Observation of Near-Inertial Waves Induced by Typhoon Mitag (2019) on the Southwestern East China Sea Continental Slope
Abstract
:1. Introduction
2. Data and Methodology
2.1. Typhoon Mitag
2.2. In Situ Observations
2.3. Satellite Altimeter Data
2.4. Analysis and Reanalysis Data
2.5. Methodology
3. Results
3.1. Spectral Analysis
3.2. Near-Inertial Currents
3.3. Near-Inertial Kinetic Energy
3.4. Modal Content of Near-Inertial Waves
3.5. Frequency of Near-Inertial Waves
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alford, M.H.; MacKinnon, J.A.; Simmons, H.L.; Nash, J.D. Near-Inertial Internal Gravity Waves in the Ocean. Annu. Rev. Mar. Sci. 2016, 8, 95–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millot, C.; Crépon, M. Inertial Oscillations on the Continental Shelf of the Gulf of Lions—Observations and Theory. J. Phys. Oceanogr. 1981, 11, 639–657. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Watts, D.R. Near-inertial oscillations interacting with mesoscale circulation in the southwestern Japan/East Sea. Geophys. Res. Lett. 2005, 32, 153–174. [Google Scholar] [CrossRef] [Green Version]
- Pallàs-Sanz, E.; Candela, J.; Sheinbaum, J.; Ochoa, J.; Jouanno, J. Trapping of the near-inertial wave wakes of two consecutive hurricanes in the Loop Current. J. Geophys. Res. Ocean. 2016, 121, 7431–7454. [Google Scholar] [CrossRef]
- Zhang, Z.; Qiu, B.; Tian, J.; Zhao, W.; Huang, X. Latitude-dependent finescale turbulent shear generations in the Pacific trop-ical-extratropical upper ocean. Nat. Commun. 2018, 9, 4086. [Google Scholar] [CrossRef]
- Whalen, C.B.; MacKinnon, J.A.; Talley, L.D. Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves. Nat. Geosci. 2018, 11, 842–847. [Google Scholar] [CrossRef]
- Alford, M.H. Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature 2003, 423, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Troy, C.D.; Ahmed, S.; Hawley, N.; Goodwell, A. Cross-shelf thermal variability in southern Lake Michigan during the stratified periods. J. Geophys. Res. Ocean. 2012, 117, C02028. [Google Scholar] [CrossRef] [Green Version]
- Jochum, M.; Briegleb, B.P.; Danabasoglu, G.; Large, W.G.; Norton, N.J.; Jayne, S.R.; Alford, M.H.; Bryan, F.O. The Impact of Oceanic Near-Inertial Waves on Climate. J. Clim. 2013, 26, 2833–2844. [Google Scholar] [CrossRef] [Green Version]
- D’Asaro, E.A. The Energy Flux from the Wind to Near-Inertial Motions in the Surface Mixed Layer. J. Phys. Oceanogr. 1985, 15, 1043–1059. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Hou, Y.; Hu, P. Observed near-inertial waves in the wake of Typhoon Hagupit in the northern South China Sea. Chin. J. Oceanol. Limnol. 2015, 33, 1265–1278. [Google Scholar] [CrossRef]
- Xie, X.-H.; Shang, X.-D.; Van Haren, H.; Chen, G.-Y.; Zhang, Y.-Z. Observations of parametric subharmonic instability-induced near-inertial waves equatorward of the critical diurnal latitude. Geophys. Res. Lett. 2011, 38, L05603. [Google Scholar] [CrossRef] [Green Version]
- MacKinnon, J.A.; Alford, M.H.; Sun, O.; Pinkel, R.; Zhao, Z.; Klymak, J. Parametric Subharmonic Instability of the Internal Tide at 29° N. J. Phys. Oceanogr. 2013, 43, 17–28. [Google Scholar] [CrossRef]
- Nikurashin, M.; Ferrari, R. Radiation and Dissipation of Internal Waves Generated by Geostrophic Motions Impinging on Small-Scale Topography: Theory. J. Phys. Oceanogr. 2010, 40, 1055–1074. [Google Scholar] [CrossRef]
