Modelling Salt Intrusion and Estuarine Plumes under Climate Change Scenarios in Two Transitional Ecosystems from the NW Atlantic Coast
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Set-Up
2.3. Climate Change Scenarios
3. Results
3.1. Present Scenario Analysis
3.2. Salt Intrusion
3.3. Estuarine Plumes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; ISBN 978-0-521-70596-7. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; ISBN 978-1-107-66182-0. [Google Scholar]
- USGCRP. Climate Science Special Report: Fourth National Climate Assessment, Volume I; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2017. [Google Scholar]
- Cheng, L.; Abraham, J.; Hausfather, Z.; Trenberth, K.E. How Fast Are the Oceans Warming? Science 2019, 363, 128–129. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer, N.M., Eds.; IPCC: Geneve, Switzerland, 2019; p. 755. [Google Scholar]
- Lüthi, D.; Le Floch, M.; Bereiter, B.; Blunier, T.; Barnola, J.-M.; Siegenthaler, U.; Raynaud, D.; Jouzel, J.; Fischer, H.; Kawamura, K.; et al. High-Resolution Carbon Dioxide Concentration Record 650,000–800,000 Years before Present. Nature 2008, 453, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.D.; Harris, G.R.; Gregory, J.M. Extending CMIP5 Projections of Global Mean Temperature Change and Sea Level Rise Due to Thermal Expansion Using a Physically-Based Emulator. Environ. Res. Lett. 2018, 13, 084003. [Google Scholar] [CrossRef]
- Cannaby, H.; Palmer, M.D.; Howard, T.; Bricheno, L.; Calvert, D.; Krijnen, J.; Wood, R.; Tinker, J.; Bunney, C.; Harle, J.; et al. Projected Sea Level Rise and Changes in Extreme Storm Surge and Wave Events during the 21st Century in the Region of Singapore. Ocean Sci. 2016, 12, 613–632. [Google Scholar] [CrossRef] [Green Version]
- Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Jevrejeva, S.; Jackson, L.P.; Feyen, L. Global Probabilistic Projections of Extreme Sea Levels Show Intensification of Coastal Flood Hazard. Nat. Commun. 2018, 9, 2360. [Google Scholar] [CrossRef] [Green Version]
- Howard, E.M.; Frenzel, H.; Kessouri, F.; Renault, L.; Bianchi, D.; McWilliams, J.C.; Deutsch, C. Attributing Causes of Future Climate Change in the California Current System With Multimodel Downscaling. Glob. Biogeochem. Cycles 2020, 34, e2020GB006646. [Google Scholar] [CrossRef]
- Geyer, W.R.; MacCready, P. The Estuarine Circulation. Annu. Rev. Fluid Mech. 2014, 46, 175–197. [Google Scholar] [CrossRef]
- Canuel, E.; Hardison, A. Sources, Ages, and Alteration of Organic Matter in Estuaries. Annu. Rev. Mar. Sci. 2015, 8. [Google Scholar] [CrossRef]
- Dubinenkov, I.; Flerus, R.; Schmitt-Kopplin, P.; Kattner, G.; Koch, B.P. Origin-Specific Molecular Signatures of Dissolved Organic Matter in the Lena Delta. Biogeochemistry 2015, 123, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Matias, A.; Rita Carrasco, A.; Loureiro, C.; Masselink, G.; Andriolo, U.; McCall, R.; Ferreira, Ó.; Plomaritis, T.A.; Pacheco, A.; Guerreiro, M. Field Measurements and Hydrodynamic Modelling to Evaluate the Importance of Factors Controlling Overwash. Coast. Eng. 2019, 152, 103523. [Google Scholar] [CrossRef] [Green Version]
