Beach Drainage System: A Comprehensive Review of a Controversial Soft-Engineering Method
Abstract
:1. Introduction
- reduction of sediment supply;
- changing in the natural forcing (i.e., changing waves climate, sea level rise, comminution, subsidence, etc.);
- interference with human constructions.
2. Theoretical Background
3. Laboratory Experience
4. Field Campaigns
5. Mathematical Modeling
6. Discussion
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bird, E.C. Coastal Geomorphology: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Pasquali, D.; Marucci, A. The Effects of Urban and Economic Development on Coastal Zone Management. Sustainability 2021, 13, 6071. [Google Scholar] [CrossRef]
- Di Risio, M.; Bruschi, A.; Lisi, I.; Pesarino, V.; Pasquali, D. Comparative analysis of coastal flooding vulnerability and hazard assessment at national scale. J. Mar. Sci. Eng. 2017, 5, 51. [Google Scholar] [CrossRef] [Green Version]
- Mangor, K.; Drønen, N.K.; Kærgaard, K.H.; Kristensen, S.E. Shoreline Management Guidelines; DHI Water and Environment: Hørsholm, Denmark, 2017. [Google Scholar]
- Pasquali, D.; Di Risio, M.; De Girolamo, P. A simplified real time method to forecast semi-enclosed basins storm surge. Estuar. Coast. Shelf Sci. 2015, 165, 61–69. [Google Scholar] [CrossRef]
- Pasquali, D.; Bruno, M.; Celli, D.; Damiani, L.; Di Risio, M. A simplified hindcast method for the estimation of extreme storm surge events in semi-enclosed basins. Appl. Ocean Res. 2019, 85, 45–52. [Google Scholar] [CrossRef]
- Dean, R.G.; Dalrymple, R.A. Coastal Processes with Engineering Applications; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Hegde, A.V. Coastal erosion and mitigation methods–Global state of art. Indian J. Geo-Mar. Sci. 2010, 39, 521–530. [Google Scholar]
- Rey-Valette, H.; Robert, S.; Rulleau, B. Resistance to relocation in flood-vulnerable coastal areas: A proposed composite index. Clim. Policy 2019, 19, 206–218. [Google Scholar] [CrossRef]
- Castellino, M.; Lara, J.L.; Romano, A.; Losada, I.J.; De Girolamo, P. Wave loading for recurved parapet walls in non-breaking wave conditions: Analysis of the induced impulsive forces. Coast. Eng. Proc. 2018, 1, 34. [Google Scholar] [CrossRef] [Green Version]
- Castellino, M.; Romano, A.; Lara, J.L.; Losada, I.J.; De Girolamo, P. Confined-crest impact: Forces dimensional analysis and extension of the Goda’s formulae to recurved parapets. Coast. Eng. 2021, 163, 103814. [Google Scholar] [CrossRef]
- Saponieri, A.; Di Risio, M.; Pasquali, D.; Valentini, N.; Aristodemo, F.; Tripepi, G.; Celli, D.; Streicher, M.; Damiani, L. Beach profile evolution in front of storm seawalls: A physical and numerical study. Coast. Eng. Proc. 2018, 36, 70. [Google Scholar] [CrossRef]
- Celli, D.; Pasquali, D.; De Girolamo, P.; Di Risio, M. Effects of submerged berms on the stability of conventional rubble mound breakwaters. Coast. Eng. 2018, 136, 16–25. [Google Scholar] [CrossRef]
- Celli, D.; Li, Y.; Ong, M.C.; Di Risio, M. The role of submerged berms on the momentary liquefaction around conventional rubble mound breakwaters. Appl. Ocean Res. 2019, 85, 1–11. [Google Scholar] [CrossRef]
- Celli, D.; Li, Y.; Ong, M.C.; Di Risio, M. Random wave-induced momentary liquefaction around rubble mound breakwaters with submerged berms. J. Mar. Sci. Eng. 2020, 8, 338. [Google Scholar] [CrossRef]
- Celli, D.; Pasquali, D.; Fischione, P.; Di Nucci, C.; Di Risio, M. Wave-induced dynamic pressure under rubble mound breakwaters with submerged berm: An experimental and numerical study. Coast. Eng. 2021, 170, 104014. [Google Scholar] [CrossRef]
- Coastal Engineering Research Center (US). Shore Protection Manual; US Army Coastal Engineering Research Center: Washington, DC, USA, 1984; Volume 1. [Google Scholar]
- Saponieri, A.; Valentini, N.; Di Risio, M.; Pasquali, D.; Damiani, L. Laboratory Investigation on the Evolution of a Sandy Beach Nourishment Protected by a Mixed Soft–Hard System. Water 2018, 10, 1171. [Google Scholar] [CrossRef] [Green Version]
- Bridges, T.S.; Burks-Copes, K.A.; Bates, M.E.; Collier, Z.A.; Fischenich, J.C.; Piercy, C.D.; Russo, E.J.; Shafer, D.J.; Suedel, B.C.; Gailani, J.Z.; et al. Use of Natural and Nature-Based Features (NNBF) for Coastal Resilience; US Army Engineer Research and Development Center, Environmental Laboratory: Vicksburg, MS, USA, 2015. [Google Scholar]
