Plastic Bottles for Sorting Floating Microplastics in Sediment
Abstract
:1. Introduction
- (1)
- If MP sorting proceeds as theoretically predicted in the three sorting methods;
- (2)
- If the recovery efficiency of MPs by the bottle method is equivalent to that of the other two methods;
- (3)
- If washing of liquid by the bottle method proceeds as theoretically predicted.
2. Materials and Methods
2.1. Experimental Equipment
2.2. Sample
2.3. Density
2.3.1. Liquid Sample
2.3.2. Solid Sample
2.4. Sorting Test
2.4.1. Overview of the Sorting Test
2.4.2. Spoon and Overflow Methods
2.4.3. Bottle Method
2.5. Dilution and Washing Test of Flotation Medium by Bottle Method
Cn/C0 = 1/(xn)
3. Results
3.1. Density
3.2. Recovery Efficiency of Each Sorting Method
3.3. Dilution and Washing Test of Flotation Medium by Bottle Method
4. Discussion
4.1. Recovery Efficiency of Each Sorting Method
4.2. Characteristics of Each Sorting Method
4.3. Problems, Future Research, and Significance of the Study
5. Conclusions
- (1)
- When the density of the solid sample was lower than the liquid density, the recovery rate was almost 100%, as theoretically predicted.
- (2)
- The recovery rate of MPs by the bottle method was comparable to that by the other two methods, and the sorting time was reduced by approximately half.
- (3)
- As for the dilution of liquid in the bottle method, the ratio of the actual concentration to the theoretical concentration was in the range 0.86 to 1.36, and the dilution and washing of the liquid proceeded as theoretically predicted.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Avio, C.G.; Gorbi, S.; Regoli, F. Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues: First observations in commercial species from Adriatic Sea. Mar. Environ. Res. 2015, 111, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Majewsky, M.; Bitter, H.; Eiche, E.; Horn, H. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC). Sci. Total Environ. 2016, 568, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.M.; Yang, J.; Criddle, C.S. Microplastics pollution and reduction strategies. Front. Environ. Sci. Eng. 2016, 11, 6. [Google Scholar] [CrossRef]
- Barrows, A.P.W.; Neumann, C.A.; Berger, M.L.; Shaw, S.D. Grab vs. neuston tow net: A microplastic sampling performance comparison and possible advances in the field. Anal. Methods 2017, 9, 1446–1453. [Google Scholar] [CrossRef]
- Willis, K.A.; Eriksen, R.; Wilcox, C.; Hardesty, B.D. Microplastic Distribution at Different Sediment Depths in an Urban Estuary. Front. Mar. Sci. 2017, 4, 419. [Google Scholar] [CrossRef] [Green Version]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [Green Version]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef]
- Barnes, D.K.A.; Galgani, F.; Thompson, R.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1985–1998. [Google Scholar] [CrossRef] [Green Version]
- Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef]