- Glamore, W.C.; Rayner, D.S.; Rahman, P.F. Estuaries and Climate Change: Technical Monograph Prepared for the National Climate Change Adaptation Research Facility; Water Research Laboratory of the School of Civil and Environmental Engineering, UNSW: Sydney, Australia, 2016. [Google Scholar]
- Kirk Cochran, J. Estuaries. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1–3. ISBN 978-0-12-409548-9. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneve, Switzerland, 2014. [Google Scholar]
- Wang, X.; Xu, L.-L.; Cui, S.-H.; Wang, C.-H. Reflections on Coastal Inundation, Climate Change Impact, and Adaptation in Built Environment: Progresses and Constraints. Adv. Clim. Change Res. 2020, 11, 317–331. [Google Scholar] [CrossRef]
- Kuang, C.; Chen, W.; Gu, J.; David, Z.; He, L.; Huang, H. Numerical Assessment of the Impacts of Potential Future Sea-Level Rise on Hydrodynamics of the Yangtze River Estuary, China. J. Coast. Res. 2014, 295, 586–597. [Google Scholar] [CrossRef]
- Sweet, W.V.; Park, J. From the Extreme to the Mean: Acceleration and Tipping Points of Coastal Inundation from Sea Level Rise. Earth’s Future 2014, 2, 579–600. [Google Scholar] [CrossRef]
- Nicholls, R.; Cazenave, A. Sea-Level Rise and Its Impact on Coastal Zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T. Battling Seawater Intrusion in the Central & West Coast Basins. WRD Tech. Bull. 2007, 13, 1–2. [Google Scholar]
- Werner, A.D.; Simmons, C.T. Impact of Sea-Level Rise on Sea Water Intrusion in Coastal Aquifers. Groundwater 2009, 47, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Pool, M.; Carrera, J. Dynamics of Negative Hydraulic Barriers to Prevent Seawater Intrusion. Hydrogeol. J. 2010, 18, 95–105. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Church, J.A.; Watson, C.S.; King, M.A.; Monselesan, D.; Legresy, B.; Harig, C. The Increasing Rate of Global Mean Sea-Level Rise during 1993–2014. Nat. Clim. Chang. 2017, 7, 492–495. [Google Scholar] [CrossRef]
- Le Cozannet, G.; Thiéblemont, R.; Rohmer, J.; Idier, D.; Manceau, J.-C.; Quique, R. Low-End Probabilistic Sea-Level Projections. Water 2019, 11, 1507. [Google Scholar] [CrossRef] [Green Version]
- Mulamba, T.; Bacopoulos, P.; Kubatko, E.; Pinto, G. Sea-Level Rise Impacts on Longitudinal Salinity for a Low-Gradient Estuarine System. Clim. Chang. 2019, 152. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, T.; Voisin, N.; Copping, A. Estuarine Response to River Flow and Sea-Level Rise under Future Climate Change and Human Development. Estuar. Coast. Shelf Sci. 2015, 156, 19–30. [Google Scholar] [CrossRef]
- Huang, W.; Hagen, S.; Bacopoulos, P.; Wang, D. Hydrodynamic Modeling and Analysis of Sea-Level Rise Impacts on Salinity for Oyster Growth in Apalachicola Bay, Florida. Estuar. Coast. Shelf Sci. 2014, 156. [Google Scholar] [CrossRef]