- Hagedoorn, L.C.; Addo, K.A.; Koetse, M.J.; Kinney, K.; van Beukering, P.J. Angry waves that eat the coast: An economic analysis of nature-based and engineering solutions to coastal erosion. Ocean Coast. Manag. 2021, 214, 105945. [Google Scholar] [CrossRef]
- Van der Nat, A.; Vellinga, P.; Leemans, R.; Van Slobbe, E. Ranking coastal flood protection designs from engineered to nature-based. Ecol. Eng. 2016, 87, 80–90. [Google Scholar] [CrossRef]
- Janssen, S.; Vreugdenhil, H.; Hermans, L.; Slinger, J. On the nature based flood defence dilemma and its Resolution: A game theory based analysis. Sci. Total Environ. 2020, 705, 135359. [Google Scholar] [CrossRef]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.; Smith, A.; Turner, B. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. B 2020, 375, 20190120. [Google Scholar] [CrossRef] [Green Version]
- Pontee, N.; Narayan, S.; Beck, M.W.; Hosking, A.H. Nature-based solutions: Lessons from around the world. In Proceedings of the Institution of Civil Engineers-Maritime Engineering; Thomas Telford Ltd.: London, UK, 2016; Volume 169, pp. 29–36. [Google Scholar]
- Komar, P.D. Handbook of Coastal Processes and Erosion; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Di Risio, M.; Lisi, I.; Beltrami, G.; De Girolamo, P. Physical modeling of the cross-shore short-term evolution of protected and unprotected beach nourishments. Ocean Eng. 2010, 37, 777–789. [Google Scholar] [CrossRef]
- Turner, I.L.; Leatherman, S.P. Beach dewatering as a’soft’engineering solution to coastal erosion: A history and critical review. J. Coast. Res. 1997, 13, 1050–1063. [Google Scholar]
- Vesterby, H.D. Method of Causing Sedimentation of Sedimentary Solid Material Transported in a Body of Water, Such as a Lake, a Sea, or an Ocean. U.S. Patent 4,645,377, 24 February 1987. [Google Scholar]
- Jakobsen, P.D. Method for Coastal Protection. U.S. Patent 6,547,486, 15 April 2003. [Google Scholar]
- Bruun, P. The coastal drain: What can it do or not do? J. Coast. Res. 1989, 5, 123–125. [Google Scholar]
- Vesterby, H. Beach face dewatering-the European experience. Alternative technologies in beach preservation. In Proceedings of the 1994 National Conference on Beach Preservation Technology, Tampa, FL, USA, February 1994; pp. 53–68. [Google Scholar]
- Katoh, K.; Yanagishima, S.i. Field experiment on the effect of gravity drainage system on beach stabilization. In Coastal Engineering 1996; American Society of Civil Engineers: New York, NY, USA, 1997; pp. 2654–2665. [Google Scholar]
- Mariani, A.; Turner, I. Artificial reefs and beach dewatering as innovative solutions to beach erosion: Lessons learnt from two decades of field experience. In Proceedings of the Coasts and Ports 2013: 21st Australasian Coastal and Ocean Engineering Conference and the 14th Australasian Port and Harbour Conference, Sydney, Australia, 11–13 September 2013; Engineers Australia: Adelaide, Australia, 2013; p. 501. [Google Scholar]
- Mariani, A.; Carley, J.; Lord, D.; Turner, I.; Cox, R. International Review of Emerging Technologies to Manage Beach Erosion: Do They Really Work? In Proceedings of the Coastal Conference, Vancouver, Canada, 6–9 October 2013; Available online: https://www.coastalconference.com/2013/papers2013/Alessio%20Mariani.pdf (accessed on 20 October 2021).
- Ciavola, P.; Vicinanza, D.; Fontana, E. Beach drainage as a form of shoreline stabilization: Case studies in Italy. In Coastal Engineering 2008; World Scientific: Singapore, 2009; Volume 5, pp. 2646–2658. [Google Scholar]
- Contestabile, P.; Aristodemo, F.; Vicinanza, D.; Ciavola, P. Laboratory study on a beach drainage system. Coast. Eng. 2012, 66, 50–64. [Google Scholar] [CrossRef]
- Pilkey, O.H.; Cooper, J.A.G. “Alternative” shoreline erosion control devices: A review. In Pitfalls of Shoreline Stabilization; Springer: Dordrecht, The Netherlands, 2012; pp. 187–214. [Google Scholar]
- Duncan, J.R., Jr. The effects of water table and tide cycle on swash-backwash sediment distribution and beach profile development. Mar. Geol. 1964, 2, 186–197. [Google Scholar] [CrossRef]
- Masselink, G.; Puleo, J.A. Swash-zone morphodynamics. Cont. Shelf Res. 2006, 26, 661–680. [Google Scholar] [CrossRef]