- Frias, J.P.; Sobral, P.; Ferreira, A.M. Organic pollutants in microplastics from two beaches of the Portuguese coast. Mar. Pollut. Bull. 2010, 60, 1988–1992. [Google Scholar] [CrossRef] [PubMed]
- Bellas, J.; Martinez-Armental, J.; Martinez-Camara, A.; Besada, V.; Martinez-Gomez, C. Ingestion of microplastics by demersal fish from the Spanish Atlantic and Mediterranean coasts. Mar. Pollut. Bull. 2016, 109, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Rochman, C.M.; Hoh, E.; Hentschel, B.T.; Kaye, S. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: Implications for plastic marine debris. Environ. Sci. Technol. 2012, 47, 1646–1654. [Google Scholar] [CrossRef] [PubMed]
- Rochman, C.M.; Hoh, E.; Kurobe, T.; Teh, S.J. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci. Rep. 2013, 3, 3263. [Google Scholar] [CrossRef]
- Vandermeersch, G.; Van Cauwenberghe, L.; Janssen, C.R.; Marques, A.; Granby, K.; Fait, G.; Kotterman, M.J.; Diogene, J.; Bekaert, K.; Robbens, J.; et al. A critical view on microplastic quantification in aquatic organisms. Environ. Res. 2015, 143, 46–55. [Google Scholar] [CrossRef]
- Tanaka, K.; Takada, H.; Yamashita, R.; Mizukawa, K.; Fukuwaka, M.; Watanuki, Y. Accumulation of plastic-derived chemicals in tissues of seabirds ingesting marine plastics. Mar. Pollut. Bull. 2013, 69, 219–222. [Google Scholar] [CrossRef]
- Bergmann, M.; Gutow, L.; Klages, M. Marine Anthropogenic Litter; Springer: Cham, Germany, 2015. [Google Scholar]
- Koelmans, A.A.; Bakir, A.; Burton, G.A.; Janssen, C.R. Microplastic as a vector for chemicals in the aquatic environment: Critical review and model-supported reinterpretation of empirical studies. Environ. Sci. Technol. 2016, 50, 3315–3326. [Google Scholar] [CrossRef]
- Mintenig, S.M.; Bauerlein, P.S.; Koelmans, A.A.; Dekker, S.C.; van Wezel, A.P. Closing the gap between small and smaller: Towards a framework to analyse nano- and microplastics in aqueous environmental samples. Environ. Sci. Nano 2018, 7, 1640–1649. [Google Scholar] [CrossRef]
- Eerkes-Medrano, D.; Thompson, R. Chapter 4—Occurrence, Fate, and Effect of Microplastics in Freshwater Systems. In Microplastic Contamination in Aquatic Environments; Zeng, E.Y., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 95–132. [Google Scholar]
- Koelmans, A.A.; Besseling, E.; Foekema, E.; Kooi, M.; Mintenig, S.; Ossendorp, B.C.; Redondo-Hasselerharm, P.E.; Verschoor, A.; van Wezel, A.P.; Scheffer, M. Risks of plastic debris: Unravelling fact, opinion, perception, and belief. Environ. Sci. Technol. 2017, 51, 11513–11519. [Google Scholar] [CrossRef]
- Mathalon, A.; Hill, P. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Mar. Pollut. Bull. 2014, 81, 69–79. [Google Scholar] [CrossRef]
- Masura, J.; Baker, J.; Foster, G.; Arthur, C. Laboratory Methods for the Analysis of Microplastics in the Marine Environment: Recommendations for Quantifying the Synthetic Particles in Water and Sediments; NOAA Marine Debris Division: Silver Spring, MD, USA, 2015.
