The Potential of Wave Energy Conversion to Mitigate Coastal Erosion from Hurricanes
Abstract
:1. Introduction
2. Case Study
2.1. Location
2.2. Hurricanes
2.3. Model Description
2.4. Model Setup and Assumptions
3. Results
3.1. Hurricane Ivan
3.1.1. Response of Water Levels and Nearshore Wave Climate to Simulated Wave Farms
3.1.2. Response of Morphology to Simulated Wave Farms
3.2. Hurricane Katrina
3.2.1. Response of Water Levels and Nearshore Wave Climate to Simulated Wave Farms
3.2.2. Response of Morphology to Simulated Wave Farms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ozkan, C.; Mayo, T. The Renewable Wave Energy Resource in Coastal Regions of the Florida Peninsula. Renew. Energy 2019, 139, 530–537. [Google Scholar] [CrossRef]
- Dalton, G.J.; Alcorn, R.; Lewis, T. Case study feasibility analysis of the Pelamis wave energy convertor in Ireland, Portugal and North America. Renew. Energy 2009, 35, 443–455. [Google Scholar] [CrossRef]
- Rusu, E.; Onea, F. A review of the technologies for wave energy extraction. Clean Energy 2018, 2, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The State of the World’s Beaches. Sci. Rep. 2018, 8, 6641. [Google Scholar] [CrossRef]
- Florida Department of Environmental Protection, Critically Eroded Beaches in Florida. 2019. Available online: https://floridadep.gov/sites/default/files/FDEP-Critically-Eroded-Beaches-2019.pdf (accessed on 7 May 2020).
- National Ocean Service, Who Moved the Beach? NOAA. 2020. Available online: https://oceanservice.noaa.gov/education/lessons/who_moved_the_beach.html (accessed on 25 May 2020).
- Masselink, G.; Russell, P.; Rennie, A.; Brooks, S.; Spencer, T. Impacts of climate change on coastal geomorphology and coastal erosion relevant to the coastal and marine environment around the UK. MCCIP Sci. Rev. 2020, 158–189. [Google Scholar] [CrossRef]
- NOAA, Economics and Demographics. 2016. Available online: https://coast.noaa.gov/states/fast-facts/economics-and-demographics.html (accessed on 6 April 2020).
- NOAA, National Coastal Population Report. 2013. Available online: http://stateofthecoast.noaa.gov (accessed on 6 April 2020).
- Camelo, J.; Mayo, T.; Gutmann, E.D. Projected Climate Change Impacts on Hurricane Storm Surge Inundation in the Coastal United States. Front. Built Environ. 2020, 6, 207. [Google Scholar] [CrossRef]
- Taherkhani, M.; Vitousek, S.; Barnard, L.; Frazer, N.; Anderson, T.R.; Fletcher, C.H. Sea-level rise exponentially increases coastal flood frequency. Sci. Rep. 2020, 10, 6466. [Google Scholar] [CrossRef]
- Morris, R.L.; Boxshall, A.; Swearer, S.E. Climate-resilient coasts require diverse defence solutions. Nat. Clim. Chang. 2020, 10, 485–487. [Google Scholar] [CrossRef]
- Temmerman, S.; Meire, P.; Bouma, T.J.; Herman, P.M.J.; Ysebaert, T.; De Vriend, H.J. Ecosystem-based coastal defence in the face of global change. Nature 2013, 504, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Kibler, K.M.; Kitsikoudis, V.; Donnelly, M.; Spiering, D.W.; Walters, L. Flow–Vegetation Interaction in a Living Shoreline Restoration and Potential Effect to Mangrove Recruitment. Sustainability 2019, 11, 3215. [Google Scholar] [CrossRef] [Green Version]
- Seddon, N.; Daniels, E.; Davis, R.; Chausson, A.; Harris, R.; Hou-Jones, X.; Huq, S.; Kapos, V.; Mace, G.M.; Rizvi, A.R.; et al. Global recognition of the importance of nature-based solutions to climate change impacts. Glob. Sustain. 2020, 3, e15. [Google Scholar] [CrossRef]
- ASBPA, National Beach Nourishment Database. 2019. Available online: https://gim2.aptim.com/ASBPANationwideRenourishment/ (accessed on 8 April 2020).