- Nikurashin, M.; Ferrari, R. Radiation and Dissipation of Internal Waves Generated by Geostrophic Motions Impinging on Small-Scale Topography: Application to the Southern Ocean. J. Phys. Oceanogr. 2010, 40, 2025–2042. [Google Scholar] [CrossRef]
- van Aken, H.M.; Maas, L.R.M.; van Haren, H. Observations of Inertial Wave Events near the Continental Slope off Goban Spur. J. Phys. Oceanogr. 2005, 35, 1329–1340. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Thurnherr, A. Eddy-Modulated Internal Waves and Mixing on a Midocean Ridge. J. Phys. Oceanogr. 2012, 42, 1242–1248. [Google Scholar] [CrossRef]
- Hoskins, B.J.; Bretherton, F.P. Atmospheric frontogenesis models: Mathematical formulation and solutions. J. Atmos. Sci. 1972, 29, 11–37. [Google Scholar] [CrossRef] [Green Version]
- Ford, R. Gravity wave radiation from vortex trains in rotating shallow water. J. Fluid Mech. 1994, 281, 81–118. [Google Scholar] [CrossRef]
- Kunze, E. Near-Inertial Wave Propagation in Geostrophic Shear. J. Phys. Oceanogr. 1985, 15, 544–565. [Google Scholar] [CrossRef]
- Kunze, E.; Schmitt, R.W.; Toole, J. The Energy Balance in a Warm-Core Ring’s Near-Inertial Critical Layer. J. Phys. Oceanogr. 1995, 25, 942–957. [Google Scholar] [CrossRef] [Green Version]
- Byun, S.-S.; Park, J.J.; Chang, K.-I.; Schmitt, R.W. Observation of near-inertial wave reflections within the thermostad layer of an anticyclonic mesoscale eddy. Geophys. Res. Lett. 2010, 37, 483–496. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Xue, H.; Wang, D.; Xie, Q. Observed near-inertial kinetic energy in the northwestern South China Sea. J. Geophys. Res. Ocean. 2013, 118, 4965–4977. [Google Scholar] [CrossRef] [Green Version]
- Guan, S.; Zhao, W.; Huthnance, J.; Tian, J.; Wang, J. Observed upper ocean response to typhoon Megi (2010) in the Northern South China Sea. J. Geophys. Res. Ocean. 2014, 119, 3134–3157. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Hu, P.; Hou, Y. Variation and Episodes of Near-Inertial Internal Waves on the Continental Slope of the Southeastern East China Sea. J. Mar. Sci. Eng. 2021, 9, 916. [Google Scholar] [CrossRef]
- Rossby, C.-G. On the Mutual Adjustment of Pressure and Velocity Distributions in Certain Simple Current Systems, II. J. Mar. Res. 1938, 1, 239–263. [Google Scholar] [CrossRef]
- Gill, A.E. On the Behavior of Internal Waves in the Wakes of Storms. J. Phys. Oceanogr. 1984, 14, 1129–1151. [Google Scholar] [CrossRef] [Green Version]
- Qi, H.; De Szoeke, R.A.; Paulson, C.A.; Eriksen, C.C. The Structure of Near-Inertial Waves during Ocean Storms. J. Phys. Oceanogr. 1995, 25, 2853–2871. [Google Scholar] [CrossRef] [Green Version]
- Geisler, J.E. Linear theory of the response of a two layer ocean to a moving hurricane. Geophys. Fluid Dyn. 1970, 1, 249–272. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, D.; Zhou, L.; Liu, X.; Ding, T.; Zhou, B. Upper ocean response to typhoon Kalmaegi (2014). J. Geophys. Res. Ocean. 2016, 121, 6520–6535. [Google Scholar] [CrossRef]
- Firing, E.; Lien, R.-C.; Muller, P. Observations of strong inertial oscillations after the passage of Tropical Cyclone Ofa. J. Geophys. Res. Ocean. 1997, 102, 3317–3322. [Google Scholar] [CrossRef]
- Sanford, T.B.; Price, J.F.; Girton, J.B. Upper-Ocean Response to Hurricane Frances (2004) Observed by Profiling EM-APEX Floats. J. Phys. Oceanogr. 2011, 41, 1041–1056. [Google Scholar] [CrossRef]
