen, Y. (2022). Ocean Fronts and Their Acoustic Effects: A Review. Journal of Marine Science and Engineering, 10(12), 2021. https://doi.org/10.3390/jmse10122021