- Anfuso, G.; Postacchini, M.; Di Luccio, D.; Benassai, G. Coastal Sensitivity/Vulnerability Characterization and Adaptation Strategies: A Review. J. Mar. Sci. Eng. 2021, 9, 72. [Google Scholar] [CrossRef]
- Muluneh, M.G. Impact of Climate Change on Biodiversity and Food Security: A Global Perspective—A Review Article. Agric. Food Secur. 2021, 10, 36. [Google Scholar] [CrossRef]
- Mendes, R.; Sousa, M.C.; deCastro, M.; Gómez-Gesteira, M.; Dias, J.M. New Insights into the Western Iberian Buoyant Plume: Interaction between the Douro and Minho River Plumes under Winter Conditions. Prog. Oceanogr. 2016, 141, 30–43. [Google Scholar] [CrossRef]
- Slinger, J.H. Hydro-Morphological Modelling of Small, Wave-Dominated Estuaries. Estuar. Coast. Shelf Sci. 2017, 198, 583–596. [Google Scholar] [CrossRef] [Green Version]
- Jovanovic, D.; Gelsinari, S.; Bruce, L.; Hipsey, M.; Teakle, I.; Barnes, M.; Coleman, R.; Deletic, A.; Mccarthy, D.T. Modelling Shallow and Narrow Urban Salt-Wedge Estuaries: Evaluation of Model Performance and Sensitivity to Optimise Input Data Collection. Estuar. Coast. Shelf Sci. 2019, 217, 9–27. [Google Scholar] [CrossRef]
- Ribeiro, A.S. Coupled Modelling of the Tagus and Sado Estuaries and Their Associated Mesoscale Patterns. MSc Thesis, University of Aveiro, Aveiro, Portugal, 2015. [Google Scholar]
- Horner-Devine, A.R.; Hetland, R.D.; MacDonald, D.G. Mixing and Transport in Coastal River Plumes. Annu. Rev. Fluid Mech. 2015, 47, 569–594. [Google Scholar] [CrossRef]
- European Commission Natura 2000 Network. Available online: https://ec.europa.eu/environment/nature/natura2000/index_en.htm (accessed on 11 January 2022).
- Pinto, R.; Martins, F.C. The Portuguese National Strategy for Integrated Coastal Zone Management as a Spatial Planning Instrument to Climate Change Adaptation in the Minho River Estuary (Portugal NW-Coastal Zone). Environ. Sci. Policy 2013, 33, 76–96. [Google Scholar] [CrossRef]
- CORINE Biotopes: The Design, Compilation and Use of an Inventory of Sites of Major Importance for Nature Conservation in the European Community; Moss, D. (Ed.) Commission of the European Communities: Luxembourg, 1991; ISBN 978-92-826-2431-9. [Google Scholar]
- Antunes, C.; Costa-Dias, S. The Faunal Composition of the Euryhaline Section of the Lima River Estuary. J. Ichthyol. 2005, 45, 163–170. [Google Scholar]
- Instituto da Conservação da Natureza e das Florestas. Zonas de Proteção Especial (ZPE)-Estuários dos rios Minho e Coura. Available online: http://www2.icnf.pt/portal/pn/biodiversidade/rn2000/resource/doc/zpe-cont/minhcour (accessed on 11 January 2022).
- BirdLife International. BirdLife: Criteria. Available online: http://datazone.birdlife.org/site/ibacriteria (accessed on 11 January 2022).
- BirdLife International. BirdLife: Minho and Coura Estuaries. Available online: http://datazone.birdlife.org/site/factsheet/minho-and-coura-estuaries-iba-portugal/text (accessed on 11 January 2022).