- Wessel, C.C.; Lockridge, G.R.; Battiste, D.; Cebrian, J. Abundance and characteristics of microplastics in beach sediments: Insights into microplastic accumulation in northern Gulf of Mexico estuaries. Mar. Pollut. Bull. 2016, 109, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Crichton, E.M.; Noël, M.; Gies, E.A.; Ross, P.S. A novel, density-independent and FTIR-compatible approach for the rapid extraction of microplastics from aquatic sediments. Anal. Methods 2017, 9, 1419–1428. [Google Scholar] [CrossRef]
- Maes, T.; Jessop, R.; Wellner, N.; Haupt, K.; Mayes, A.G. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile red. Sci. Rep. 2017, 7, 44501. [Google Scholar] [CrossRef] [Green Version]
- Quinn, B.; Murphy, F.; Ewins, C. Validation of density separation for the rapid recovery of microplastics from sediment. Anal. Methods 2017, 9, 1491–1498. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.L.; Obbard, J.P. Prevalence of microplastics in Singapore’s coastal marine environment. Mar. Pollut. Bull. 2006, 52, 761–767. [Google Scholar] [CrossRef]
- Claessens, M.; De Meester, S.; Van Landuyt, L.; De Clerck, K.; Janssen, C.R. Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Mar. Pollut. Bull. 2011, 62, 2199–2204. [Google Scholar] [CrossRef]
- Martins, J.; Sobral, P. Plastic marine debris on the Portuguese coastline: A matter of size? Mar. Pollut. Bull. 2011, 62, 2649–2653. [Google Scholar] [CrossRef]
- Nor, N.H.M.; Obbard, J.P. Microplastics in Singapore’s coastal mangrove ecosystems. Mar. Pollut. Bull. 2014, 79, 278–283. [Google Scholar]
- Claessens, M.; Van Cauwenberghe, L.; Vandegehuchte, M.B.; Janssen, C.R. New techniques for the detection of microplastics in sediments and field collected organisms. Mar. Pollut. Bull. 2013, 70, 227–233. [Google Scholar] [CrossRef]
- Zhu, X. Optimization of elutriation device for filtration of microplastic particles from sediment. Mar. Pollut. Bull. 2015, 92, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Vermeiren, P.; Muñoz, C.; Ikejima, K. Microplastic identification and quantification from organic rich sediments: A validated laboratory protocol. Environ. Pollut. 2020, 262, 114298. [Google Scholar] [CrossRef] [PubMed]
- Hengstmann, E.; Tamminga, M.; Bruch, C.V.; Fischer, E.K. Microplastic in beach sediments of the Isle of Rügen (Baltic Sea)—Implementing a novel glass elutriation column. Mar. Pollut. Bull. 2018, 126, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Kedzierski, M.; Tilly, V.L.; Bourseau, P.; Bellegou, H.; César, G.; Sire, O.; Bruzaud, S. Microplastics elutriation from sandy sediments: A granulometric approach. Mar. Pollut. Bull. 2016, 107, 315–323. [Google Scholar] [CrossRef]
- Kedzierski, M.; Tilly, V.L.; Bourseau, P.; Bellegou, H.; César, G.; Sire, O.; Bruzaud, S. Microplastics elutriation system. Part A: Numerical modeling. Mar. Pollut. Bull. 2017, 119, 151–161. [Google Scholar] [CrossRef]
- Nuelle, M.T.; Dekiff, J.H.; Remy, E.; Fries, E. A new analytical approach for monitoring microplastics in marine sediments. Environ. Pollut. 2014, 184, 161–169. [Google Scholar] [CrossRef]