- Bagnold, R. Beach formation by waves: Some model experiments in a wave tank. J. Inst. Civ. Eng. 1940, 15, 27–52. [Google Scholar] [CrossRef]
- Grant, U. Effect of ground-water table on beach erosion. In Geological Society of America Bulletin; Assoc Engineering Geological Society Amer Texas A& M University: College Station, TX, USA, 1946; Volume 57, p. 1252. [Google Scholar]
- Grant, U. Influence of the water table on beach aggradation and degradation. J. Mar. Res. 1948, 7, 655–660. [Google Scholar]
- Emery, K.O.; Foster, J. Water tables in marine beaches. J. Mar. Res. 1948, 7, 644–654. [Google Scholar]
- Baldock, T.E.; Baird, A.J.; Horn, D.P.; Mason, T. Measurements and modeling of swash-induced pressure gradients in the surface layers of a sand beach. J. Geophys. Res. Ocean. 2001, 106, 2653–2666. [Google Scholar] [CrossRef] [Green Version]
- Baird, A.J.; Mason, T.; Horn, D.P. Validation of a Boussinesq model of beach ground water behaviour. Mar. Geol. 1998, 148, 55–69. [Google Scholar] [CrossRef]
- Turner, I. Water table outcropping on macro-tidal beaches: A simulation model. Mar. Geol. 1993, 115, 227–238. [Google Scholar] [CrossRef]
- Turner, I.L. Simulating the influence of groundwater seepage on sediment transported by the sweep of the swash zone across macro-tidal beaches. Mar. Geol. 1995, 125, 153–174. [Google Scholar] [CrossRef]
- Butt, T.; Russell, P.; Turner, I. The influence of swash infiltration–exfiltration on beach face sediment transport: Onshore or offshore? Coast. Eng. 2001, 42, 35–52. [Google Scholar] [CrossRef]
- Elfrink, B.; Baldock, T. Hydrodynamics and sediment transport in the swash zone: A review and perspectives. Coast. Eng. 2002, 45, 149–167. [Google Scholar] [CrossRef]
- Horn, D.P. Beach groundwater dynamics. Geomorphology 2002, 48, 121–146. [Google Scholar] [CrossRef]
- Bakhtyar, R.; Barry, D.A.; Li, L.; Jeng, D.S.; Yeganeh-Bakhtiary, A. Modeling sediment transport in the swash zone: A review. Ocean Eng. 2009, 36, 767–783. [Google Scholar] [CrossRef]
- Jackson, D.; Short, A. Sandy Beach Morphodynamics; Elsevier: Amsterdam, The Netherlands, 2020; p. 170. [Google Scholar]
- Watson, G.; Barnes, T.; Peregrine, D. The generation of low-frequency waves by a single wave group incident on a beach. In Coastal Engineering 1994; American Society of Civil Engineers: New York, NY, USA, 1995; pp. 776–790. [Google Scholar]
- Masselink, G.; Li, L. The role of swash infiltration in determining the beachface gradient: A numerical study. Mar. Geol. 2001, 176, 139–156. [Google Scholar] [CrossRef]
- Turner, I.L.; Masselink, G. Swash infiltration-exfiltration and sediment transport. J. Geophys. Res. Ocean. 1998, 103, 30813–30824. [Google Scholar] [CrossRef]
- Nielsen, P.; Robert, S.; Møller-Christiansen, B.; Oliva, P. Infiltration effects on sediment mobility under waves. Coast. Eng. 2001, 42, 105–114. [Google Scholar] [CrossRef]
- Turner, I.L.; Nielsen, P. Rapid water table fluctuations within the beach face: Implications for swash zone sediment mobility? Coast. Eng. 1997, 32, 45–59. [Google Scholar] [CrossRef]
- Machemehl, J.L. New method for beach erosion control. In Proceedings of the Engineering in the Oceans, American Society of Civil Engineers Specialty Conference, Newark, DE, USA, 9–12 June 1975. [Google Scholar]
- Kawata, Y.; Tsuchiya, Y. Applicability of sub-sand system to beach erosion control. In Coastal Engineering 1986; American Society of Civil Engineers: New York, NY, USA, 1987; pp. 1255–1267. [Google Scholar]
- Ogden, M.R. An Experimental Investigation of the Effects of Subsurface Drains on Beach Stabilization. Master’s Thesis, Lehigh University, Bethlehem, PA, USA, 1991. [Google Scholar]
- Seidel, G.S. An Experimental Investigation of the Effects of Tides on Subsurface Drains Used for Beach Stabilization. Master’s Thesis, Lehigh University, Bethlehem, PA, USA, 1991. [Google Scholar]
- Sato, M.; Hata, S.; Fukushima, M. An experimental study on beach transformation due to waves under the operation of coastal drain system. In Coastal Engineering 1994; American Society of Civil Engineers: New York, NY, USA, 1995; pp. 2571–2582. [Google Scholar]
- Oh, T.M.; Dean, R.G. Beach Face Dynamics as Affected by Ground Water Table Elevations. 1992. Available online: https://aquadocs.org/handle/1834/18419 (accessed on 20 October 2021).
