Improved Detectivity for Detecting Gas Hydrates Using the Weighted Differential Fields of the Marine Controlled-Source Electromagnetic Data
Abstract
:1. Introduction
2. Methodology
- E: the electric field;
- H: the magnetic field;
- : the position of the dipole source;
- : the position of the receiver;
- : the dipole source moment related to the horizontal positions of the dipole source and the receiver;
- : the horizontal distance between the dipole source and the receiver;
- : the Bessel function of the first kind of the order v, where v can be 0 or 1;
- : the corresponding kernel functions for the electric field;
- : the corresponding kernel functions for the magnetic field.
- : the imaginary unit;
- : the azimuth of the dipole source, and is set to be 0 for a horizontal source along the eastern direction y;
- : the angular frequency;
- : the magnetic permeability in free space;
- : the electric permittivity in free space;
- : the conductivity of the seawater;
- : the conductivity of the seabed;
- : the wavenumber used;
- : the wavenumber in free space;
- : the seawater depth;
- : the reflection coefficient of TE mode for the seabed.
3. Numerical Analysis
3.1. 1D Test
3.2. 2D Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Minshull, T.A.; Marín-Moreno, H.; Betlem, P.; Bialas, J.; Buenz, S.; Burwicz, E.; Cameselle, A.L.; Cifci, G.; Giustiniani, M.; Hillman, J.I.; et al. Hydrate occurrence in Europe: A review of available evidence. Mar. Pet. Geol. 2019, 111, 735–764. [Google Scholar] [CrossRef]
- Hassanpouryouzband, A.; Joonaki, E.; Farahani, M.V.; Takeya, S.; Ruppel, C.; Yang, J.; English, N.J.; Schicks, J.M.; Edlmann, K.; Mehrabian, H.; et al. Gas hydrates in sustainable chemistry. Chem. Soc. Rev. 2020, 49, 5225–5309. [Google Scholar] [CrossRef] [PubMed]
- Zander, T. Methane Hydrates in Black Sea Deep-Sea Fans: Characteristics, Implications, and Related Geohazards. Ph.D. Thesis, University of Kiel, Kiel, Germany, 2017. [Google Scholar]
- Goswami, B.K. A Joint Electromagnetic and Seismic Study of Arctic Hydrates and Fluid Escape Features, Offshore SVALBARD. Ph.D. Thesis, University of Southampton, Southampton, UK, 2016. [Google Scholar]
- Kopp, H.; Chiocci, F.L.; Berndt, C.; Çağatay, N.; Ferreira, T.; Fortes, J.; Gràcia, E.; Vega, A.G.; Kopf, A.; Sørensen, M.; et al. Marine Geohazards: Safeguarding Society and the Blue Economy from a Hidden Threat; Position Paper 26 of the European Marine Board; European Marine Board IVZW: Ostend, Belgium, 2021. [Google Scholar] [CrossRef]
- Hassanpouryouzband, A.; Yang, J.; Tohidi, B.; Chuvilin, E.; Istomin, V.; Bukhanov, B. Geological CO2 Capture and Storage with Flue Gas Hydrate Formation in Frozen and Unfrozen Sediments: Method Development, Real Time-Scale Kinetic Characteristics, Efficiency, and Clathrate Structural Transition. ACS Sustain. Chem. Eng. 2019, 7, 5338–5345. [Google Scholar] [CrossRef]
- Judd, A.; Hovland, M. Seabed Fluid Flow: The Impact on Geology, Biology and the Marine Environment; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Riedel, M.; Willoughby, E.C.; Chopra, S. (Eds.) Geophysical Characterization of Gas Hydrates; Society of Exploration Geophysicists (SEG): Tulsa, OK, USA, 2010. [Google Scholar] [CrossRef]
- Rajput, S.; Thakur, N.K. Exploration of Gas Hydrates; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Hovland, M.; Judd, A. Seabed Pockmarks and Seepages: Impact on Geology, Biology and the Marine Environment; Graham & Trotman: London, UK, 1988. [Google Scholar] [CrossRef]
- Ceramicola, S.; DupréLuis, S.; Woodside, S. Cold Seep Systems; Sringer: Berlin/Heidelberg, Germany, 1988; pp. 367–387. [Google Scholar] [CrossRef]