- Rodrigues, J. The Tagus Estuarine Plume Variability: Impact in Coastal Circulation and Hydrography. MSc Thesis, University of Aveiro, Aveiro, Portugal, 2015. [Google Scholar]
- Kovats, S.; Ebi, K.L.; Menne, B. Health and Global Environmental Change: Methods of Assessing Human Health Vulnerability and Public Health Adaptation to Climate Change; United Nations Environment Programme; World Health Organization: Geneve, Switzerland; Health Canada: Vancouver, BC, Canada; World Meteorological Organization: Copenhagen, Denmark, 2003; p. 111. [Google Scholar]
- Sousa, M.C. Modelling the Minho River Plume Intrusion into the Rias Baixas. Ph.D. Thesis, Universidade de Aveiro, Aveiro, Portugal, Universidade do Porto, Porto, Portugal, 2013. [Google Scholar]
- Marta-Almeida, M.; Reboreda, R.; Rocha, C.; Dubert, J.; Nolasco, R.; Cordeiro, N.; Luna, T.; Rocha, A.; Lencart e Silva, J.D.; Queiroga, H.; et al. Towards Operational Modeling and Forecasting of the Iberian Shelves Ecosystem. PLoS ONE 2012, 7, e37343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picado, A. Influence of Physical Processes on the Primary Production along the Iberian Peninsula Northwestern Coast. Ph.D. Thesis, Universities of Aveiro, Porto and Minho, Portugal, 2016. [Google Scholar]
- Stammer, D.; van de Wal, R.S.W.; Nicholls, R.J.; Church, J.A.; Le Cozannet, G.; Lowe, J.A.; Horton, B.P.; White, K.; Behar, D.; Hinkel, J. Framework for High-End Estimates of Sea Level Rise for Stakeholder Applications. Earth’s Future 2019, 7, 923–938. [Google Scholar] [CrossRef]
- Elhakeem, A.; Elshorbagy, W.; Bleninger, T. Long-Term Hydrodynamic Modeling of the Arabian Gulf. Mar. Pollut. Bull. 2015, 94, 19–36. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Ding, P.; Wang, Z.; Yang, S. A 2D/3D Hydrodynamic and Sediment Transport Model for the Yangtze Estuary, China. J. Mar. Syst. 2009, 77, 114–136. [Google Scholar] [CrossRef]
- Grunnet, N.M.; Ruessink, B.G.; Walstra, D.-J.R. The Influence of Tides, Wind and Waves on the Redistribution of Nourished Sediment at Terschelling, The Netherlands. Coast. Eng. 2005, 52, 617–631. [Google Scholar] [CrossRef]
- Rahbani, M. A Comparison between the Suspended Sediment Concentrations Derived from DELFT3D Model and Collected Using Transmissometer—A Case Study in Tidally Dominated Area of Dithmarschen Bight. Oceanologia 2015, 57, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, A.S.; Sousa, M.C.; Lencart e Silva, J.D.; Dias, J.M. David and Goliath Revisited: Joint Modelling of the Tagus and Sado Estuaries. J. Coast. Res. 2016, 75, 123–127. [Google Scholar] [CrossRef]
- Santos, A.I.; Balsinha, M.J.; Oliveira, A.; Silva, A.J.D. Tide Induced Variability in the Hydrography and Dynamics of the Minho and Douro Estuaries during Low Runoff. In Proceedings of the 5th Symposium on the Iberian Atlantic Margin, Aveiro, Portugal, 3–5 November 2006; pp. 195–197. [Google Scholar]
- Sousa, M.C.; Mendes, R.; Alvarez, I.; Vaz, N.; Gomez-Gesteira, M.; Dias, J.M. Unusual Circulation Patterns of the Rias Baixas Induced by Minho Freshwater Intrusion (NW of the Iberian Peninsula). PLoS ONE 2014, 9, e112587. [Google Scholar] [CrossRef]
- Zacarias, N. Influência Da Batimetria e Do Caudal Fluvial Na Propagação Da Maré No Estuário Do Rio Minho. University of Évora: Évora, Portugal, 2007; p. 81. [Google Scholar]
- Delgado, A.; Taveira-Pinto, F.; Silva, R. Hydrodynamic and Morphodynamic Preliminary Simulation of River Minho Estuary. In Proceedings of the 6as Jornadas de Hidráulica, Recursos Hídricos e Ambiente; Faculty of Engineering; University of Porto: Porto, Portugal, 2011; pp. 113–126. [Google Scholar]