- Oh, T.M.; Dean, R.G. Effects of controlled water table on beach profile dynamics. In Coastal Engineering 1994; American Society of Civil Engineers: New York, NY, USA, 1995; pp. 2449–2460. [Google Scholar]
- Sato, M.; Fukushima, T.; Nishi, R.; Fukunaga, M. On the change of velocity field in nearshore zone due to coastal drain and the consequent beach transformation. In Coastal Engineering 1996; American Society of Civil Engineers: New York, NY, USA, 1997; pp. 2666–2676. [Google Scholar]
- Weisman, R.N.; Seidel, G.S.; Ogden, M.R. Effect of water-table manipulation on beach profiles. J. Waterw. Port Coast. Ocean. Eng. 1995, 121, 134–142. [Google Scholar] [CrossRef]
- Kanazawa, H.; Matsukawa, F.; Katoh, K.; Hasegawa, I. Experimental study on the effect of gravity drainage system on beach stabilization. In Coastal Engineering 1996; American Society of Civil Engineers: New York, NY, USA, 1997; pp. 2640–2653. [Google Scholar]
- Lemckert, C. Influence of Beach Dewatering on Edge Waves—A Laboratory Study. J. Coast. Res. 2001, 34, 138–142. [Google Scholar]
- Law, A.W.K.; Lim, S.Y.; Liu, B.L. A note on transient beach evolution with artificial seepage in the swash zone. J. Coast. Res. 2002, 18, 379–387. [Google Scholar]
- Gampathi, G.; Chan, S. Influence of groundwater table on beach profile dynamics. J. Inst. Eng. 2005. [Google Scholar] [CrossRef] [Green Version]
- Veltri, P.; Aristodemo, F.; Ciavola, P.; Corvaro, S.; Saponieri, A.; Verbeni, B. Hydrodynamics study of a drained beach. In Coastlab 2010; Universitat Politécnica de Catalunya: Barcelona, Spain, 2010. [Google Scholar]
- Damiani, L.; Vicinanza, D.; Aristodemo, F.; Saponieri, A.; Corvaro, S. Experimental investigation on wave set up and nearshore velocity field in presence of a BDS. J. Coast. Res. 2011, 64, 55–59. [Google Scholar]
- Damiani, L.; Aristodemo, F.; Saponieri, A.; Verbeni, B.; Veltri, P.; Vicinanza, D. Full-scale experiments on a beach drainage system: Hydrodynamic effects inside beach. J. Hydraul. Res. 2011, 49, 44–54. [Google Scholar] [CrossRef]
- Aristodemo, F.; Ciavola, P.; Veltri, P.; Saponieri, A. The influence of a Beach Drainage System on wave reflection and surf beat processes. J. Coast. Res. 2011, 64, 455–459. [Google Scholar]
- Ciavola, P.; Contestabile, P.; Aristodemo, F.; Vicinanza, D. Beach sediment mixing under drained and undrained conditions. J. Coast. Res. 2013, 65, 1503–1508. [Google Scholar] [CrossRef]
- Hasselmann, K.F.; Barnett, T.P.; Bouws, E.; Carlson, H.; Cartwright, D.E.; Eake, K.; Euring, J.; Gicnapp, A.; Hasselmann, D.; Kruseman, P.; et al. Measurements of Wind-Wave Growth and Swell Decay during the Joint North Sea Wave Project (JONSWAP). Ergaenzungsheft zur Deutschen Hydrographischen Zeitschrift, Reihe A. 1973. Available online: https://repository.tudelft.nl/islandora/object/uuid%3Af204e188-13b9-49d8-a6dc-4fb7c20562fc (accessed on 20 October 2021).
- Chappell, J.; Eliot, I.G.; Bradshaw, M.P.; Lonsdale, E. Experimental control of beach face dynamics by watertable pumping. Eng. Geol. 1979, 14, 29–41. [Google Scholar] [CrossRef]
- Curtis, W.R.; Davis, J.E. Field Evaluation/Demonstration of a Multisegmented Dewatering System for Accreting Beach Sand in a High-Wave-Energy Environment; US Army Engineer Waterways Experiment Station: Vicksburg, MS, USA, 1998. [Google Scholar]
- Vesterby, H. Coastal drain system: A new approach to coastal restoration. Proc. GEO-Coast 1991, 91, 651–654. [Google Scholar]
- Ovesen, N.; Schuldt, J. Beach Management System-Documentation; Danish Geotechnical Institute: Lyngby, Denmark, 1992. [Google Scholar]
- Dean, R. Independent Analysis of Beach Changes in the Vicinity of the Stabeach System at Sailfish Point, Florida; Coastal Stabilization Inc.: Colfax, WA, USA, 1990; 16p. [Google Scholar]
- Masselink, G.; Hughes, M. Field investigation of sediment transport in the swash zone. Cont. Shelf Res. 1998, 18, 1179–1199. [Google Scholar] [CrossRef]
- Plotkin, O. Beach Restoration on Nantucket. Bachelor’s Thesis, Worcester Polytechnic Institute, Worcester, MA, USA, 2013. [Google Scholar]
- Curtis, W.R.; Davis, J.E.; Turner, I.L. Evaluation of a beach dewatering system: Nantucket, USA. In Coastal Engineering 1996; American Society of Civil Engineers: New York, NY, USA, 1997; pp. 2677–2690. [Google Scholar]
- Davis, G.A.; Hanslow, D.J.; Hibbert, K.; Nielsen, P. Gravity drainage: A new method of beach stabilisation through drainage of the watertable. In Coastal Engineering 1992; American Society of Civil Engineers: New York, NY, USA, 1993; pp. 1129–1141. [Google Scholar]