- US Department of the Interior. Salazar, Menendez Announce $29 Million to Restore Ellis Island Seawall, Historic Structures under President’s Recovery Plan. 2016. Available online: https://www.doi.gov/news/pressreleases/Salazar-Menendez-Announce-29-Million-to-Restore-Ellis-Island-Seawall-Historic-Structures-under-Presidents-Recovery-Plan (accessed on 8 April 2020).
- Copping, A.; Sather, N.; Hanna, L.; Whiting, J.; Zydlewski, G.; Staines, G.; Gill, A.; Hutchison, A.; O’Hagan, A.; Simas, T.; et al. Annex IV 2016 State of the Science Report: Environmental Effects of Marine Renewable Energy Development around the World. 2016. Available online: https://tethys.pnnl.gov/sites/default/files (accessed on 5 January 2022).
- Lancaster, O.; Cossu, R.; Baldock, T.E. Experimental investigation into 3D scour processes around a gravity based Oscillating Water Column Wave Energy Converter. Coast. Eng. 2020, 161, 103754. [Google Scholar] [CrossRef]
- Bergillos, R.J.; López-Ruiz, A.; Medina-López, E.; Moñino, A.; Ortega-Sánchez, M. The role of wave energy converter farms on coastal protection in eroding deltas, Guadalfeo, southern Spain. J. Clean. Prod. 2018, 171, 356–367. [Google Scholar] [CrossRef]
- Rodriguez-Delgado, C.; Bergillos, R.J.; Ortega-Sánchez, M.; Iglesias, G. Protection of gravel-dominated coasts through wave farms: Layout and shoreline evolution. Sci. Total Environ. 2018, 636, 1541–1552. [Google Scholar] [CrossRef]
- Rodriguez-Delgado, C.; Bergillos, R.J.; Ortega-Sánchez, M.; Iglesias, G. Wave farm effects on the coast: The alongshore position. Sci. Total Environ. 2018, 640–641, 1176–1186. [Google Scholar] [CrossRef]
- Abanades, J.; Flor-Blanco, G.; Flor, G.; Iglesias, G. Dual wave farms for energy production and coastal protection. Ocean Coast. Manag. 2018, 160, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Abanades, J.; Greaves, D.; Iglesias, G. Coastal defence through wave farms. Coast. Eng. 2014, 91, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Rijnsdorp, D.P.; Hansen, J.E.; Lowe, R.J. Understanding coastal impacts by nearshore wave farms using a phase-resolving wave model. Renew. Energy 2020, 150, 637–648. [Google Scholar] [CrossRef]
- Rodriguez-Delgado, C.; Bergillos, R.J.; Iglesias, G. Dual wave farms for energy production and coastal protection under sea level rise. J. Clean. Prod. 2019, 222, 364–372. [Google Scholar] [CrossRef]
- Stokes, C. Coastal Impacts in the Lee of a Wave Energy Site: Waves, Beach Morphology and Water-Users; Wave Hub; University of Plymouth: Cornwall, UK, 2015. [Google Scholar]
- Stokes, C.; Conley, D. Modelling Offshore Wave farms for Coastal Process Impact Assessment: Waves, Beach Morphology, and Water Users. Energies 2018, 11, 2517. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Huang, Z. A dual-functional wave-power plant for wave-energy extraction and shore protection: A wave-flume study. Appl. Energy 2018, 229, 963–976. [Google Scholar] [CrossRef]
- Rodriguez-Delgado, C.; Bergillos, R.J.; Iglesias, G. Dual wave farms and coastline dynamics: The role of inter-device spacing. Sci. Total Environ. 2019, 646, 1241–1252. [Google Scholar] [CrossRef]
- Abanades, J.; Greaves, D.; Iglesias, G. Coastal defence using wave farms: The role of farm-to-coast distance. Renew. Energy 2015, 75, 572–582. [Google Scholar] [CrossRef] [Green Version]
- Abanades, J.; Greaves, D.; Iglesias, G. Wave farm impact on the beach profile: A case study. Coast. Eng. 2014, 86, 36–44. [Google Scholar] [CrossRef]
- Abanades, J.; Greaves, D.; Iglesias, G. Wave farm impact on beach modal state. Mar. Geol. 2015, 361, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Bergillos, R.J.; Rodriguez-Delgado, C.; Allen, J.; Iglesias, G. Wave energy converter configuration in dual wave farms. Ocean Eng. 2019, 178, 204–214. [Google Scholar] [CrossRef]