- Mil-Homens, M.; Costa, A.M.; Fonseca, S.; Trancoso, M.A.; Lopes, C.; Serrano, R.; Sousa, R. Characterization of Heavy-Metal Contamination in Surface Sediments of the Minho River Estuary by Way of Factor Analysis. Arch. Environ. Contam. Toxicol. 2013, 64, 617–631. [Google Scholar] [CrossRef]
- Roebeling, P.; Alves, H.; Rocha, J.; Brito, A.; Almeida, P.; Mamede, J. Gains from Trans-Boundary Water Quality Management in Linked Catchment and Coastal Socio-Ecological Systems: A Case Study for the Minho Region. Water Resour. Econ. 2014, 8, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, M.J.; Santos, A.; Alves, A.; Oliveira, A. Textural Composition of Sediments from Minho and Douro Estuaries (Portugal) and Its Relation with Hydrodynamics. J. Coast. Res. 2009, 56, 1130–1334. [Google Scholar]
- Vale, L.M.; Dias, J.M. The Effect of Tidal Regime and River Flow on the Hydrodynamics and Salinity Structure of the Lima Estuary: Use of a Numerical Model to Assist on Estuary Classification. J. Coast. Res. 2011, 64, 1604–1608. [Google Scholar]
- Ramos, S. Ichthyoplankton of the Lima Estuary (NW Portugal): Ecology of the Early Life Stages of Pleuronectiformes. Ph.D. Thesis, University of Porto, Porto, Portugal, 2007. [Google Scholar]
- Sousa, R.; Guilhermino, L.; Antunes, C. Molluscan Fauna in the Freshwater Tidal Area of the River Minho Estuary, NW of Iberian Peninsula. Ann. Limnol.-Int. J. Lim. 2005, 41, 141–147. [Google Scholar] [CrossRef]
- Freitas, V.; Costa-Dias, S.; Campos, J.; Bio, A.; Santos, P.; Antunes, C. Patterns in Abundance and Distribution of Juvenile Flounder, Platichthys Flesus, in Minho Estuary (NW Iberian Peninsula). Aquat. Ecol. 2009, 43, 1143–1153. [Google Scholar] [CrossRef]
- Ferreira, J.G.; Simas, T.; Nobre, A.; Silva, M.; Shifferegger, K.; Lencart e Silva, J. Identification of Sensitive Areas and Vulnerable Zones in Transitional and Coastal Portuguese Systems.; INAG-Instituto da Água and IMAR-Institute of Marine Research: Lisbon, Portugal, 2003; p. 151. [Google Scholar]
- Ramos, S.; Cowen, R.K.; Paris, C.; Ré, P.; Bordalo, A.A. Environmental Forcing and Larval Fish Assemblage Dynamics in the Lima River Estuary (Northwest Portugal). J. Plankton Res. 2006, 28, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Alves, A.M. Causas e Processos Da Dinâmica Sedimentar Na Evolução Actual Do Litoral Do Alto Minho. Ph.D. Thesis, University of Minho, Braga, Portugal, 1996. [Google Scholar]
- APA. APA Plano de Gestão Da Região Hidrográfica-Minho e Lima (RH1); Agência Portuguesa do Ambiente: Amadora, Portugal, 2015; p. 146. [Google Scholar]
- Pereira, H. Coupled Modelling of the Minho and Lima Estuaries: Hydrological Response to Climate Changes. Masters Thesis, University of Aveiro, Aveiro, Portugal, 2016. [Google Scholar]
- GEBCO (General Bathymetric Chart of the Oceans) - Gridded Bathymetry Data. Available online: https://www.gebco.net/data_and_products/gridded_bathymetry_data/ (accessed on 20 December 2021).
- DGT (Direção Geral Do Território) - Modelos Digitais de Terreno e de Superfície. Available online: https://www.dgterritorio.gov.pt/cartografia/cartografia-topografica/modelos-digitais-do-terreno (accessed on 20 December 2021).
- Vale, L.M. Estudo Hidrodinâmico Do Porto de Viana Do Castelo. MSc Thesis, University of Aveiro, Aveiro, Portugal, 2008. [Google Scholar]
- TOPEX/Poseidon–Ocean Surface Topography from Space. Available online: https://sealevel.jpl.nasa.gov/missions/topex-poseidon/summary/ (accessed on 7 December 2021).