- Sato, M.; Nishi, R.; Nakamura, K.; Sasaki, T. Short-term field experiments on beach transformation under the operation of a coastal drain system. In Soft Shore Protection; Springer: Berlin, Germany, 2003; pp. 171–182. [Google Scholar]
- Vesterby, H.; Mangor, K.; Refsgaard, A. Modelling groundwater flow in beach profiles for optimising stabilising measures. In Proceedings of the International Coastal Symposium, Rotorua, New Zealand, 24–28 April 2000; Volume 7. [Google Scholar]
- Lambert, A.; Rey, V.; Samat, O.; Provansal, M. Watertable monitoring on a beach equipped with a dewatering system: Relationship between watertable elevation and beach morphology, preliminary results. In River, Coastal and Estuarine Morphodynamics, Proceedings of the 4th IAHR Symposium on River, Coastal and Estuarine Morphodynamics, RCEM 2005, Urbana, IL, USA, 4–7 October 2005; CRC Press: Boca Raton, FL, USA, 2005; Volume 1, p. 365. [Google Scholar]
- Fattal, P.; Walker, P. Le drainage de plage: Une méthode douce de stabilisation d’un littoral meuble–Etude de cas aux Sables d’Olonne (Vendée). Xèmes Journées Nationales Génie Côtier–Génie Civil 2008, 243–252. [Google Scholar] [CrossRef]
- Bowman, D.; Ferri, S.; Pranzini, E. Efficacy of beach dewatering—Alassio, Italy. Coast. Eng. 2007, 54, 791–800. [Google Scholar] [CrossRef]
- Damiani, L.; Ranieri, G.; Rossetti, R. Coastal Protection With BMS: The First Experience In Italy. WIT Trans. Built Environ. 2004. [Google Scholar] [CrossRef]
- Vicinanza, D.; Guida, A.; Ferrante, V.; Ciavola, P. Performance of a beach dewatering system—Chiaiolella beach, Procida Island, Italy. J. Coast. Res. 2010, 26, 753–761. [Google Scholar] [CrossRef]
- Serra, J.; Bautista, R.; Montori, C.; Maia, L.P. Beach dewatering system, results from a pilot plant installation in the Ebro Delta. In Proceedings of the 4th EEGS Meeting, European Association of Geoscientists & Engineers, Barcelona, Spain, 1 July 2010; p. cp-43-00069. [Google Scholar]
- Jakobsen, P.; Brøgger, C. Coastal protection based on Pressure Equalization Modules (PEM). In Proceedings of the Conference ICS 2007, Gold Coast, Australia, 16–20 April 2007. [Google Scholar]
- Jakobsen, P.; Brøgger, C. Environmentally Friendly Coastal Protection Based on Vertical Drains. In Coastal Engineering 2008; World Scientific: Singapore, 2009; Volume 5, pp. 4712–4724. [Google Scholar]
- Brøgger, C.; Jakobsen, P. Beach nourishment combined with sic vertical drain in Malaysia. In Coastal Engineering 2008; World Scientific: Singapore, 2009; Volume 5, pp. 4725–4737. [Google Scholar]
- Christensen, K.W.; Gable, F.J. Results of a 3-year beach erosion control project in Hillsboro beach, Florida, utilizing pressure equalizing modules (PEM). Coast. Eng. Proc. 2018, 36, 25. [Google Scholar] [CrossRef] [Green Version]
- Walstra, D.; Brière, C.; Vonhögen-Peeters, L. Evaluating the PEM passive beach drainage system in a 4-year field experiment at Egmond (The Netherlands). Coast. Eng. 2014, 93, 1–14. [Google Scholar] [CrossRef]
- Bain, O.; Toulec, R.; Combaud, A.; Villemagne, G.; Barrier, P. Five years of beach drainage survey on a macrotidal beach (Quend-Plage, northern France). Comptes Rendus Geosci. 2016, 348, 411–421. [Google Scholar] [CrossRef] [Green Version]
- Bear, J. Dynamics of Fluids in Porous Media; Courier Corporation: North Chelmsford, MA, USA, 1972. [Google Scholar]
- Horn, D.P. Measurements and modelling of beach groundwater flow in the swash-zone: A review. Cont. Shelf Res. 2006, 26, 622–652. [Google Scholar] [CrossRef]
- Steggewentz, J.H. De Invloed van de Getijbeweging van Zeeën en Getijrivieren op de Stijghoogte van Grondwater. Doctoral Thesis, 1933. Available online: http://resolver.tudelft.nl/uuid:a16c3f5b-822c-40cc-9a9c-510f60390ad9 (accessed on 20 October 2021).
- Kirkham, D. Seepage of steady rainfall through soil into drains. Eos Trans. Am. Geophys. Union 1958, 39, 892–908. [Google Scholar] [CrossRef]
- Parlange, J.Y.; Stagnitti, F.; Starr, J.; Braddock, R. Free-surface flow in porous media and periodic solution of the shallow-flow approximation. J. Hydrol. 1984, 70, 251–263. [Google Scholar] [CrossRef]
- Nielsen, P. Tidal dynamics of the water table in beaches. Water Resour. Res. 1990, 26, 2127–2134. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, P.; Aseervatham, R.; Fenton, J.D.; Perrochet, P. Groundwater waves in aquifers of intermediate depths. Adv. Water Resour. 1997, 20, 37–43. [Google Scholar] [CrossRef]
- Liu, P.L.F.; Wen, J. Nonlinear diffusive surface waves in porous media. J. Fluid Mech. 1997, 347, 119–139. [Google Scholar] [CrossRef]