- Jaśniewicz, D.; Klusek, Z.; Brodecka-Goluch, A.; Bolałek, J. Acoustic investigations of shallow gas in the southern Baltic Sea (Polish Exclusive Economic Zone): A review. Geo Mar. Lett. 2019, 39, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Andreassen, K.; Hart, P.E.; MacKay, M. Amplitude versus offset modeling of the bottom simulating reflection associated with submarine gas hydrates. Mar. Geol. 1997, 137, 25–40. [Google Scholar] [CrossRef]
- Korenga, J.; Holbrook, W.S.; Singh, S.C.; Minshull, T.A. Natural gas hydrates on the southeast U.S. margin: Constraints from full waveform and travel time inversions of wide-angle seismic data. J. Geophys. Res. 1997, 102, 15345–15365. [Google Scholar] [CrossRef]
- Shankar, U.; Sinha, B.; Thakur, N.K.; Khanna, R. Amplitude-versus-offset modeling of the bottom simulating reflection associated with submarine gas hydrates. Mar. Geophys. Res. 2005, 26, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, P.; Dewangan, P.; Ramprasad, T.; Zelt, C.A. Seismic characterization of hydrates in faulted, fine-grained sediments of Krishna-Godavari Basin: Full waveform inversion. J. Geophys. Res. 2012, 117, B10305. [Google Scholar] [CrossRef] [Green Version]
- Rajput, S.; Müller, T.M.; Clennell, M.B.; Rao, P.P.; Thakur, N. Constraints on seismic reflections and mode conversions at bottom simulating reflectors associated with gas hydrates. J. Pet. Sci. Eng. 2012, 88–89, 48–60. [Google Scholar] [CrossRef]
- Berndt, C.; Chi, W.; Jegen, M.; Lebas, E.; Crutchley, G.; Muff, S.; Hölz, S.; Sommer, M.; Lin, S.; Liu, C.; et al. Tectonic controls on gas hydrate distribution of SW Taiwan. J. Geophys. Res. Solid Earth 2019, 124, 1164–1184. [Google Scholar] [CrossRef] [Green Version]
- Zander, T.; Haeckel, M.; Berndt, C.; Chi, W.C.; Klaucke, I.; Bialas, J.; Klaeschen, D.; Koch, S.; Atgınc, O. On the origin of multiple BSRs in the Danube deep-sea fan, Black Sea. Earth Planet. Sci. Lett. 2017, 462, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Edwards, R.N. On the resource evaluation of marine gas hydrate deposits using sea-floor transient electric dipole-dipole methods. Geophysics 1997, 62, 63–74. [Google Scholar] [CrossRef]
- Weitemeyer, K.; Constable, S.; Key, K. Marine EM techniques for gas-hydrate detection and hazard mitigation. Lead. Edge 2006, 25, 629–632. [Google Scholar] [CrossRef]
- Weitemeyer, K.A.; Constable, S.C.; Key, K.W.; Behrens, J.P. First results from a marine controlled-source electromagnetic survey to detect gas hydrates offshore Oregon. Geophys. Res. Lett. 2006, 33, L03304. [Google Scholar] [CrossRef] [Green Version]
- Weitemeyer, K.; Constable, S. Mapping shallow geology and gas hydrate with marine CSEM surveys. First Break 2010, 28, 97–102. [Google Scholar] [CrossRef]
- Lee, K.H.; Jang, H.; Jang, H.; Kim, H.J. Sensitivity analysis of marine controlled-source electromagnetic methods to a shallow gas-hydrate layer with 1D forward modeling. Geosci. J. 2011, 15, 297–303. [Google Scholar] [CrossRef]
- Weitemeyer, K.A.; Constable, S.; Tréhu, A.M. A marine electromagnetic survey to detect gas hydrate at Hydrate Ridge, Oregon. Geophys. J. Int. 2011, 187, 45–62. [Google Scholar] [CrossRef] [Green Version]
- Swidinsky, A.; Edwards, R.N.; Jegen, M. The marine controlled source electromagnetic response of a steel borehole casing: Applications for the NEPTUNE Canada gas hydrate observatory. Geophys. Prospect. 2013, 61, 842–856. [Google Scholar] [CrossRef]
- Hsu, S.K.; Chiang, C.W.; Evans, R.L.; Chen, C.S.; Chiu, S.D.; Ma, Y.F.; Chen, S.C.; Tsai, C.H.; Lin, S.S.; Wang, Y. Marine controlled source electromagnetic method used for the gas hydrate investigation in the offshore area of SW Taiwan. J. Asian Earth Sci. 2014, 92, 224–232. [Google Scholar] [CrossRef]
- Goswami, B.K.; Weitemeyer, K.A.; Minshull, T.A.; Sinha, M.C.; Westbrook, G.K.; Chabert, A.; Henstock, T.J.; Ker, S. A joint electromagnetic and seismic study of an active pockmark within the hydrate stability field at the Vestnesa Ridge, West Svalbard margin. J. Geophys. Res. Solid Earth 2015, 120, 6797–6822. [Google Scholar] [CrossRef] [Green Version]