- Iberia Biscay Irish–Monitoring Forecasting Centre (IBI MFC)|CMEMS. Available online: https://marine.copernicus.eu/about/producers/ibi-mfc (accessed on 7 December 2021).
- ERA-Interim|European Centre for Medium-Range Weather Forecasts. Available online: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim (accessed on 20 December 2021).
- SAIH Del Miño-Sil-Confederación Hidrográfica Del Miño-Sil. Available online: http://saih.chminosil.es/index.php?url=/datos/mapas/mapa:H1/area:HID/acc: (accessed on 20 December 2021).
- SNIRH (Sistema Nacional de Informação de Recursos Hídricos)-Database. Available online: https://snirh.apambiente.pt/index.php?idMain=2&idItem=1 (accessed on 20 December 2021).
- CMIP5-Coupled Model Intercomparison Project Phase 5. Available online: https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip5 (accessed on 20 December 2021).
- Europe Climate Change-Swedish Meteorological and Hydrological Institute HypeWeb. Available online: https://hypeweb.smhi.se/explore-water/climate-change-data/europe-climate-change/ (accessed on 7 December 2021).
- Portal Do Clima-AdaPT (Adaptar Portugal Às Alterações Climáticas). Available online: http://portaldoclima.pt/en/ (accessed on 20 December 2021).
- Anon Symposium on the Classification of Brackish Waters.; Venice, April 8–14 1958. Arch. Oceanogr. Limnol. 1958, 11, 1–248.
- Savenije, H. Salinity and Tides in Alluvial Estuaries, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2005; ISBN 978-0-444-52107-1. [Google Scholar]
- Vargas, C.I.C.; Vaz, N.; Dias, J.M. An Evaluation of Climate Change Effects in Estuarine Salinity Patterns: Application to Ria de Aveiro Shallow Water System. Estuar. Coast. Shelf Sci. 2017, 189, 33–45. [Google Scholar] [CrossRef]
- Lopes, J.F.; Lopes, C.L.; Dias, J.M. Climate Change Impact in the Ria de Aveiro Lagoon Ecosystem: A Case Study. J. Mar. Sci. Eng. 2019, 7, 352. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.; Fortunato, A.B.; Freire, P. Saltwater Intrusion in the Upper Tagus Estuary during Droughts. Geosciences 2019, 9, 400. [Google Scholar] [CrossRef] [Green Version]
- Rice, K.C.; Hong, B.; Shen, J. Assessment of Salinity Intrusion in the James and Chickahominy Rivers as a Result of Simulated Sea-Level Rise in Chesapeake Bay, East Coast, USA. J. Environ. Manag. 2012, 111, 61–69. [Google Scholar] [CrossRef]
- Chua, V.P.; Xu, M. Impacts of Sea-Level Rise on Estuarine Circulation: An Idealized Estuary and San Francisco Bay. J. Mar. Syst. 2014, 139, 58–67. [Google Scholar] [CrossRef]
- Chen, W.-B.; Liu, W.-C.; Hsu, M.-H. Modeling Assessment of a Saltwater Intrusion and a Transport Time Scale Response to Sea-Level Rise in a Tidal Estuary. Environ. Fluid Mech. 2015, 15, 491–514. [Google Scholar] [CrossRef]
- Cavalcante, G.; Vieira, F.; Campos, E.; Brandini, N.; Medeiros, P.R.P. Temporal Streamflow Reduction and Impact on the Salt Dynamics of the São Francisco River Estuary and Adjacent Coastal Zone (NE/Brazil). Reg. Stud. Mar. Sci. 2020, 38, 101363. [Google Scholar] [CrossRef]