- Yang, B.; Hou, Y. Near-inertial waves in the wake of 2011 Typhoon Nesat in the northern South China Sea. Acta Oceanol. Sin. 2014, 33, 102–111. [Google Scholar] [CrossRef]
- Yang, B.; Hou, Y.; Hu, P.; Liu, Z.; Liu, Y. Shallow ocean response to tropical cyclones observed on the continental shelf of the northwestern South China Sea. J. Geophys. Res. Ocean. 2015, 120, 3817–3836. [Google Scholar] [CrossRef]
- Hou, H.; Yu, F.; Nan, F.; Yang, B.; Guan, S.; Zhang, Y. Observation of Near-Inertial Oscillations Induced by Energy Transformation during Typhoons. Energies 2019, 12, 99. [Google Scholar] [CrossRef] [Green Version]
- Jeon, C.; Park, J.-H.; Nakamura, H.; Nishina, A.; Zhu, X.-H.; Kim, D.G.; Min, H.S.; Kang, S.K.; Na, H.; Hirose, N. Poleward-propagating near-inertial waves enabled by the western boundary current. Sci. Rep. 2019, 9, 9955. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, S.; Qi, Y.; Jing, Z. Upper ocean near-inertial response to the passage of two sequential typhoons in the north-western South China Sea. Sci. China Earth Sci. 2019, 62, 863–871. [Google Scholar] [CrossRef]
- Cao, A.; Guo, Z.; Pan, Y.; Song, J.; He, H.; Li, P. Near-Inertial Waves Induced by Typhoon Megi (2010) in the South China Sea. J. Mar. Sci. Eng. 2021, 9, 440. [Google Scholar] [CrossRef]
- Xu, F.H.; Yuan, Y.; Oey, L.; Lin, Y. Impacts of pre-existing ocean cyclonic circulation on sea surface chlorophyll-a concentrations off northeastern Taiwan following episodic typhoon passages. J. Geophys. Res. Oceans. 2017, 122, 6482–6497. [Google Scholar] [CrossRef]
- He, Y.; Hu, P.; Yang, B.; Yin, Y.; Hou, Y. Volume transport in the East Taiwan Channel in response to different tracks of typhoons as revealed by HYCOM data. J. Oceanol. Limnol. 2021, 40, 22–36. [Google Scholar] [CrossRef]
- Nagai, T.; Durán, G.S.; Otero, D.A.; Mori, Y.; Yoshie, N.; Ohgi, K.; Hasegawa, D.; Nishina, A.; Kobari, T. How the Kuroshio Current Delivers Nutrients to Sunlit Layers on the Continental Shelves with Aid of Near-Inertial Waves and Turbulence. Geophys. Res. Lett. 2019, 46, 6726–6735. [Google Scholar] [CrossRef] [Green Version]
- Whalen, C.B.; De Lavergne, C.; Garabato, A.C.N.; Klymak, J.M.; MacKinnon, J.A.; Sheen, K.L. Internal wave-driven mixing: Governing processes and consequences for climate. Nat. Rev. Earth Environ. 2020, 1, 606–621. [Google Scholar] [CrossRef]
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.; Feng, J.; Fan, Y.; Zhu, Y.; Chen, D. An Overview of the China Meteorological Administration Tropical Cyclone Database. J. Atmos. Ocean. Technol. 2014, 31, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Yu, H.; Ying, M.; Zhao, B.; Zhang, S.; Lin, L.; Bai, L.; Wan, R. Western North Pacific Tropical Cyclone Database Created by the China Meteorological Administration. Adv. Atmos. Sci. 2021, 38, 690–699. [Google Scholar] [CrossRef]
- He, Y.; Hu, P.; Yin, Y.; Liu, Z.; Liu, Y.; Hou, Y.; Zhang, Y. Vertical Migration of the Along-Slope Counter-Flow and Its Relation with the Kuroshio Intrusion off Northeastern Taiwan. Remote Sens. 2019, 11, 2624. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wang, D.; Wang, Q.; Zeng, L.; Xing, T.; He, Y.; Shu, Y.; Chen, J.; Wang, Y. Eddy-Induced Transport of Saline Kuroshio Water into the Northern South China Sea. J. Geophys. Res. Ocean. 2019, 124, 6673–6687. [Google Scholar] [CrossRef]