- Bergillos, R.J.; Rodriguez-Delgado, C.; Allen, J.; Iglesias, G. Wave energy converter geometry for coastal flooding mitigation. Sci. Total Environ. 2019, 668, 1232–1241. [Google Scholar] [CrossRef] [PubMed]
- Bergillos, R.J.; Rodriguez-Delgado, C.; Iglesias, G. Wave farm impacts on coastal flooding under sea-level rise: A case study in southern Spain. Sci. Total Environ. 2019, 653, 1522–1531. [Google Scholar] [CrossRef] [PubMed]
- Bergillos, R.J.; Rodriguez-Delgado, C.; Iglesias, G. Ocean Energy and Coastal Protection-A Novel Strategy for Coastal Management Under Climate Change; Springer Briefs in Energy: Cham, Switzerland, 2020. [Google Scholar]
- Ozkan, C.; Perez, K.; Mayo, T. The impacts of wave energy conversion on coastal morphodynamics. Sci. Total Environ. 2020, 712, 136424. [Google Scholar] [CrossRef]
- Gonzalez-Santamaria, R.; Zou, Q.P.; Pan, S. Impacts of a Wave Farm on Waves, Currents and Coastal Morphology in South West England. Estuaries Coasts 2013, 38, 159–172. [Google Scholar] [CrossRef]
- Jones, C.; Chang, G.; Raghukumar, K.; McWilliams, S.; Dallman, A.; Roberts, J. Spatial Environmental Assessment Tool (SEAT): A Modeling Tool to Evaluate Potential Environmental Risks Associated with Wave Energy Converter Deployments. Energies 2018, 11, 2036. [Google Scholar] [CrossRef] [Green Version]
- USGS, The National Map-Advanced Viewer. 2017. Available online: https://viewer.nationalmap.gov/advanced-viewer/ (accessed on 7 May 2020).
- NREL, RE Atlas. 2020. Available online: https://maps.nrel.gov/re-atlas/?aL=0&bL=groad&cE=0&lR=0&mC=40.21244%2C-91.625976&zL=4 (accessed on 30 April 2020).
- Morton, R.A.; Miller, T.L.; Moore, L.J. National Assessment of Shoreline Change: Part 1 Historical Shoreline Changes and Associated Coastal Land Loss along the U.S. Gulf of Mexico; USGS: St. Petersburg, FL, USA, 2004. Available online: https://pubs.usgs.gov/of/2004/1043/ofr-2004-1043.pdf (accessed on 30 April 2020).
- Givens, J. Dauphin Island’s Shifting Sands, Mob. Bay Mag. 2019. Available online: https://mobilebaymag.com/dauphin-islands-shifting-sands (accessed on 16 May 2020).
- Sallenger, A. Storm impact scale for barrier islands. J. Coast. Res. 2000, 16, 890–895. [Google Scholar]
- Cebrian, J. Living Shoreline: Using Natural and Artificial Breakwaters in Shoreline Restoration and Conservation | Dauphin Island Sea Lab. 2019. Available online: https://www.disl.org/about/faculty/faculty-projects/living-shoreline-using-natural-and-artificial-breakwaters-in-shoreline-rest (accessed on 8 May 2020).
- Hansen, M.; Sallenger, A.H. Barrier Island Vulnerability to Breaching: A Case Study on Dauphin Island, Alabama. In Proceedings of the Coastal Sediments ’07—Proceedings of 6th International Symposium on Coastal Engineering and Science of Coastal Sediment Processes, New Orleans, LA, USA, 13–17 May 2007; pp. 2002–2010. [Google Scholar] [CrossRef]
- National Hurricane Center-NOAA. Costliest U.S. Tropical Cyclones Tables Updated; National Hurricane Center-NOAA: Miami, FL, USA, 2018. Available online: https://www.nhc.noaa.gov/news/UpdatedCostliest.pdf (accessed on 30 April 2020).
- FEMA. Hurricane Ivan Overview. 2016. Available online: https://www.fema.gov/hurricane-ivan-overview (accessed on 30 April 2020).
- Gaul, G.M. On the Alabama Coast, the Unluckiest Island in America, Yale E360. 2019. Available online: https://e360.yale.edu/features/on-the-alabama-coast-the-unluckiest-island-in-america (accessed on 19 May 2020).
- Knabb, R.D.; Rhome, J.R.; Brown, D.P. Tropical Cyclone Report Hurricane Katrina 23–30 August 2005. 2005. Available online: https://www.nhc.noaa.gov/data/tcr/AL122005_Katrina.pdf (accessed on 30 April 2020).