- Fischione, P.; Pasquali, D.; Di Nucci, C.; Di Risio, M.; Saponieri, A. Groundwater Levels in a Drained Beach in Long and Short Waves Conditions. Coast. Struct. 2019, 2019, 1034–1043. [Google Scholar]
- Van de Giesen, N.; Parlange, J.Y.; Steenhuis, T. Transient flow to open drains: Comparison of linearized solutions with and without the Dupuit assumption. Water Resour. Res. 1994, 30, 3033–3039. [Google Scholar] [CrossRef]
- Dominick, T.F.; Wilkins, B., Jr.; Roberts, H. Mathematical model for beach groundwater fluctuations. Water Resour. Res. 1971, 7, 1626–1635. [Google Scholar] [CrossRef]
- Baird, A.J.; Horn, D.P. Monitoring and modelling groundwater behaviour in sandy beaches. J. Coast. Res. 1996, 12, 630–640. [Google Scholar]
- Raubenheimer, B.; Guza, R.; Elgar, S. Watertable fluctuations in a sandy ocean beach. In Coastal Engineering 1998; American Society of Civil Engineers: New York, NY, USA, 1999; pp. 3588–3600. [Google Scholar]
- Li, L.; Barry, D.; Pattiaratchi, C.; Masselink, G. BeachWin: Modelling groundwater effects on swash sediment transport and beach profile changes. Environ. Model. Softw. 2002, 17, 313–320. [Google Scholar] [CrossRef]
- Ang, L.; Sum, C.; Baldock, T.; Li, L.; Nielsen, P. Measurement and modelling of controlled beach groundwater levels under wave action. Measurement 2004, 13, 17. [Google Scholar]
- Li, L.; Barry, D.; Pattiaratchi, C. Modeling coastal ground-water response to beach dewatering. J. Waterw. Port Coast. Ocean Eng. 1996, 122, 273–280. [Google Scholar] [CrossRef]
- Li, L.; Barry, D.; Pattiaratchi, C. Numerical modelling of tide-induced beach water table fluctuations. Coast. Eng. 1997, 30, 105–123. [Google Scholar] [CrossRef]
- Karambas, T.V.; Ioannidis, D. ‘Soft’shore protection by a beach drainage system. Glob. Nest J. 2013, 15, 295–304. [Google Scholar]
- Karambas, T.V. Modelling of infiltration-exfiltration effects of cross-shore sediment transport in the swash zone. Coast. Eng. J. 2003, 45, 63–82. [Google Scholar] [CrossRef]
- Saponieri, A.; Damiani, L. Groundwater flow on a drained beach. Comput. Methods Exp. Meas. XVI 2013, 55, 249. [Google Scholar]
- Saponieri, A.; Damiani, L. Numerical analysis of infiltration in a drained beach. Int. J. Sustain. Dev. Plan. 2015, 10, 467–486. [Google Scholar] [CrossRef]
- Simunek, J.; van Genuchten, M.T.; Sejna, M. Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone J. 2008, 7, 587–600. [Google Scholar] [CrossRef] [Green Version]
- Fischione, P.; Celli, D.; Pasquali, D.; Di Risio, M. Drains Inlfuence on the beach groundwater Hydrodynamics. Ital. J. Eng. Geol. Environ. 2020, 2020, 41–47. [Google Scholar]
- Fischione, P.; Celli, D.; Pasquali, D.; Barajas, G.; Di Paolo, B.; Lara, J.L. Inside a Beach Drainage System: A tridimensional modeling. In Proceedings of the 31st International Ocean and Polar Engineering Conference, Rhodes, Greece, 20–25 June 2021. [Google Scholar]
- Higuera, P.; Lara, J.L.; Losada, I.J. Three-dimensional interaction of waves and porous coastal structures using OpenFOAM®. Part I: Formulation and validation. Coast. Eng. 2014, 83, 243–258. [Google Scholar] [CrossRef]
- Narayan, S.; Beck, M.W.; Reguero, B.G.; Losada, I.J.; Van Wesenbeeck, B.; Pontee, N.; Sanchirico, J.N.; Ingram, J.C.; Lange, G.M.; Burks-Copes, K.A. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS ONE 2016, 11, e0154735. [Google Scholar] [CrossRef] [Green Version]
- Fredsøe, J. Field Test (s) with Passive Vertical Beach Drainage. J. Coast. Res. 2020, 101, 311–317. [Google Scholar] [CrossRef]
- Reedijk, B.; Zelfde van’t, A.; Pieterse, J.J. Results from the Dutch ecobeach pilot project. Coast. Eng. Proc. 2014, 34, 26. [Google Scholar] [CrossRef] [Green Version]
Year | Authors | Technology | Site | Facilities | Wave Climates | Sand | Tool Configuration | Tides and Levels | ||
---|---|---|---|---|---|---|---|---|---|---|
1975 | Machemehl et al. | Transversal BDS | - | - | - | - | - | - | ||
1987 | Kawata et al. | Filter layer | Kyoto, JPN | Wave tank 21.6 m × 0.75 m × 1.2 m; Wave tank 78 m × 1 m × 1.5 m | T = 0.5–5 s; H = 20.1–29.3 cm; h = 90–100 cm | slope = 1:30; d = 0.94 mm | 16 pipes of 5 cm × 80 cm at 1.5 cm of spacing | |||
1991;1992 | Seidel, Odgen and Weisman | Gravity BDS | Lehigh University, USA | Wave flume 33.66 × 0.91 m × 0.91 m | length Scale = 6.97:1; H = 12 cm; T = 3.03 s | d = 0.145 mm | Length = 0.91 m (Distance = 0.91 m; depth = 0.37 m) (Distance = 0.3; depth = 0.37) Diameter = 254 mm | Tide cycle in lab scale 4.7 scale, simple triangular shape | ||