- Silverthorne, K.E.; Toole, J. Seasonal Kinetic Energy Variability of Near-Inertial Motions. J. Phys. Oceanogr. 2009, 39, 1035–1049. [Google Scholar] [CrossRef]
- Leaman, K.D.; Sanford, T.B. Vertical energy propagation of inertial waves: A vector spectral analysis of velocity profiles. J. Geophys. Res. 1975, 80, 1975–1978. [Google Scholar] [CrossRef]
- Oey, L.-Y.; Ezer, T.; Wang, D.-P.; Fan, S.-J.; Yin, X.-Q. Loop Current warming by Hurricane Wilma. Geophys. Res. Lett. 2006, 33, L08613. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Alford, M.H.; MacKinnon, J.A.; Pinkel, R. Long-Range Propagation of the Semidiurnal Internal Tide from the Hawaiian Ridge. J. Phys. Oceanogr. 2010, 40, 713–736. [Google Scholar] [CrossRef] [Green Version]
- Larsen, L.; Cannon, G.; Choi, B. East China Sea tide currents. Cont. Shelf Res. 1985, 4, 77–103. [Google Scholar] [CrossRef]
- Park, J.-H.; Lie, H.-J.; Guo, B. Observation of Semi-diurnal Internal Tides and Near-inertial Waves at the Shelf Break of the East China Sea. Ocean Polar Res. 2011, 33, 409–419. [Google Scholar] [CrossRef] [Green Version]
- Park, J.J.; Kim, K.; Schmitt, R.W. Global distribution of the decay timescale of mixed layer inertial motions observed by satellite-tracked drifters. J. Geophys. Res. Earth Surf. 2009, 114, C11010. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.A.; Lai, R.J.; Huang, N.E.; Pan, J.Y.; Liu, W.T. Observation of ocean current response to 1998 Hurricane Georges in the Gulf of Mexico. Acta. Oceanol. Sin. 2006, 25, 1–14. [Google Scholar]
- Shang, X.; Liu, Q.; Xie, X.; Chen, G.; Chen, R. Characteristics and seasonal variability of internal tides in the southern South China Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 2015, 98, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Wagner, G.L.; Young, W.R. A three-component model for the coupled evolution of near-inertial waves, quasi-geostrophic flow and the near-inertial second harmonic. J. Fluid Mech. 2016, 802, 806–837. [Google Scholar] [CrossRef]
- Le Boyer, A.; Alford, M.H.; Pinkel, R.; Hennon, T.D.; Yang, Y.J.; Ko, D.; Nash, J. Frequency Shift of Near-Inertial Waves in the South China Sea. J. Phys. Oceanogr. 2020, 50, 1121–1135. [Google Scholar] [CrossRef] [Green Version]
- Alford, M.H.; Gregg, M.C. Near-inertial mixing: Modulation of shear, strain and microstructure at low latitude. J. Geophys. Res. Earth Surf. 2001, 106, 16947–16968. [Google Scholar] [CrossRef]
- Anderson, D.L.T.; Gill, A.E. Beta dispersion of inertial waves. J. Geophys. Res. Earth Surf. 1979, 84, 1836–1842. [Google Scholar] [CrossRef]
- Nencioli, F.; Dong, C.M.; Dickey, T.; Washburn, L.; Mcwilliams, J.C. A vector geometry-based detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the southern California Bright. J. Atmos. Ocean Technol. 2010, 27, 564–579. [Google Scholar] [CrossRef]
- Pollard, R.; Millard, R. Comparison between observed and simulated wind-generated inertial oscillations. Deep Sea Res. Oceanogr. Abstr. 1970, 17, 813–821. [Google Scholar] [CrossRef]
- Alford, M.H. Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near-inertial motions. J. Phys. Oceanogr. 2001, 31, 2359–2368. [Google Scholar] [CrossRef]
- Sprintall, J.; Tomczak, M. Evidence of the barrier layer in the surface layer of the tropics. J. Geophys. Res. Ocean. 1992, 97, 7305–7316. [Google Scholar] [CrossRef] [Green Version]
