Analytical Description of an Axisymmetric Supercavitation Bubble in a Viscous Flow
Abstract
:1. Introduction
2. Problem Description
3. Analytical Analyses
3.1. Dimension Approximation
3.2. Supercavitation Bubble Geometry in a Viscous Flow
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vanek:, B.; Bokor, J.; Balas, G. High-speed supercavitation vehicle control. In Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, CO, USA, 21–24 August 2006; p. 6446. 2. [Google Scholar]
- Ceccio, S.L. Friction Drag Reduction of External Flows with Bubble and Gas Injection. Annu. Rev. Fluid Mech. 2010, 42, 183–203. [Google Scholar] [CrossRef] [Green Version]
- Logvinovich, G.V.; Serebryakov, V.V. On methods of calculating a shape of slender axisymmetric cavities. Hydromechanics 1975, 32, 47–54. [Google Scholar]
- Serebryakov, V.V. Asymptotic Solutions of Axisymmetric Problems of the Cavitational Flow under Slender Body Approximation, Hydrodynamics of High Speeds; Chuvashian State University: Cheboksary, Russia, 1990; pp. 99–111. [Google Scholar]
- Semenenko, V.N. Artificial Supercavitation. Physics and Calculation. In Proceeding of the RTO Lecture Series 005 on Supercavitating Flows, Brussels, Belgium, 7–9 April 2001. [Google Scholar]
- Serebryakov, V.V. The models of the supercavitation prediction for high speed motion in water. In Proceedings of the International Scientific School: HSH-2002, Chebocsary, Russia, 16–23 June 2002. [Google Scholar]
- Tulin, M.P. Steady Two-Dimensional Cavity Flows about Slender Bodies; Taylor Model Basin; David, W., Ed.; Department of the Navy, Research and Development Report 834: Washington DC, USA, 1953. [Google Scholar]
- Gilbarg, D. Free Stream Theory and Steady-State Cavitation; Proc. Symposium On Naval Hydrodynamics: Washington, DC, USA, 1957; pp. 281–295. [Google Scholar]
- Semenenko, V.N. Artificial Supercavitation, Physics and Calculation. In Lecture Notes for the RTO AVT/VKI Special Course on Supercavitating Flows Von Karman Institute for Fluid Dynamics; Defense Technical Information Center: Rhode Saint Genese, Belgium, 2001. [Google Scholar]
- Vasin, A.D. Some Problems of Supersonic Cavitation Flows. Available online: http://caltechconf.library.caltech.edu/82/ (accessed on 17 October 2021).
- Vasin, A.D. Application of the Slender Body Theory to Investigation of the Developed Axially Symmetric Cavitation Flows in a Subsonic Stream of Compressible Fluid. Izv. Vyssh. Uchebn. Zaved. Mat. 2001, 3, 122–129. [Google Scholar] [CrossRef]
- Vasin, A.D. Supercavities in Compressible Fluid; RTO EN-016; RTO AVT Lecture Series on “Supercavitating Flows”; von Kármán Institute VKI: Brussels, Belgium, 2001. [Google Scholar]
- Vasin, A.D. Calculation of axisymmetric cavities downstream of a disk in a supersonic flow. Fluid Dyn. 1997, 32, 513–519. [Google Scholar]
- Logvinovich, G.V. Hydrodynamics of Free-Boundary Flows; Naukova Dumka: Kyiv, Ukraine, 1969; p. 208. [Google Scholar]
- Vasin, A.D. The Principle of Independence of the Cavity Sections Expansion (Logvinovich’s Principle) as the Basis for Investigation on Cavitation Flows; Project-Nerd: Arvada, CO, USA, 2001; Volume 2, pp. 161–162. [Google Scholar]
- Serebryakov, V.V. Ring model for calculation of axisymmetric flows with developed cavitation. J. Hydromech. 1974, 27, 25–29. [Google Scholar]
- Fu, H.; Lu, C.J.; Li, J. Numerical Research on Drag Reduction Characteristics of Supercavitating Body of Revolution. J. Ship Mech. 2004, 8, 1–7. [Google Scholar]
- Yi, W.J. Research on drag characteristics of natural supercavitation profile for high speed bodies. Ship Sci. Technol. 2009, 31, 38–42. [Google Scholar]
- Wu, T.Y.T.; Whitney, A.K.; Brennen, C. Cavity-flow wall effects and correction rules. J. Fluid Mech. 1971, 49, 223–256. [Google Scholar] [CrossRef] [Green Version]