- Jiang, L.; Xia, M. Dynamics of the Chesapeake Bay Outflow Plume: Realistic Plume Simulation and Its Seasonal and Interannual Variability. J. Geophys. Res. Ocean. 2016, 121, 1424–1445. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Nóvoa, D.; deCastro, M.; Des, M.; Costoya, X.; Mendes, R.; Gómez-Gesteira, M. Characterization of Iberian Turbid Plumes by Means of Synoptic Patterns Obtained through MODIS Imagery. J. Sea Res. 2017, 126, 12–25. [Google Scholar] [CrossRef]
- Philippart, C.J.M.; Anadón, R.; Danovaro, R.; Dippner, J.W.; Drinkwater, K.F.; Hawkins, S.J.; Oguz, T.; O’Sullivan, G.; Reid, P.C. Impacts of Climate Change on European Marine Ecosystems: Observations, Expectations and Indicators. J. Exp. Mar. Biol. Ecol. 2011, 400, 52–69. [Google Scholar] [CrossRef]
- Ferreira, J.G.; Andersen, J.H.; Borja, A.; Bricker, S.B.; Camp, J.; Cardoso da Silva, M.; Garcés, E.; Heiskanen, A.-S.; Humborg, C.; Ignatiades, L.; et al. Overview of Eutrophication Indicators to Assess Environmental Status within the European Marine Strategy Framework Directive. Estuar. Coast. Shelf Sci. 2011, 93, 117–131. [Google Scholar] [CrossRef] [Green Version]
- Vieira, L.R.; Guilhermino, L.; Morgado, F. Zooplankton Structure and Dynamics in Two Estuaries from the Atlantic Coast in Relation to Multi-Stressors Exposure. Estuar. Coast. Shelf Sci. 2015, 167, 347–367. [Google Scholar] [CrossRef]
RCP 4.5 | RCP 8.5 | |
---|---|---|
Sea Level (m) | +0.32 | +0.82 |
Water Temperature (°C) | +1.55 | +2.20 |
Ocean Salinity | −0.65 | −1.55 |
River Discharge (%) | −5 | −25 |
Summer | Winter | |||
---|---|---|---|---|
RCP 4.5 | RCP 8.5 | RCP 4.5 | RCP 8.5 | |
Air Temperature (°C) | +2.06 | +4.73 | +1.81 | +3.75 |
Air Humidity (%) | −1.63 | −5.93 | +2.03 | −0.42 |
Solar Radiation (Jm−2s−1) | +7.74 | +13.42 | −6.73 | −3.80 |
Wind Velocity (ms−1) | −0.01 | −0.02 | +0.45 | +0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, H.; Sousa, M.C.; Vieira, L.R.; Morgado, F.; Dias, J.M. Modelling Salt Intrusion and Estuarine Plumes under Climate Change Scenarios in Two Transitional Ecosystems from the NW Atlantic Coast. J. Mar. Sci. Eng. 2022, 10, 262. https://doi.org/10.3390/jmse10020262
Pereira H, Sousa MC, Vieira LR, Morgado F, Dias JM. Modelling Salt Intrusion and Estuarine Plumes under Climate Change Scenarios in Two Transitional Ecosystems from the NW Atlantic Coast. Journal of Marine Science and Engineering. 2022; 10(2):262. https://doi.org/10.3390/jmse10020262
Chicago/Turabian StylePereira, Humberto, Magda C. Sousa, Luís R. Vieira, Fernando Morgado, and João M. Dias. 2022. "Modelling Salt Intrusion and Estuarine Plumes under Climate Change Scenarios in Two Transitional Ecosystems from the NW Atlantic Coast" Journal of Marine Science and Engineering 10, no. 2: 262. https://doi.org/10.3390/jmse10020262
APA StylePereira, H., Sousa, M. C., Vieira, L. R., Morgado, F., & Dias, J. M. (2022). Modelling Salt Intrusion and Estuarine Plumes under Climate Change Scenarios in Two Transitional Ecosystems from the NW Atlantic Coast. Journal of Marine Science and Engineering, 10(2), 262. https://doi.org/10.3390/jmse10020262