1992–1994 | Oh and Dean | BSD | University of Florida, USA | Large wave tank 36 m × 1.8 m × 1.8 m; Small wave tank 15 m × 0.9 m × 0.6 m | H = 0.11, 0.16 m; Ts = 1.5, 2 s; mwl 47 cm | d = 0.24, 0.21 mm; slope = 1:18, 1.7 | - | 3 different levels: −0.11 m, 0 m, +0.11 m mwl | ||
1994; 1997 | Sato et al. | Pumped BDS | Kagoshima University | wave basin 26.7 m × 14 m × 1.2 m deep | T = 1 s, 2 s; H = 5 cm, 10 cm | d = 0.29 mm; slope = 1:20 | Length = 7 m Diameter = 50 mm; discharge max = 0.33 l/s/m; depth = 5 cm; filter layer around the pipe = 1 cm | 3 different levels | ||
1995 | Ogden; Weisman, Seidel, Ogden | BSD | Lehigh University, USA | 33.66 m × 0.91 × 0.91 | Froude Scale = 2.64:1 H = 0.12 m, Ts = 3.03 s | d = 0.145 mm | Length = 0.91 m (Distance = 0.91 m; depth = 0.37 m) (Distance = 0.3, depth = 0.37 m); Diameter = 254 mm | - | ||
1997 | Kanazawa et al. | Differently coupled BDS | Yokohama, JPN | wave flume 38 m × 0.5 m × 1.5 m | H = 8.4, 10, 15 cm; T = 1.34, 1.79 s; H/L = 0.03 | d = 0.135, 0.16 mm; K = 1.14 × , 6.28 × m/s | Different draining system: gravel layer of 10 cm thick (d = 13–20 mm); transversal draining pipe diameter = 4.4 cm; spring coil diameter = 1.5 cm | - | ||
2000 | Lemckert | BDS | Griffith University, AUS | Tank 1.8 × 3.6 × 1 m | wave frequency = 0.94 Hz; Stroke lengths = 3.2, 5.7, 8.2, 13.2 cm | slope = 15°, porosities = 0.47, 0.42, 0.38, 0.36, 0.35 | Vertical permeable layer | water level kept constant | ||
2002 | Law et al. | Pumped BDS | Singapore, SG | Wave flume 45 × 1.6 m × 1.5 high | H = 19.5 cm T = 1.5 s, duration = 36 h | slope = 1:15, d = 0.31 mm; fall velocity = 4.2 cm/s | depth = 5–13 cm, average flow rate = 0.15–0.48 l/s/m | h = 71 cm | ||
2004 | Gampathi and Chan | Pumped BDS | Singapore, SG | Wave tank 40 m × 0.9 m × 0.9 m | H = 4, 6, 8 cm; T = 0.8, 1, 1.25, 1.60 s | slope = 1:6, d = 0.5 mm | flow rate = 4.5 l/min, 7.5 l/min and 8.0 1/min | initial water level = 40 cm, rising level h +5 cm, +10 cm and +13 cm | ||
2011; 2012 | Damiani et al.; Contestabile et al. | BSD | Grosser Wellen Kanal, DE | Wave flume 300 m × 5 m × 7 m | H = 0.76–0.83 m; T = 5.15–5.44 s (50 configurations) | H = 0.57–0.61 m; T = 6.16–6.27 s (50 configurations) | H = 0.39–0.42 m T = 6.24–6.46 s (50 configurations) | d = 0.33 mm K = 3.2 × m/s | 4 pipes; Diameter = 200 mm | h = 4 m, h = 4.2 m |
2011; 2013 | Aristodemo et al.; Ciavola et al. | BSD | Grosser Wellen Kanal, DE | Wave flume 300 m × 5 m × 7 m | H = 0.76–0.83 m; T = 5.15–5.44 s (50 configurations) | H = 0.57–0.61 m; T = 6.16–6.27 s (50 configurations) | H = 0.39–0.42 m T = 6.24–6.46 s (50 configurations) | d = 0.33 mm K = 3.2 × m/s | 4 pipes; Diameter = 200 mm | - |
Year | Authors | Technology | Site | Period | Waves Climate | Sand | Tool Configuration | Tides and Levels |
---|---|---|---|---|---|---|---|---|
1946–1948 | Grant | Santa Monica-South California, USA | - | - | - | - | - | |
1948 | Emery and Foster | El segundo beach; la Jolla, USA | samples every half-hour through a 12 h tidal cycle | 76 cm; 107 cm; 70 cm | samples at each beach, 0.18–0.36 mm | - | 91 cm; 224 cm; 102 cm; 122 cm | |
1964 | Duncan | Santa Monica-South California, USA | 2 campaigns: 27 April and 23 October 1963 of semi-diurnal tide duration (from ebb to ebb tide) | - | - | - | - | |
1979 | Chappel, Eliot et al. | pumped vertical BDS | Durras Beach-South Australia, AUS | 3 days | H = 1.5 m, T = 9 s, Swash = 15 m 6 cycle/min | - | 150 m; 4 vertical well | - |
1992 | Davis, Hanslow, Hibbert, Nielsen | Perpendicular BDS | Dee Why Beach, New South Wales, Australia, AUS | February 1991–November 1992 | Large swell waves from South East | d Swash zone about of 0.5 mm | 18 drains; Lenght = 160 m; Depth = 0.4–0.7 m | Microtidal semi-diurnal with a diurnal inequality, range up to 2 m. |
1997 | Turner and Leatherman; Curtis and Davis; others | pumped BDS (BMS) | Hirtshals, DNK | 1981 (6 months)–1983 (8 months) | - | - | Length = 200 m + 220 m; discharge = 400 m/h; Diameter = 0.2–0.3 m; depth = 2.5 m below mwl; distance from the shoreline = 5 m | - |
1997 | Katoh and Yanagishma | Draining layer | Kashiwabaru beach, JPN | Installed in August 1994 | - | slope = 1:50, d = 0.18 mm | Permeable draining layer: Area = 88 m × 7.8 m; Depth = 2.1 m mwl. | Tide range = 1.5 m |
1997; 1998 | Turner and Leatherman; Curtis and Davis; others | pumped BDS (BMS) | Thorsminde, DNK | 1985 | - | Mixed gravel and medium grained sand | Length = 500 m; Diameter = 0.2 m; depth = 2–2.5 m | - |