- Ahn, B.K.; Lee, T.K.; Kim, H.T.; Lee, C.S. Experimental investigation of supercavitating flows. Int. J. Nav. Archit. Ocean. Eng. 2012, 4, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Ahn, B.K.; Jeong, S.W.; Kim, J.H.; Shao, S.; Hong, J.; Arndt, R.E. An experimental investigation of artificial supercavitation generated by air injection behind disk-shaped cavitators. Int. J. Nav. Archit. Ocean. Eng. 2017, 9, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Karn, A.; Arndt, R.; Hong, J. An experimental investigation into supercavity closure mechanisms. J. Fluid Mech. 2016, 789, 259–284. [Google Scholar] [CrossRef]
- Fridman, G.M.; Achkinadze, A.S. Review of Theoretical Approaches to Nonlinear Supercavitating Flows; Saint Petersburg State Marine Technical University, Ship Theory Department: St Petersburg, Russia, 2001. [Google Scholar]
- Kirschner, I.I.; Chamberlin, R.; Arzoumanian, S.A. Simple approach to estimating three-dimensional supercavitating flow fields. In Proceedings of the 7th International Symposium on Cavitation CAV2009, Ann Arbor, MI, USA, 16–20 August 2009. [Google Scholar]
- Arad Ludar, L.; Gany, A. Experimental Study of Supercavitation Bubble Development over Bodies in a Free-Surface Flow. J. Mar. Sci. Eng. 2022, 10, 1244. [Google Scholar] [CrossRef]
- Arad Ludar, L.; Gany, A. Experimental study of supercavitation bubble development over bodies in a duct flow. J. Mar. Sci. Eng. 2020, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Brennen, C.A. numerical solution of axisymmetric cavity flows. J. Fluid Mech. 1969, 37, 671–688. [Google Scholar] [CrossRef] [Green Version]
- Kinnas, S.A. The prediction of unsteady sheet cavitation. In Proceedings of the 3rd International Symposium on Cavitation, Grenoble, France, 7–10 April 1998. [Google Scholar]
- Scardovelli, R.; Zaleski, S. Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 1999, 31, 567–603. [Google Scholar] [CrossRef]
- Shi, H.H.; Wen, J.S.; Zhu, B.B.; Chen, B. Numerical simulation of the effect of different object nose shapes on hydrodynamic process in water entry. Proceeding of the 10th International Symposium on Cavitation, CAV2018, Baltimore, MD, USA, 14–16 May 2018. [Google Scholar]
- Franc, J.P.; Michel, J.M. Fundamentals of Cavitation; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Kunz, R.F.; Lindau, J.W.; Billet, M.L.; Stinebring, D.R. Multiphase CFD Modeling of Developed and Supercavitating Flows; Pennsylvania State Univ., University Park, Applied Research Lab: University Park, PA, USA, 2001. [Google Scholar]
- Serebryakov, V.V. The annular model for calculation of axisymmetric cavity flows. Kiev. Russ. 1972, 27, 25–29. [Google Scholar]
- Garabedian, P.R. Calculation of axially symmetric cavities and jets. Pac. J. Math. 1956, 6, 611–684. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arad Ludar, L.; Gany, A. Analytical Description of an Axisymmetric Supercavitation Bubble in a Viscous Flow. J. Mar. Sci. Eng. 2022, 10, 2029. https://doi.org/10.3390/jmse10122029
Arad Ludar L, Gany A. Analytical Description of an Axisymmetric Supercavitation Bubble in a Viscous Flow. Journal of Marine Science and Engineering. 2022; 10(12):2029. https://doi.org/10.3390/jmse10122029
Chicago/Turabian StyleArad Ludar, Lotan, and Alon Gany. 2022. "Analytical Description of an Axisymmetric Supercavitation Bubble in a Viscous Flow" Journal of Marine Science and Engineering 10, no. 12: 2029. https://doi.org/10.3390/jmse10122029
APA StyleArad Ludar, L., & Gany, A. (2022). Analytical Description of an Axisymmetric Supercavitation Bubble in a Viscous Flow. Journal of Marine Science and Engineering, 10(12), 2029. https://doi.org/10.3390/jmse10122029