- Attias, E.; Weitemeyer, K.; Minshull, T.A.; Best, A.I.; Sinha, M.; Jegen-Kulcsar, M.; Hölz, S.; Berndt, C. Controlled-source electromagnetic and seismic delineation of subseafloor fluid flow structures in a gas hydrate province, offshore Norway. Geophys. J. Int. 2016, 206, 1093–1110. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Han, B. Application of the perfectly matched layer in 2.5D marine controlled-source electromagnetic modeling. Phys. Earth Planet. Inter. 2017, 270, 157–167. [Google Scholar] [CrossRef]
- Schwalenberg, K.; Rippe, D.; Koch, S.; Scholl, C. Marine-controlled source electromagnetic study of methane seeps and gas hydrates at Opouawe Bank, Hikurangi Margin, New Zealand. J. Geophys. Res. Solid Earth 2017, 122, 3334–3350. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Li, Y.; Han, B. Accurate Interpolation at receiver positions: A novel method for frequency-domain marine CSEM finite-difference modelling. Pure Appl. Geophys. 2017, 174, 2143–2160. [Google Scholar] [CrossRef] [Green Version]
- Attias, E.; Weitemeyer, K.; Hölz, S.; Naif, S.; Minshull, T.A.; Best, A.I.; Haroon, A.; Jegen-Kulcsar, M.; Berndt, C. High-resolution resistivity imaging of marine gas hydrate structures by combined inversion of CSEM towed and ocean-bottom receiver data. Geophys. J. Int. 2018, 214, 1701–1714. [Google Scholar] [CrossRef]
- Li, G.; Li, Y.; Han, B.; Liu, Z. Application of the perfectly matched layer in 3-D marine controlled-source electromagnetic modelling. Geophys. J. Int. 2018, 212, 333–344. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Cai, H.; Li, C.F. Alternating joint inversion of controlled-source electromagnetic and seismic data using the joint total variation constraint. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5914–5922. [Google Scholar] [CrossRef]
- Attias, E.; Amalokwu, K.; Watts, M.; Falcon-Suarez, I.H.; North, L.; Hu, G.W.; Best, A.I.; Weitemeyer, K.; Minshull, T.A. Gas hydrate quantification at a pockmark offshore Norway from joint effective medium modelling of resistivity and seismic velocity. Mar. Pet. Geol. 2020, 113, 104151. [Google Scholar] [CrossRef]
- Li, G.; Duan, S.; Cai, H.; Han, B.; Ye, Y. An improved interpolation scheme at receiver positions for 2.5D frequency-domain marine controlled-source EM forward modeling. Geophys. Prospect. 2020, 68, 1657–1675. [Google Scholar] [CrossRef]
- Kannberg, P.K.; Constable, S. Characterization and quantification of gas hydrates in the California Borderlands. Geophys. Res. Lett. 2020, 47, e2019GL084703. [Google Scholar] [CrossRef]
- Schwalenberg, K.; Willoughby, E.; Mir, R.; Edwards, R.N. Marine gas hydrate electromagnetic signatures in Cascadia and their correlation with seismic blank zones. First Break 2005, 23, 57–63. [Google Scholar] [CrossRef]
- Goswami, B.K.; Weitemeyer, K.A.; Minshull, T.A.; Sinha, M.C.; Westbrook, G.K.; Marín-Moreno, H. Resistivity image beneath an area of active methane seeps in the west Svalbard continental slope. Geophys. J. Int. 2016, 207, 1286–1302. [Google Scholar] [CrossRef] [Green Version]
- Schwalenberg, K.; Gehrmann, R.A.; Bialas, J.; Rippe, D. Analysis of marine controlled source electromagnetic data for the assessment of gashydrates in the Danube deep-sea fan, Black Sea. Mar. Pet. Geol. 2020, 122, 104650. [Google Scholar] [CrossRef]
- Duan, S.; Hölz, S.; Dannowski, A.; Schwalenberg, K.; Jegen, M. Study on gas hydrate targets in the Danube Paleo-Delta with a dual polarization controlled-source electromagnetic system. Mar. Pet. Geol. 2021, 134, 105330. [Google Scholar] [CrossRef]