- Imhof, H.K.; Schmid, J.; Niessner, R.; Ivleva, N.P.; Laforsch, C. A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments. Limnol. Oceanogr. Methods 2012, 10, 524–537. [Google Scholar] [CrossRef]
- Zobkov, M.B.; Esuikova, E.E. Evaluation of the Munich Plastic Sediment Separator efficiency in extraction of microplastics from natural marine bottom sediments. Limnol. Oceanogr. Methods 2017, 15, 967–978. [Google Scholar] [CrossRef]
- Knutsen, H.; Cyvin, J.B.; Totland, C.; Lilleeng, Ø.; Wade, E.J.; Castro, V.; Pettersen, A.; Laugesen, J.; Møskeland, T.; Arp, H.P.H. Microplastic accumulation by tube-dwelling, suspension feeding polychaetes from the sediment surface: A case study from the Norwegian Continental Shelf. Mar. Environ. Res. 2020, 161, 105073. [Google Scholar] [CrossRef]
- Coppock, R.L.; Cole, M.; Lindeque, P.K.; Queirós, A.M.; Galloway, T.S. A small-scale, portable method for extracting microplastics from marine sediments. Environ. Pollut. 2017, 230, 829–837. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, R.; Tsuchiya, M.; Lindsay, D.J.; Kitahashi, T.; Fujikura, K.; Fukushima, T. A new small device made of glass for separating microplastics from marine and freshwater sediments. PeerJ 2019, 7, e7915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Chemical Society of Japan. Handbook of Chemistry: Applied Chemistry, 6th ed.; Maruzen: Tokyo, Japan, 2003. [Google Scholar]
Description | Hardness *1 | Shape *2 | Density ρs (g/cm3) *3 | ||||
---|---|---|---|---|---|---|---|
Mean | SE | Literature Value *4 | |||||
PE | SB | Shopping bag | F | S | 0.908 | 0.016 | 0.91–0.97 |
PE | GV | Disposable gloves | F | S | 0.871 | 0.011 | |
PE | RP | Rope | F | R | 0.754 | 0.004 | |
PE | PB | Polybottle | S | M | 0.934 | 0.005 | |
PE | FB | Freezer bag | F | S | 0.919 | 0.006 | |
PP | BC | Cap of PET-BB | S | M | 0.925 | 0.005 | 0.90–0.91 |
PP | OP | OP *5 bag | F | S | 0.888 | 0.009 | |
PP | BD | Board | S | S | 0.867 | 0.003 | |
PP | CP | Clothespin | S | M | 0.905 | 0.003 | |
PP | RP | Rope | F | R | 0.486 | 0.010 | |
PS | EP | Expanded polystyrene | S | M | 0.018 | 0.001 | 1.04–1.07 |
PS | BD | Board | S | S | 1.084 | 0.007 | |
PS | LB | Label of PET-BB | F | S | 1.031 | 0.007 | |
PS | DC | Compact disk case | S | M | 1.054 | 0.005 | |
PS | FT | Food tray | S | S | 0.981 | 0.007 | |
PVC | PI | Pipe | S | M | 1.424 | 0.005 | 1.16–1.45 |
PVC | BD | Board | S | S | 1.333 | 0.010 | |
PVC | CP | Corrugated plate | S | S | 1.375 | 0.007 | |
PVC | AS | Antislip sheet | F | S *6 | 0.884 | 0.029 | |
PVC | TC | Table cloth | F | S | 1.305 | 0.015 | |
PET | BB | Beverage bottle | S | S | 1.378 | 0.006 | 1.38–1.39 |
PET | EG | Egg pack | S | S | 1.315 | 0.017 | |
PET | LF | Lumirror® film | S | S | 1.390 | 0.007 | |
PET | FC | Fruit container | S | S | 1.336 | 0.017 | |
PC | CD | Compact disk | S | M | 1.163 | 0.005 | 1.2 |
PC | SG | Safety glasses | S | M | 1.166 | 0.007 | |
PC | BD | Board | S | S | 1.166 | 0.006 | |
PF | KP | Knob of pot lid | S | M | 1.469 | 0.016 | 1.25–1.32 |