- Dohan, K.; Davis, R.E. Mixing in the Transition Layer during Two Storm Events. J. Phys. Oceanogr. 2011, 41, 42–66. [Google Scholar] [CrossRef]
- Johnston, T.M.S.; Chaudhuri, D.; Mathur, M.; Rudnick, D.; Sengupta, D.; Simmons, H.; Tandon, A.; Venkatesan, R. Decay Mechanisms of Near-Inertial Mixed Layer Oscillations in the Bay of Bengal. Oceanography 2016, 29, 180–191. [Google Scholar] [CrossRef] [Green Version]
- D’Asaro, E.A. A collection of papers on the ocean storms experiment. J. Phys. Oceanogr. 1995, 25, 2817–2818. [Google Scholar]
- Niwa, Y.; Hibiya, T. Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J. Geophys. Res. 2004, 109, C04027. [Google Scholar] [CrossRef]
- Niwa, Y.; Hibiya, T. Generation of baroclinic tide energy in a global three-dimensional numerical model with different spatial grid resolutions. Ocean Model. 2014, 80, 59–73. [Google Scholar] [CrossRef]
- Tian, J.; Zhou, L.; Zhang, X. Latitudinal Distribution of Mixing Rate Caused by the M2 Internal Tide. J. Phys. Oceanogr. 2006, 36, 35–42. [Google Scholar] [CrossRef]
- Fer, I. Near-Inertial Mixing in the Central Arctic Ocean. J. Phys. Oceanogr. 2014, 44, 2031–2049. [Google Scholar] [CrossRef] [Green Version]
- Müller, P.; Holloway, G.; Henyey, F.; Pomphrey, N. Nonlinear interactions among internal gravity waves. Rev. Geophys. 1986, 24, 493–536. [Google Scholar] [CrossRef]
- Kim, Y.C.; Powers, E.J. Digital Bispectral Analysis and Its Applications to Nonlinear Wave Interactions. IEEE Trans. Plasma Sci. 1979, 7, 120–131. [Google Scholar] [CrossRef]
- Mccomas, C.H.; Briscoe, M.G. Bispectra of internal waves. J. Fluid Mech. 1980, 97, 205–213. [Google Scholar] [CrossRef]
- Carter, G.S.; Gregg, M.C. Persistent Near-Diurnal Internal Waves Observed above a Site of M2 Barotropic-to-Baroclinic Conversion. J. Phys. Oceanogr. 2006, 36, 1136–1147. [Google Scholar] [CrossRef]
- Cao, A.; Guo, Z.; Song, J.; Lv, X.; He, H.; Fan, W. Near-Inertial Waves and Their Underlying Mechanisms Based on the South China Sea Internal Wave Experiment (2010–2011). J. Geophys. Res. Ocean. 2018, 123, 5026–5040. [Google Scholar] [CrossRef]
- Yang, W.; Wei, H.; Zhao, L. Parametric Subharmonic Instability of the Semidiurnal Internal Tides at the East China Sea Shelf Slope. J. Phys. Oceanogr. 2020, 50, 907–920. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, Z.; Liu, Z.; Sun, Y.; Yang, B.; Hou, Y. Observation of Near-Inertial Waves Induced by Typhoon Mitag (2019) on the Southwestern East China Sea Continental Slope. J. Mar. Sci. Eng. 2022, 10, 202. https://doi.org/10.3390/jmse10020202
Ouyang Z, Liu Z, Sun Y, Yang B, Hou Y. Observation of Near-Inertial Waves Induced by Typhoon Mitag (2019) on the Southwestern East China Sea Continental Slope. Journal of Marine Science and Engineering. 2022; 10(2):202. https://doi.org/10.3390/jmse10020202
Chicago/Turabian StyleOuyang, Zhiling, Ze Liu, Yunfei Sun, Bing Yang, and Yijun Hou. 2022. "Observation of Near-Inertial Waves Induced by Typhoon Mitag (2019) on the Southwestern East China Sea Continental Slope" Journal of Marine Science and Engineering 10, no. 2: 202. https://doi.org/10.3390/jmse10020202
APA StyleOuyang, Z., Liu, Z., Sun, Y., Yang, B., & Hou, Y. (2022). Observation of Near-Inertial Waves Induced by Typhoon Mitag (2019) on the Southwestern East China Sea Continental Slope. Journal of Marine Science and Engineering, 10(2), 202. https://doi.org/10.3390/jmse10020202