- Roelvink, D.; Reniers, A.; van Dongeren, A.; van Thiel de Vries, J.; McCall, R.; Lescinski, J. Modelling storm impacts on beaches, dunes and barrier islands. Coast. Eng. 2009, 56, 1133–1152. [Google Scholar] [CrossRef]
- Roelvink, D.; Van Dongeren, A.; McCall, R.; Hoonhout, B.; Van Rooijen, A.; Van Geer, P.; De Vet, L.; Nederhoff, K. XBeach Documentation: Release XBeach v1.23.5527 XBeachX Final. 2018. Available online: https://oss.deltares.nl/documents/48999/2022076/Documentation_XBeach-v1.23.5527-XBeachX_FINAL.pdf/d366edea-db7c-1c2e-4295-a7222c8970bc?version=1.0 (accessed on 11 May 2020).
- Passeri, D.L.; Bilskie, M.V.; Plant, N.G.; Long, J.W.; Hagen, S.C. Dynamic modeling of barrier island response to hurricane storm surge under future sea level rise. Clim. Chang. 2018, 149, 413–425. [Google Scholar] [CrossRef]
- Enríquez, A.R.; Marcos, M.; Falqués, A.; Roelvink, D. Assessing beach and dune erosion and vulnerability under sea level rise: A Case study in the Mediterranean Sea. Front. Mar. Sci. 2019, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Passeri, D.L.; Long, J.W.; Plant, N.G.; Bilskie, M.V.; Hagen, S.C. The influence of bed friction variability due to land cover on storm-driven barrier island morphodynamics. Coast. Eng. 2018, 132, 82–94. [Google Scholar] [CrossRef]
- Danielson, J.J.; Brock, J.C.; Howard, D.M.; Gesch, D.B.; Bonisteel-Cormier, J.M.; Travers, L.J. Topobathymetric Model of Mobile Bay, Alabama; Data Series 769; U.S. Geological Survey: St. Petersburg, FL, USA, 2013. Available online: https://pubs.usgs.gov/ds/769/ (accessed on 27 May 2020).
- Ergin, A. Coastal Engineering; Metu Press: Ankara, Turkey, 2009. [Google Scholar]
- Fernandez, H.; Iglesias, G.; Carballo, R.; Castro, A.; Fraguela, J.A.; Taveira-Pinto, F.; Sanchez, M. The new wave energy converter WaveCat: Concept and laboratory tests. Mar. Struct. 2012, 29, 58–70. [Google Scholar] [CrossRef]
- Bilskie, M.V.; Hagen, S.C.; Medeiros, S.C.; Cox, A.T.; Salisbury, M.; Coggin, D. Data and numerical analysis of astronomic tides, wind-waves, and hurricane storm surge along the northern Gulf of Mexico. J. Geophys. Res. Ocean. 2016, 121, 3625–3658. [Google Scholar] [CrossRef]
- Luettich, R.A.; Westerink, J.J.; Scheffner, N.W. ADCIRC: An Advanced Three-Dimensional Circulation Model for Shelves Coasts and Estuaries, Report 1: Theory and Methodology of ADCIRC-2DDI and ADCIRC-3DL; US Army Corps of Engineers: Washington, DC, USA, 1992. [Google Scholar]
- Vethamony, P.; Aboobacker, V.M.; Menon, H.B.; Kumar, K.A.; Cavaleri, L. Superimposition of wind seas on pre-existing swells off Goa coast. J. Mar. Syst. 2011, 87, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Badulin, S.I.; Korotkevich, A.O.; Resio, D.; Zakharov, V.E. Wave-wave interactions in wind-driven mixed seas. In Proceedings of the Rogue Waves 2008 Workshop, Brest, France, 13–15 October 2008; pp. 77–86. [Google Scholar]
- Buhring, B. Dauphin Island East End Beach and Barrier Island Restoration Project. 2017. Available online: https://sportdocbox.com/Surfing_and_Body_Boarding/71550785-Dauphin-island-east-end-beach-and-barrier-island-restoration-project-beau-buhring-south-coast-engineers.html (accessed on 18 March 2020).