1990; 1997 | Dean; Turner and Leatherman | STABEACH | Sailfish Port, Florida, USA | 1988 | - | medium-grained sand | Diameter = 0.3–0.5 m; Depth = 2.5 m, 1.5 m long horizontal well points attached at approximately 3.0 m intervals along the drain | Tide range = 0.9 m |
1998 | Curtis et al. | STABEACH | Nantucket, USA (3 sites) | November 1994–February 1997 | Shoal = 5 to 16 km off-shore | uniform, medium to coarse sands | Diameter= 0.3 m; perforated (0.5 mm) corrugated pipe wrapped with a geo-textile filter; pumps =190 l/s and 380 l/s | Bidirectional currents (with the tide) reaching 0.82 m/s and 0.98 m/s at maximum ebb and flood conditions |
1998 | Serra et al. | pumped BDS (BMS) | Ebro Delta, ESP | 1996–1998 | - | - | - | - |
2004; 2008 | Damiani and Rossetti; Ciavola et al. | pumped BDS (BMS) | Ostia, IT | February 2001—at least till 2002 | - | d = 0.15–0.2 mm | - | - |
2006 | Lambert et al. | ECOPLAGE | Baie d’Agay, Var, FR | from February 2004 | T = 55.84–6.2 s; averaged H = 0.48–0.49 m, | fine sand mean (d = 0.18 mm) and of ballast (d = 0.4 to 2 cm). | Length = 600 m; depth = 2 m | - |
2008 | Bowman et al.; Ciavola et al. | pumped BDS (BMS) | Alassio, IT | March 2004–March 2005 | 99% of the waves are of H < 2.5 m | Well-sorted fine sand (0.0125–0.0250 mm) | Lentgth = 198 m; depth = 1.5 m (45 cm below MSL); Diameter = 16 cm, max discharge= 0.5 l/s/m beach front. | Tide range = 0.32 m |
2008 | Ciavola et al. | pumped BDS (BMS) | Bibione, IT | October 2005–July 2006 | - | d = 0.16–0.24 mm | Length = 200 m; two parallel pipelines Diameter = 20 cm | - |
2008 | Ciavola et al. | pumped BDS (BMS) | Metaponto, IT | April 2006–August 2006 | - | d = 0.34 mm | Length = 200 m; Diameter = 20 cm | - |
2008 | Ciavola et al. | pumped BDS (BMS) | Lido Adriano, IT | March 2005—at least 2008 | Bimodal wave climate | d = 0.32 mm; high variability of the sediment and d = 0.47 mm near the mouth of the river | Length = 100 m; Diameter = 160 mm. Depth = 1.0–1.2 m below MSL | - |
2008; 2010 | Ciavola et al.; Vicinanza et al. | ECOPLAGE | Chiaiolella Beach, Procida Island, IT | April 2002–December 2004 | H = 7 m (Tr =100), T = 4–6 s | d = 0.35 mm | 3 different drains lengths: 325 m, 390 m, 100 m; 0.5–0.7 m depth under m.s.l. d = 140 mm; pumps = 18 l/s | - |
2007–2008 | Brøggeer and Jakobsen | PEM | Skodbjerge, DNK | January 2005 up till January 2008 | - | - | 175 cm long and are submerged 25 cm under the beach | Mean water level range = 0.7–0.8 m |
2018 | Christensen and Gable | PEM | Hillsboro beach, Florida, USA | 2008–2011 | wave directions are from the northeast and east, with 79% of occurrences, which results in a net sediment transport toward the south. | - | 90 PEMs in 33 rows | Tidal period = 12.4 h; Mean tide range = 0.77 m; spring tide range = 0.86 m |
2008 | Brøggeer and Jakobsen | PEM | Malaysia | 2008 | Yearly average wave height is approximately 0.20 m, but during the NE monsoon the average wave height is 0.75 m | slope = 1:45; d 0.3–0.5 mm | 100 m × 10 m matrix (9 columns and 5 rows = 100 PEMs) | Highest tide range = 0.4 m |
2014; 2015 | Walstra et al.; Reedijk et al. | PEM | Egmond, NL | 2007–2011 | H max exceeding 5 m | d about 0.3 mm | l = 2 m, depth = 0.25 m, Diameter= 0.06 m | - |
2016 | Bain, Toulec et al. | BDS | Quend-Plage, FR | 5 years (Jun 2008–September 2013) | H < 0.5 m, T = 4–6 s, H < 0.5 m | d = 0.1–0.14 mm | 5 m × 900 m 1.5 m depth; 5 parallel drains; Diameter = 160 mm | Semi-diurnal macro-tidal (mean spring range = 5.5 m) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fischione, P.; Pasquali, D.; Celli, D.; Di Nucci, C.; Di Risio, M. Beach Drainage System: A Comprehensive Review of a Controversial Soft-Engineering Method. J. Mar. Sci. Eng. 2022, 10, 145. https://doi.org/10.3390/jmse10020145
Fischione P, Pasquali D, Celli D, Di Nucci C, Di Risio M. Beach Drainage System: A Comprehensive Review of a Controversial Soft-Engineering Method. Journal of Marine Science and Engineering. 2022; 10(2):145. https://doi.org/10.3390/jmse10020145
Chicago/Turabian StyleFischione, Piera, Davide Pasquali, Daniele Celli, Carmine Di Nucci, and Marcello Di Risio. 2022. "Beach Drainage System: A Comprehensive Review of a Controversial Soft-Engineering Method" Journal of Marine Science and Engineering 10, no. 2: 145. https://doi.org/10.3390/jmse10020145
APA StyleFischione, P., Pasquali, D., Celli, D., Di Nucci, C., & Di Risio, M. (2022). Beach Drainage System: A Comprehensive Review of a Controversial Soft-Engineering Method. Journal of Marine Science and Engineering, 10(2), 145. https://doi.org/10.3390/jmse10020145