Spoon | Overflow | Bottle | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Recovery | Time | Acc. Water | Recovery | Time | Acc. Water | Recovery | Time | Acc. Water | |||||||||||
% | s | mL | % | s | mL | % | s | mL | |||||||||||
Mean | SE | Mean | SE | Mean | SE | Mean | SE | Mean | SE | Mean | SE | Mean | SE | Mean | SE | Mean | SE | ||
PE | SB | 99.8 | 0.7 | 205.3 | 9.6 | 161.9 | 7.6 | 96.2 | 0.3 | 191.7 | 3.7 | 239.5 | 14.1 | 97.5 | 0.4 | 57.3 | 2.8 | 90.9 | 3.0 |
PE | GV | 99.5 | 0.2 | 111.2 | 2.7 | 20.2 | 1.8 | 99.4 | 0.2 | 167.5 | 6.2 | 206.1 | 10.8 | 100.3 | 0.2 | 53.0 | 2.0 | 78.4 | 3.3 |
PE | RP | 99.6 | 0.3 | 57.2 | 1.1 | 6.4 | 0.3 | 99.9 | 0.1 | 49.3 | 3.4 | 136.6 | 9.8 | 99.9 | 0.1 | 30.3 | 1.0 | 81.8 | 8.7 |
PE | PB | 99.9 | 0.1 | 53.2 | 1.9 | 3.3 | 0.2 | 99.9 | 0.2 | 63.0 | 5.7 | 33.0 | 1.6 | 100.0 | 0.0 | 44.3 | 1.9 | 35.1 | 1.5 |
PE | FB | 99.3 | 0.3 | 98.0 | 3.4 | 18.8 | 0.9 | 99.8 | 0.1 | 80.0 | 13.8 | 125.4 | 4.3 | 99.7 | 0.2 | 35.0 | 0.6 | 65.5 | 5.2 |
PP | BC | 99.1 | 0.6 | 18.8 | 0.9 | 1.9 | 0.1 | 100.1 | 0.1 | 28.0 | 2.7 | 25.2 | 0.6 | 100.0 | 0.0 | 30.2 | 1.4 | 31.7 | 1.0 |
PP | OP | 99.0 | 0.3 | 201.8 | 11.2 | 168.8 | 9.9 | 98.5 | 0.3 | 148.2 | 14.2 | 118.4 | 8.7 | 96.7 | 1.2 | 48.8 | 2.7 | 93.7 | 3.8 |
PP | BD | 99.9 | 0.1 | 24.8 | 1.0 | 1.9 | 0.1 | 99.9 | 0.1 | 23.7 | 2.2 | 28.1 | 2.1 | 100.0 | 0.0 | 35.0 | 1.3 | 32.1 | 1.6 |
PP | CP | 100.0 | 0.0 | 52.2 | 2.3 | 2.8 | 0.2 | 99.0 | 0.1 | 53.8 | 7.3 | 32.2 | 2.1 | 99.9 | 0.0 | 62.8 | 4.3 | 36.1 | 2.7 |
PP | RP | 94.7 | 2.6 | 60.0 | 0.0 | 29.1 | 1.6 | 99.9 | 0.1 | 49.7 | 1.6 | 60.3 | 3.2 | 99.8 | 0.1 | 18.5 | 0.6 | 31.6 | 2.9 |
PS | EP | 100.8 | 0.3 | 75.0 | 12.6 | 177.7 | 6.5 | 101.0 | 0.5 | 110.7 | 4.7 | 124.4 | 5.3 | 99.8 | 0.6 | 50.2 | 1.3 | 128.2 | 11.1 |
PS | BD | 0.6 | 0.5 | 30.0 | 0.0 | 5.1 | 1.6 | 9.6 | 0.9 | 32.5 | 5.2 | 55.7 | 5.0 | 8.7 | 1.2 | 31.2 | 1.0 | 64.7 | 5.0 |
PS | LB | 53.4 | 2.9 | 101.5 | 3.8 | 17.6 | 0.9 | 52.9 | 2.7 | 46.8 | 4.1 | 146.9 | 14.8 | 56.2 | 3.3 | 44.3 | 1.8 | 69.6 | 4.8 |
PS | DC | 0.0 | 0.0 | 30.0 | 0.0 | 2.5 | 0.4 | 0.0 | 0.0 | 30.0 | 0.0 | 11.6 | 1.2 | 0.0 | 0.0 | 26.8 | 0.9 | 28.8 | 1.3 |
PS | FT | 98.1 | 0.6 | 67.8 | 7.3 | 142.0 | 9.0 | 99.2 | 0.3 | 52.3 | 4.3 | 40.7 | 4.2 | 99.5 | 0.3 | 30.7 | 0.6 | 60.1 | 6.5 |
PVC | PI | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
PVC | BD | 0.0 | 0.0 | 30.0 | 0.0 | 6.5 | 0.2 | 0.0 | 0.0 | 30.0 | 0.0 | 47.0 | 1.9 | 7.2 | 2.0 | 34.2 | 1.1 | 47.5 | 4.5 |
PVC | CP | 0.0 | 0.0 | 30.0 | 0.0 | 6.4 | 0.4 | 0.0 | 0.0 | 30.0 | 0.0 | 41.7 | 0.3 | 0.0 | 0.0 | 31.5 | 1.7 | 49.0 | 3.1 |
PVC | AS | 98.6 | 1.2 | 53.7 | 0.9 | 8.2 | 2.1 | 99.4 | 0.1 | 49.3 | 3.6 | 44.7 | 3.8 | 100.0 | 0.0 | 35.3 | 1.3 | 81.1 | 8.5 |
PVC | TC | 6.9 | 0.9 | 16.2 | 1.0 | 1.2 | 0.3 | 6.5 | 0.6 | 20.7 | 2.5 | 39.5 | 4.0 | 3.2 | 1.1 | 25.7 | 0.8 | 22.5 | 3.0 |
PET | BB | 0.0 | 0.0 | 30.0 | 0.0 | 6.6 | 0.2 | 0.0 | 0.0 | 30.0 | 0.0 | 43.9 | 1.8 | 0.2 | 0.1 | 22.8 | 0.8 | 26.6 | 4.0 |