- Wang, Y.; Yu, Q.; Gao, S. Relationship between bed shear stress and suspended sediment concentration: Annular flume experiments. Int. J. Sediment Res. 2011, 26, 513–523. [Google Scholar] [CrossRef]
- O’Dea, A.; Haller, M.C.; Özkan-Haller, H.T. The impact of wave energy converter arrays on wave-induced forcing in the surf zone. Ocean Eng. 2018, 161, 322–336. [Google Scholar] [CrossRef]
- Ingram, D.K.; Isaacs, J.M.; Gleason, J.S.; Reynolds, M.O.; Reetz, K.K.; Yadamec, T.J. Loggerhead Nesting Ecology in Baldwin and Mobile Counties, Alabama, USA, 2003–2012, Spanish Fort. 2014. Available online: https://www.researchgate.net/publication/261617294 (accessed on 16 September 2020).
- Coogan, J.; Webb, B.; Smallegan, S.; Puleo, J. Geomorphic changes measured on Dauphin Island, AL, during Hurricane Nate. Shore Beach 2019, 87, 16–22. [Google Scholar] [CrossRef]
- NREL. How Wave Energy Could Go Big by Getting Smaller. 2021. Available online: https://www.nrel.gov/news/program/2021/how-wave-energy-could-go-big-by-getting-smaller.html (accessed on 31 December 2021).
- Thomson, R.C.; Harrison, G.P.; Chick, J.P. Full life cycle assessment of a wave energy converter. In Proceedings of the IET Conference on Renewable Power Generation (RPG 2011), Edinburgh, UK, 6–8 September 2011; pp. 1–6. [Google Scholar]
- Masselink, G.; Hughes, M.G. Introduction to Coastal Processes and Geomorphology, 2nd ed.; Routledge: London, UK, 2014. [Google Scholar]
- Lorenzo-Trueba, J.; Ashton, A.D. Rollover, drowning, and discontinuous retreat: Distinct modes of barrier response to sea-level rise arising from a simple morphodynamic model. J. Geophys. Res. Earth Surf. 2014, 119, 779–801. [Google Scholar] [CrossRef] [Green Version]
IVAN | Baseline | Wave Farm | Difference |
---|---|---|---|
Initial island area (millions of m2) | 14.19 | 14.19 | - |
Total dry area (millions of m2) | 4.49 | 4.59 | 2% |
Total inundated area (millions of m2) | 9.69 | 9.59 | −1% |
Initial sand volume (millions of m3) | 19.73 | 19.73 | - |
Final sand volume (millions of m3) | 19.00 | 19.10 | 0.5% |
Net loss in sand volume (millions of m3) | 0.73 | 0.62 | −15% |
Maximum | 192.24 | 118.69 | −38% |
Maximum | 76.19 | 67.81 | −11% |
Maximum | 206.79 | 144.71 | −30 % |
KATRINA | Baseline | Wave Farm | Difference |
---|---|---|---|
Initial island area (millions of m2) | 14.19 | 14.19 | - |
Total dry area (millions of m2) | 1.88 | 1.92 | 2% |
Total inundated area (millions of m2) | 12.31 | 12.27 | −0.3% |
Initial sand volume (millions of m3) | 19.73 | 19.73 | - |
Final sand volume (millions of m3) | 17.86 | 18.07 | 1% |
Net loss in sand volume (millions of m3) | 1.87 | 1.66 | −11% |
Maximum | 295.03 | 224.38 | −24% |
Maximum | 106.77 | 99.30 | −7% |
Maximum | 313.76 | 245.37 | −22% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozkan, C.; Mayo, T.; Passeri, D.L. The Potential of Wave Energy Conversion to Mitigate Coastal Erosion from Hurricanes. J. Mar. Sci. Eng. 2022, 10, 143. https://doi.org/10.3390/jmse10020143
Ozkan C, Mayo T, Passeri DL. The Potential of Wave Energy Conversion to Mitigate Coastal Erosion from Hurricanes. Journal of Marine Science and Engineering. 2022; 10(2):143. https://doi.org/10.3390/jmse10020143
Chicago/Turabian StyleOzkan, Cigdem, Talea Mayo, and Davina L. Passeri. 2022. "The Potential of Wave Energy Conversion to Mitigate Coastal Erosion from Hurricanes" Journal of Marine Science and Engineering 10, no. 2: 143. https://doi.org/10.3390/jmse10020143
APA StyleOzkan, C., Mayo, T., & Passeri, D. L. (2022). The Potential of Wave Energy Conversion to Mitigate Coastal Erosion from Hurricanes. Journal of Marine Science and Engineering, 10(2), 143. https://doi.org/10.3390/jmse10020143