- Sun, Y.F.; Goldberg, D. Dielectric method of high-resolution gas hydrate estimation. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Sun, Y.; Goldberg, D.; Collett, T.; Hunter, R. High-resolution well-log derived dielectric properties of gas-hydrate-bearing sediments, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope. Mar. Pet. Geol. 2011, 28, 450–459. [Google Scholar] [CrossRef]
- Hyndman, R.D.; Yuan, T.; Moran, K. The concentration of deep sea gas hydrates from downhole electrical resistivity logs and laboratory data. Earth Planet. Sci. Lett. 1999, 172, 167–177. [Google Scholar] [CrossRef]
- Cook, A.E.; Anderson, B.I.; Malinverno, A.; Mrozewski, S.; Goldberg, D.S. Electrical anisotropy due to gas hydrate-filled fractures. Geophysics 2010, 75, F173–F185. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.Y.; Yi, B.Y.; Yoo, D.G.; Ryu, B.J.; Riedel, M. Evidence of gas hydrate from downhole logging data in the Ulleung Basin, East Sea. Mar. Pet. Geol. 2011, 28, 1979–1985. [Google Scholar] [CrossRef]
- Lee, M.W.; Collett, T.S. In-situ gas hydrate hydrate saturation estimated from various well logs at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope. Mar. Pet. Geol. 2011, 28, 439–449. [Google Scholar] [CrossRef]
- Goswami, B.K.; Weitemeyer, K.A.; Timothy, A.; Minshull, S.B.; Westbrook, G.K.; Ker, S.; Sinha, M.C. Variations in pockmark composition at the Vestnesa Ridge: Insights from marine controlled source electromagnetic and seismic data. Geochem. Geophys. Geosystems 2017, 18, 1111–1125. [Google Scholar] [CrossRef] [Green Version]
- Bernard, B.B.; Brooks, J.M.; Sackett, W.M. Natural gas seepage in the Gulf of Mexico. Earth Planet. Sci. Lett. 1976, 31, 48–54. [Google Scholar] [CrossRef]
- Martinelli, G.; Panahi, B. (Eds.) Mud Volcanoes, Geodynamics and Seismicity; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- Bünz, S.; Polyanov, S.; Vadakkepuliyambatta, S.; Consolaro, C.; Mienert, J. Active gas venting through hydrate-bearing sediments on the Vestnesa Ridge, offshore W-Svalbard. Mar. Geol. 2012, 332–334, 189–197. [Google Scholar] [CrossRef]
- Talukder, A.R. Review of submarine cold seep plumbing systems: Leakage to seepage and venting. Terra Nova 2012, 24, 255–272. [Google Scholar] [CrossRef]
- Micallef, A.; Krastel, S.; Savini, A. (Eds.) Submarine Geomorphology; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Hachikubo, A.; Minami, H.; Yamashita, S.; Khabuev, A.; Krylov, A.; Kalmychkov, G.; Poort, J.; Batist, M.D.; Henskiy, A.C.; Manakov, A.; et al. Characteristics of hydrate-bound gas retrieved at the Kedr mud volcano (southern Lake Baikal). Sci. Rep. 2020, 10, 14747. [Google Scholar] [CrossRef] [PubMed]
- Baba, K. Electrical structure in marine tectonic settings. Surv. Geophys. 2005, 26, 701–731. [Google Scholar] [CrossRef]
- Zhdanov, M.S. Electromagnetic geophysics: Notes from the past and the road ahead. Geophysics 2010, 75, 75A49–75A66. [Google Scholar] [CrossRef]
- Key, K. Marine electromagnetic studies of seafloor resources and tectonics. Surv. Geophys. 2011, 33, 135–167. [Google Scholar] [CrossRef] [Green Version]
- Constable, S. Review paper: Instrumentation for marine magnetotelluric and controlled source electromagnetic sounding. Geophys. Prospect. 2013, 61, 505–532. [Google Scholar] [CrossRef]
- Key, K. Application of Broadband Marine Magnetotelluric Exploration to a 3D Salt Structure and a Fast-Spreading Ridge. Ph.D. Thesis, University of California, San Diego, CA, USA, 2003. [Google Scholar]
- Hölz, S.; Swidinsky, A.; Sommer, M.; Jegen, M.; Bialas, J. The use of rotational invariants for the interpretation of marine CSEM data with a case study from the North Alex mud volcano, West Nile Delta. Geophys. J. Int. 2015, 201, 224–245. [Google Scholar] [CrossRef] [Green Version]
- Nordskag, J.I.; Amundsen, L. Asymptotic airwave modeling for marine controlled-source electromagnetic surveying. Geophysics 2007, 72, F249–F255. [Google Scholar] [CrossRef]