PET | EG | 16.2 | 1.4 | 46.7 | 3.9 | 4.9 | 0.4 | 19.7 | 1.7 | 48.7 | 4.1 | 95.0 | 7.8 | 6.0 | 0.7 | 29.7 | 0.8 | 46.3 | 3.2 |
PET | LF | 2.9 | 1.0 | 18.2 | 2.9 | 2.3 | 1.4 | 3.4 | 1.0 | 18.3 | 3.9 | 24.8 | 5.8 | 0.4 | 0.3 | 26.2 | 0.9 | 45.8 | 3.4 |
PET | FC | 0.0 | 0.0 | 30.0 | 0.0 | 7.0 | 0.3 | 0.0 | 0.0 | 30.0 | 0.0 | 50.2 | 1.3 | 0.4 | 0.3 | 27.2 | 0.8 | 40.6 | 2.1 |
PC | CD | 0.0 | 0.0 | 30.0 | 0.0 | 8.3 | 0.3 | 0.0 | 0.0 | 30.0 | 0.0 | 39.8 | 2.0 | 0.0 | 0.0 | 27.3 | 0.5 | 36.4 | 1.8 |
PC | SG | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
PC | BD | 0.0 | 0.0 | 30.0 | 0.0 | 7.0 | 0.3 | 0.0 | 0.0 | 30.0 | 0.0 | 47.5 | 1.5 | 0.0 | 0.0 | 27.3 | 0.7 | 29.4 | 5.0 |
PF | KP | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
n | Cn-Actual/Cn-Theoretical | |||
---|---|---|---|---|
x = 2 | 3 | 4 | 5 | |
0 | 0.98 | 0.96 | 1.05 | 1.07 |
1 | 0.98 | 1.14 | 1.08 | 1.01 |
2 | 0.86 | 0.99 | 1.36 | 1.12 |
3 | 0.89 | 0.98 | 1.25 | 1.14 |
4 | 1.25 | 1.31 | 1.10 | |
5 | 1.12 | 1.12 | ||
6 | 1.21 | |||
7 | 1.00 |
Recovery | Time | Accompanying Water | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Spoon | Overflow | Bottle | Spoon | Overflow | Bottle | Spoon | Overflow | Bottle | ||
PE | SB | 1.02 | 0.99 | 1.00 | 3.58 | 3.34 | 1.00 | 1.78 | 2.63 | 1.00 |
PE | GV | 0.99 | 0.99 | 1.00 | 2.10 | 3.16 | 1.00 | 0.26 | 2.63 | 1.00 |
PE | RP | 1.00 | 1.00 | 1.00 | 1.88 | 1.63 | 1.00 | 0.08 | 1.67 | 1.00 |
PE | PB | 1.00 | 1.00 | 1.00 | 1.20 | 1.42 | 1.00 | 0.09 | 0.94 | 1.00 |
PE | FB | 1.00 | 1.00 | 1.00 | 2.80 | 2.29 | 1.00 | 0.29 | 1.92 | 1.00 |
PP | BC | 0.99 | 1.00 | 1.00 | 0.62 | 0.93 | 1.00 | 0.06 | 0.80 | 1.00 |
PP | OP | 1.02 | 1.02 | 1.00 | 4.13 | 3.03 | 1.00 | 1.80 | 1.26 | 1.00 |
PP | BD | 1.00 | 1.00 | 1.00 | 0.71 | 0.68 | 1.00 | 0.06 | 0.88 | 1.00 |
PP | CP | 1.00 | 0.99 | 1.00 | 0.83 | 0.86 | 1.00 | 0.08 | 0.89 | 1.00 |
PP | RP | 0.95 | 1.00 | 1.00 | 3.24 | 2.68 | 1.00 | 0.92 | 1.91 | 1.00 |
PS | EP | 1.01 | 1.01 | 1.00 | 1.50 | 2.21 | 1.00 | 1.39 | 0.97 | 1.00 |
PS | FT | 0.99 | 1.00 | 1.00 | 2.21 | 1.71 | 1.00 | 2.36 | 0.68 | 1.00 |
PVC | AS | 0.99 | 0.99 | 1.00 | 1.52 | 1.40 | 1.00 | 0.10 | 0.55 | 1.00 |
Mean | 1.00 | 1.00 | 1.00 | 2.03 | 1.95 | 1.00 | 0.71 | 1.36 | 1.00 | |
SD | 0.02 | 0.01 | 0.00 | 1.13 | 0.91 | 0.00 | 0.83 | 0.72 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asakura, H. Plastic Bottles for Sorting Floating Microplastics in Sediment. J. Mar. Sci. Eng. 2022, 10, 390. https://doi.org/10.3390/jmse10030390
Asakura H. Plastic Bottles for Sorting Floating Microplastics in Sediment. Journal of Marine Science and Engineering. 2022; 10(3):390. https://doi.org/10.3390/jmse10030390
Chicago/Turabian StyleAsakura, Hiroshi. 2022. "Plastic Bottles for Sorting Floating Microplastics in Sediment" Journal of Marine Science and Engineering 10, no. 3: 390. https://doi.org/10.3390/jmse10030390
APA StyleAsakura, H. (2022). Plastic Bottles for Sorting Floating Microplastics in Sediment. Journal of Marine Science and Engineering, 10(3), 390. https://doi.org/10.3390/jmse10030390