- Løseth, L.O.; Amundsen, L.; Jenssen, A.J. A solution to the airwave-removal problem in shallow-water marine EM. Geophysics 2010, 75, A37–A42. [Google Scholar] [CrossRef]
- Chen, J.; Alumbaugh, D.L. Three methods for mitigating airwaves in shallow water marine controlled-source electromagnetic data. Geophysics 2011, 76, F89–F99. [Google Scholar] [CrossRef]
- Hunziker, J.; Slob, E.; Mulder, W. Effects of the airwave in time-domain marine controlled-source electromagnetics. Geophysics 2011, 76, F251–F261. [Google Scholar] [CrossRef] [Green Version]
- Mittet, R.; Morten, J.P. The marine controlled-source electromagnetic method in shallow water. Geophysics 2013, 78, E67–E77. [Google Scholar] [CrossRef] [Green Version]
- Amundsen, L.; Løseth, L.; Mittet, R.; Ellingsrud, S.; Ursin, B. Decomposition of electromagnetic fields into upgoing and downgoing components. Geophysics 2006, 71, G211–G223. [Google Scholar] [CrossRef] [Green Version]
- Mittet, R. Normalized amplitude ratios for frequency-domain CSEM in very shallow water. First Break 2008, 26, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Zhang, L.; Goswami, B.K. Complex frequency-shifted perfectly matched layers for 2.5D frequency-domain marine controlled source EM field simulations. Surv. Geophys. 2021. submitted. [Google Scholar]
- Wait, J.R. The electromagnetic fields of a horizontal dipole in the presence of a conducting half-space. Can. J. Phys. 1961, 39, 1017–1027. [Google Scholar] [CrossRef]
- Ward, S.H.; Hohmann, G.W. Electromagnetic Theory for Geophysical Applications; Society of Exploration Geophysicists (SEG): Tulsa, OK, USA, 1988; pp. 130–311. [Google Scholar] [CrossRef]
- Løseth, L.O.; Ursin, B. Electromagnetic fields in planarly layered anisotropic media. Geophys. J. Int. 2007, 170, 44–80. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, G. Electromagnetic field expressions in the wavenumber domain from both the horizontal and vertical electric dipoles. J. Geophys. Eng. 2016, 13, 505–515. [Google Scholar] [CrossRef]
- Li, G.; Li, Y. Joint inversion for transmitter navigation and seafloor resistivity for frequency-domain marine CSEM data. J. Appl. Geophys. 2017, 136, 178–189. [Google Scholar] [CrossRef]
- Løseth, L.O.; Amundsen, L. Removal of air-response by weighting inline and broadside CSEM/SBL data. In SEG Technical Program Expanded Abstracts 2007; Society of Exploration Geophysicists (SEG): Tulsa, OK, USA, 2007; pp. 1460–1464. [Google Scholar] [CrossRef]
- Constable, S.; Weiss, C.J. Mapping thin resistors and hydrocarbons with marine EM methods: Insights from 1D modeling. Geophysics 2006, 71, G43–G51. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Tang, F.; Li, C.; Lei, W.; Liu, Y. Improved Detectivity for Detecting Gas Hydrates Using the Weighted Differential Fields of the Marine Controlled-Source Electromagnetic Data. J. Mar. Sci. Eng. 2022, 10, 161. https://doi.org/10.3390/jmse10020161
Li G, Tang F, Li C, Lei W, Liu Y. Improved Detectivity for Detecting Gas Hydrates Using the Weighted Differential Fields of the Marine Controlled-Source Electromagnetic Data. Journal of Marine Science and Engineering. 2022; 10(2):161. https://doi.org/10.3390/jmse10020161
Chicago/Turabian StyleLi, Gang, Fugui Tang, Chaofan Li, Wen Lei, and Ying Liu. 2022. "Improved Detectivity for Detecting Gas Hydrates Using the Weighted Differential Fields of the Marine Controlled-Source Electromagnetic Data" Journal of Marine Science and Engineering 10, no. 2: 161. https://doi.org/10.3390/jmse10020161
APA StyleLi, G., Tang, F., Li, C., Lei, W., & Liu, Y. (2022). Improved Detectivity for Detecting Gas Hydrates Using the Weighted Differential Fields of the Marine Controlled-Source Electromagnetic Data. Journal of Marine Science and Engineering, 10(2), 161. https://doi.org/10.3390/jmse10020161